i386.h revision 122193
1207618Srdivacky/* Definitions of target machine for GNU compiler for IA-32.
2207618Srdivacky   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3207618Srdivacky   2001, 2002 Free Software Foundation, Inc.
4207618Srdivacky
5207618SrdivackyThis file is part of GNU CC.
6207618Srdivacky
7207618SrdivackyGNU CC is free software; you can redistribute it and/or modify
8207618Srdivackyit under the terms of the GNU General Public License as published by
9207618Srdivackythe Free Software Foundation; either version 2, or (at your option)
10207618Srdivackyany later version.
11207618Srdivacky
12207618SrdivackyGNU CC is distributed in the hope that it will be useful,
13207618Srdivackybut WITHOUT ANY WARRANTY; without even the implied warranty of
14208599SrdivackyMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15223017SdimGNU General Public License for more details.
16249423Sdim
17207618SrdivackyYou should have received a copy of the GNU General Public License
18207618Srdivackyalong with GNU CC; see the file COPYING.  If not, write to
19276479Sdimthe Free Software Foundation, 59 Temple Place - Suite 330,
20207618SrdivackyBoston, MA 02111-1307, USA.  */
21288943Sdim
22288943Sdim/* The purpose of this file is to define the characteristics of the i386,
23288943Sdim   independent of assembler syntax or operating system.
24288943Sdim
25288943Sdim   Three other files build on this one to describe a specific assembler syntax:
26288943Sdim   bsd386.h, att386.h, and sun386.h.
27288943Sdim
28288943Sdim   The actual tm.h file for a particular system should include
29288943Sdim   this file, and then the file for the appropriate assembler syntax.
30288943Sdim
31288943Sdim   Many macros that specify assembler syntax are omitted entirely from
32288943Sdim   this file because they really belong in the files for particular
33276479Sdim   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34288943Sdim   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35288943Sdim   that start with ASM_ or end in ASM_OP.  */
36288943Sdim
37288943Sdim/* Define the specific costs for a given cpu */
38288943Sdim
39288943Sdimstruct processor_costs {
40288943Sdim  const int add;		/* cost of an add instruction */
41288943Sdim  const int lea;		/* cost of a lea instruction */
42288943Sdim  const int shift_var;		/* variable shift costs */
43288943Sdim  const int shift_const;	/* constant shift costs */
44288943Sdim  const int mult_init;		/* cost of starting a multiply */
45288943Sdim  const int mult_bit;		/* cost of multiply per each bit set */
46288943Sdim  const int divide;		/* cost of a divide/mod */
47288943Sdim  int movsx;			/* The cost of movsx operation.  */
48288943Sdim  int movzx;			/* The cost of movzx operation.  */
49288943Sdim  const int large_insn;		/* insns larger than this cost more */
50288943Sdim  const int move_ratio;		/* The threshold of number of scalar
51288943Sdim				   memory-to-memory move insns.  */
52288943Sdim  const int movzbl_load;	/* cost of loading using movzbl */
53288943Sdim  const int int_load[3];	/* cost of loading integer registers
54288943Sdim				   in QImode, HImode and SImode relative
55288943Sdim				   to reg-reg move (2).  */
56288943Sdim  const int int_store[3];	/* cost of storing integer register
57288943Sdim				   in QImode, HImode and SImode */
58288943Sdim  const int fp_move;		/* cost of reg,reg fld/fst */
59288943Sdim  const int fp_load[3];		/* cost of loading FP register
60288943Sdim				   in SFmode, DFmode and XFmode */
61288943Sdim  const int fp_store[3];	/* cost of storing FP register
62288943Sdim				   in SFmode, DFmode and XFmode */
63288943Sdim  const int mmx_move;		/* cost of moving MMX register.  */
64288943Sdim  const int mmx_load[2];	/* cost of loading MMX register
65288943Sdim				   in SImode and DImode */
66288943Sdim  const int mmx_store[2];	/* cost of storing MMX register
67288943Sdim				   in SImode and DImode */
68288943Sdim  const int sse_move;		/* cost of moving SSE register.  */
69288943Sdim  const int sse_load[3];	/* cost of loading SSE register
70288943Sdim				   in SImode, DImode and TImode*/
71288943Sdim  const int sse_store[3];	/* cost of storing SSE register
72288943Sdim				   in SImode, DImode and TImode*/
73288943Sdim  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
74288943Sdim				   integer and vice versa.  */
75288943Sdim  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
76288943Sdim  const int simultaneous_prefetches; /* number of parallel prefetch
77288943Sdim				   operations.  */
78288943Sdim  const int fadd;		/* cost of FADD and FSUB instructions.  */
79288943Sdim  const int fmul;		/* cost of FMUL instruction.  */
80288943Sdim  const int fdiv;		/* cost of FDIV instruction.  */
81288943Sdim  const int fabs;		/* cost of FABS instruction.  */
82288943Sdim  const int fchs;		/* cost of FCHS instruction.  */
83288943Sdim  const int fsqrt;		/* cost of FSQRT instruction.  */
84288943Sdim};
85288943Sdim
86288943Sdimextern const struct processor_costs *ix86_cost;
87288943Sdim
88288943Sdim/* Run-time compilation parameters selecting different hardware subsets.  */
89288943Sdim
90288943Sdimextern int target_flags;
91288943Sdim
92288943Sdim/* Macros used in the machine description to test the flags.  */
93288943Sdim
94288943Sdim/* configure can arrange to make this 2, to force a 486.  */
95288943Sdim
96288943Sdim#ifndef TARGET_CPU_DEFAULT
97288943Sdim#define TARGET_CPU_DEFAULT 0
98288943Sdim#endif
99288943Sdim
100288943Sdim/* Masks for the -m switches */
101288943Sdim#define MASK_80387		0x00000001	/* Hardware floating point */
102288943Sdim#define MASK_RTD		0x00000002	/* Use ret that pops args */
103288943Sdim#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
104288943Sdim#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
105288943Sdim#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
106288943Sdim#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
107288943Sdim#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
108288943Sdim#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
109288943Sdim#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
110288943Sdim#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
111288943Sdim#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
112288943Sdim#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
113288943Sdim#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
114288943Sdim#define MASK_MMX		0x00002000	/* Support MMX regs/builtins */
115288943Sdim#define MASK_SSE		0x00004000	/* Support SSE regs/builtins */
116288943Sdim#define MASK_SSE2		0x00008000	/* Support SSE2 regs/builtins */
117288943Sdim#define MASK_PNI		0x00010000	/* Support PNI builtins */
118288943Sdim#define MASK_3DNOW		0x00020000	/* Support 3Dnow builtins */
119288943Sdim#define MASK_3DNOW_A		0x00040000	/* Support Athlon 3Dnow builtins */
120288943Sdim#define MASK_128BIT_LONG_DOUBLE 0x00080000	/* long double size is 128bit */
121288943Sdim#define MASK_64BIT		0x00100000	/* Produce 64bit code */
122288943Sdim
123288943Sdim/* Unused:			0x03f0000	*/
124288943Sdim
125288943Sdim/* ... overlap with subtarget options starts by 0x04000000.  */
126288943Sdim#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
127288943Sdim#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
128288943Sdim
129207618Srdivacky/* Use the floating point instructions */
130208599Srdivacky#define TARGET_80387 (target_flags & MASK_80387)
131208599Srdivacky
132261991Sdim/* Compile using ret insn that pops args.
133208599Srdivacky   This will not work unless you use prototypes at least
134208599Srdivacky   for all functions that can take varying numbers of args.  */
135208599Srdivacky#define TARGET_RTD (target_flags & MASK_RTD)
136208599Srdivacky
137218893Sdim/* Align doubles to a two word boundary.  This breaks compatibility with
138218893Sdim   the published ABI's for structures containing doubles, but produces
139288943Sdim   faster code on the pentium.  */
140288943Sdim#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
141208599Srdivacky
142208599Srdivacky/* Use push instructions to save outgoing args.  */
143208599Srdivacky#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
144208599Srdivacky
145221345Sdim/* Accumulate stack adjustments to prologue/epilogue.  */
146208599Srdivacky#define TARGET_ACCUMULATE_OUTGOING_ARGS \
147208599Srdivacky (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
148208599Srdivacky
149288943Sdim/* Put uninitialized locals into bss, not data.
150288943Sdim   Meaningful only on svr3.  */
151208599Srdivacky#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
152276479Sdim
153288943Sdim/* Use IEEE floating point comparisons.  These handle correctly the cases
154288943Sdim   where the result of a comparison is unordered.  Normally SIGFPE is
155208599Srdivacky   generated in such cases, in which case this isn't needed.  */
156208599Srdivacky#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
157208599Srdivacky
158208599Srdivacky/* Functions that return a floating point value may return that value
159208599Srdivacky   in the 387 FPU or in 386 integer registers.  If set, this flag causes
160208599Srdivacky   the 387 to be used, which is compatible with most calling conventions.  */
161208599Srdivacky#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
162276479Sdim
163296417Sdim/* Long double is 128bit instead of 96bit, even when only 80bits are used.
164276479Sdim   This mode wastes cache, but avoid misaligned data accesses and simplifies
165276479Sdim   address calculations.  */
166208599Srdivacky#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
167208599Srdivacky
168296417Sdim/* Disable generation of FP sin, cos and sqrt operations for 387.
169296417Sdim   This is because FreeBSD lacks these in the math-emulator-code */
170296417Sdim#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
171296417Sdim
172208599Srdivacky/* Don't create frame pointers for leaf functions */
173296417Sdim#define TARGET_OMIT_LEAF_FRAME_POINTER \
174296417Sdim  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
175296417Sdim
176296417Sdim/* Debug GO_IF_LEGITIMATE_ADDRESS */
177296417Sdim#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
178208599Srdivacky
179296417Sdim/* Debug FUNCTION_ARG macros */
180296417Sdim#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
181296417Sdim
182296417Sdim/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
183296417Sdim   compile-time constant.  */
184296417Sdim#ifdef IN_LIBGCC2
185296417Sdim#ifdef __x86_64__
186296417Sdim#define TARGET_64BIT 1
187296417Sdim#else
188296417Sdim#define TARGET_64BIT 0
189296417Sdim#endif
190296417Sdim#else
191296417Sdim#ifdef TARGET_BI_ARCH
192296417Sdim#define TARGET_64BIT (target_flags & MASK_64BIT)
193296417Sdim#else
194296417Sdim#if TARGET_64BIT_DEFAULT
195296417Sdim#define TARGET_64BIT 1
196208599Srdivacky#else
197208599Srdivacky#define TARGET_64BIT 0
198208599Srdivacky#endif
199208599Srdivacky#endif
200208599Srdivacky#endif
201208599Srdivacky
202208599Srdivacky#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
203208599Srdivacky#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
204208599Srdivacky#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
205208599Srdivacky#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
206208599Srdivacky#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
207208599Srdivacky#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
208208599Srdivacky#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
209208599Srdivacky
210208599Srdivacky#define CPUMASK (1 << ix86_cpu)
211208599Srdivackyextern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
212208599Srdivackyextern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
213208599Srdivackyextern const int x86_branch_hints, x86_unroll_strlen;
214208599Srdivackyextern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
215288943Sdimextern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
216234353Sdimextern const int x86_use_cltd, x86_read_modify_write;
217234353Sdimextern const int x86_read_modify, x86_split_long_moves;
218208599Srdivackyextern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
219208599Srdivackyextern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
220208599Srdivackyextern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
221208599Srdivackyextern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
222208599Srdivackyextern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
223276479Sdimextern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
224276479Sdimextern const int x86_epilogue_using_move, x86_decompose_lea;
225208599Srdivackyextern const int x86_arch_always_fancy_math_387, x86_shift1;
226208599Srdivackyextern int x86_prefetch_sse;
227208599Srdivacky
228208599Srdivacky#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
229208599Srdivacky#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
230208599Srdivacky#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
231208599Srdivacky#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
232208599Srdivacky#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
233208599Srdivacky/* For sane SSE instruction set generation we need fcomi instruction.  It is
234208599Srdivacky   safe to enable all CMOVE instructions.  */
235208599Srdivacky#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
236208599Srdivacky#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
237208599Srdivacky#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
238208599Srdivacky#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
239288943Sdim#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
240218893Sdim#define TARGET_MOVX (x86_movx & CPUMASK)
241208599Srdivacky#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
242208599Srdivacky#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
243208599Srdivacky#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
244208599Srdivacky#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
245276479Sdim#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
246276479Sdim#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
247208599Srdivacky#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
248223017Sdim#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
249288943Sdim#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
250226633Sdim#define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
251288943Sdim#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
252288943Sdim#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
253288943Sdim#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
254288943Sdim#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
255288943Sdim#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
256288943Sdim#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
257288943Sdim#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
258288943Sdim#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
259288943Sdim#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
260288943Sdim#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
261288943Sdim#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
262288943Sdim#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
263288943Sdim#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
264261991Sdim#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
265226633Sdim#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
266226633Sdim#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
267226633Sdim#define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
268226633Sdim
269288943Sdim#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
270288943Sdim
271223017Sdim#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
272#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
273
274#define ASSEMBLER_DIALECT (ix86_asm_dialect)
275
276#define TARGET_SSE ((target_flags & MASK_SSE) != 0)
277#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
278#define TARGET_PNI ((target_flags & MASK_PNI) != 0)
279#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
280#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
281			     && (ix86_fpmath & FPMATH_387))
282#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
283#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
284#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
285
286#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
287
288#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
289
290#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
291#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
292
293/* WARNING: Do not mark empty strings for translation, as calling
294            gettext on an empty string does NOT return an empty
295            string. */
296
297
298#define TARGET_SWITCHES							      \
299{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
300  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
301  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
302  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
303  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
304  { "386",			 0, "" /*Deprecated.*/},		      \
305  { "486",			 0, "" /*Deprecated.*/},		      \
306  { "pentium",			 0, "" /*Deprecated.*/},		      \
307  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
308  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
309  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
310  { "rtd",			 MASK_RTD,				      \
311    N_("Alternate calling convention") },				      \
312  { "no-rtd",			-MASK_RTD,				      \
313    N_("Use normal calling convention") },				      \
314  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
315    N_("Align some doubles on dword boundary") },			      \
316  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
317    N_("Align doubles on word boundary") },				      \
318  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
319    N_("Uninitialized locals in .bss")  },				      \
320  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
321    N_("Uninitialized locals in .data") },				      \
322  { "ieee-fp",			 MASK_IEEE_FP,				      \
323    N_("Use IEEE math for fp comparisons") },				      \
324  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
325    N_("Do not use IEEE math for fp comparisons") },			      \
326  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
327    N_("Return values of functions in FPU registers") },		      \
328  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
329    N_("Do not return values of functions in FPU registers")},		      \
330  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
331    N_("Do not generate sin, cos, sqrt for FPU") },			      \
332  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
333     N_("Generate sin, cos, sqrt for FPU")},				      \
334  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
335    N_("Omit the frame pointer in leaf functions") },			      \
336  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
337  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
338    N_("Enable stack probing") },					      \
339  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
340  { "windows",			0, 0 /* undocumented */ },		      \
341  { "dll",			0,  0 /* undocumented */ },		      \
342  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
343    N_("Align destination of the string operations") },			      \
344  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
345    N_("Do not align destination of the string operations") },		      \
346  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
347    N_("Inline all known string operations") },				      \
348  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
349    N_("Do not inline all known string operations") },			      \
350  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
351    N_("Use push instructions to save outgoing arguments") },		      \
352  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
353    N_("Do not use push instructions to save outgoing arguments") },	      \
354  { "accumulate-outgoing-args",	MASK_ACCUMULATE_OUTGOING_ARGS,		      \
355    N_("Use push instructions to save outgoing arguments") },		      \
356  { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS,	      \
357    N_("Do not use push instructions to save outgoing arguments") },	      \
358  { "mmx",			 MASK_MMX,				      \
359    N_("Support MMX built-in functions") },				      \
360  { "no-mmx",			 -MASK_MMX,				      \
361    N_("Do not support MMX built-in functions") },			      \
362  { "3dnow",                     MASK_3DNOW,				      \
363    N_("Support 3DNow! built-in functions") },				      \
364  { "no-3dnow",                  -MASK_3DNOW,				      \
365    N_("Do not support 3DNow! built-in functions") },			      \
366  { "sse",			 MASK_SSE,				      \
367    N_("Support MMX and SSE built-in functions and code generation") },	      \
368  { "no-sse",			 -MASK_SSE,				      \
369    N_("Do not support MMX and SSE built-in functions and code generation") },\
370  { "sse2",			 MASK_SSE2,				      \
371    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
372  { "no-sse2",			 -MASK_SSE2,				      \
373    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
374  { "pni",			 MASK_PNI,				      \
375    N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") }, \
376  { "no-pni",			 -MASK_PNI,				      \
377    N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") }, \
378  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
379    N_("sizeof(long double) is 16") },					      \
380  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
381    N_("sizeof(long double) is 12") },					      \
382  { "64",			MASK_64BIT,				      \
383    N_("Generate 64bit x86-64 code") },					      \
384  { "32",			-MASK_64BIT,				      \
385    N_("Generate 32bit i386 code") },					      \
386  { "red-zone",			-MASK_NO_RED_ZONE,			      \
387    N_("Use red-zone in the x86-64 code") },				      \
388  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
389    N_("Do not use red-zone in the x86-64 code") },			      \
390  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
391    N_("Do not align long strings specially") },			      \
392  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
393    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
394  SUBTARGET_SWITCHES							      \
395  { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
396
397#ifndef TARGET_64BIT_DEFAULT
398#define TARGET_64BIT_DEFAULT 0
399#endif
400
401/* Once GDB has been enhanced to deal with functions without frame
402   pointers, we can change this to allow for elimination of
403   the frame pointer in leaf functions.  */
404#define TARGET_DEFAULT 0
405
406/* This is not really a target flag, but is done this way so that
407   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
408   redefines this to 1.  */
409#define TARGET_MACHO 0
410
411/* This macro is similar to `TARGET_SWITCHES' but defines names of
412   command options that have values.  Its definition is an
413   initializer with a subgrouping for each command option.
414
415   Each subgrouping contains a string constant, that defines the
416   fixed part of the option name, and the address of a variable.  The
417   variable, type `char *', is set to the variable part of the given
418   option if the fixed part matches.  The actual option name is made
419   by appending `-m' to the specified name.  */
420#define TARGET_OPTIONS						\
421{ { "cpu=",		&ix86_cpu_string,			\
422    N_("Schedule code for given CPU")},				\
423  { "fpmath=",		&ix86_fpmath_string,			\
424    N_("Generate floating point mathematics using given instruction set")},\
425  { "arch=",		&ix86_arch_string,			\
426    N_("Generate code for given CPU")},				\
427  { "regparm=",		&ix86_regparm_string,			\
428    N_("Number of registers used to pass integer arguments") },	\
429  { "align-loops=",	&ix86_align_loops_string,		\
430    N_("Loop code aligned to this power of 2") },		\
431  { "align-jumps=",	&ix86_align_jumps_string,		\
432    N_("Jump targets are aligned to this power of 2") },	\
433  { "align-functions=",	&ix86_align_funcs_string,		\
434    N_("Function starts are aligned to this power of 2") },	\
435  { "preferred-stack-boundary=",				\
436    &ix86_preferred_stack_boundary_string,			\
437    N_("Attempt to keep stack aligned to this power of 2") },	\
438  { "branch-cost=",	&ix86_branch_cost_string,		\
439    N_("Branches are this expensive (1-5, arbitrary units)") },	\
440  { "cmodel=", &ix86_cmodel_string,				\
441    N_("Use given x86-64 code model") },			\
442  { "debug-arg", &ix86_debug_arg_string,			\
443    "" /* Undocumented. */ },					\
444  { "debug-addr", &ix86_debug_addr_string,			\
445    "" /* Undocumented. */ },					\
446  { "asm=", &ix86_asm_string,					\
447    N_("Use given assembler dialect") },			\
448  { "tls-dialect=", &ix86_tls_dialect_string,			\
449    N_("Use given thread-local storage dialect") },		\
450  SUBTARGET_OPTIONS						\
451}
452
453/* Sometimes certain combinations of command options do not make
454   sense on a particular target machine.  You can define a macro
455   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
456   defined, is executed once just after all the command options have
457   been parsed.
458
459   Don't use this macro to turn on various extra optimizations for
460   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
461
462#define OVERRIDE_OPTIONS override_options ()
463
464/* These are meant to be redefined in the host dependent files */
465#define SUBTARGET_SWITCHES
466#define SUBTARGET_OPTIONS
467
468/* Define this to change the optimizations performed by default.  */
469#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
470  optimization_options ((LEVEL), (SIZE))
471
472/* Specs for the compiler proper */
473
474#ifndef CC1_CPU_SPEC
475#define CC1_CPU_SPEC "\
476%{!mcpu*: \
477%{m386:-mcpu=i386 \
478%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
479%{m486:-mcpu=i486 \
480%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
481%{mpentium:-mcpu=pentium \
482%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
483%{mpentiumpro:-mcpu=pentiumpro \
484%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
485%{mintel-syntax:-masm=intel \
486%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
487%{mno-intel-syntax:-masm=att \
488%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
489#endif
490
491/* Target CPU builtins.  */
492#define TARGET_CPU_CPP_BUILTINS()				\
493  do								\
494    {								\
495      size_t arch_len = strlen (ix86_arch_string);		\
496      size_t cpu_len = strlen (ix86_cpu_string);		\
497      int last_arch_char = ix86_arch_string[arch_len - 1];	\
498      int last_cpu_char = ix86_cpu_string[cpu_len - 1];		\
499								\
500      if (TARGET_64BIT)						\
501	{							\
502	  builtin_assert ("cpu=x86_64");			\
503	  builtin_define ("__x86_64");				\
504	  builtin_define ("__x86_64__");			\
505	  builtin_define ("__amd64");				\
506	  builtin_define ("__amd64__");				\
507	}							\
508      else							\
509	{							\
510	  builtin_assert ("cpu=i386");				\
511	  builtin_assert ("machine=i386");			\
512	  builtin_define_std ("i386");				\
513	}							\
514								\
515      /* Built-ins based on -mcpu= (or -march= if no		\
516	 CPU given).  */					\
517      if (TARGET_386)						\
518	builtin_define ("__tune_i386__");			\
519      else if (TARGET_486)					\
520	builtin_define ("__tune_i486__");			\
521      else if (TARGET_PENTIUM)					\
522	{							\
523	  builtin_define ("__tune_i586__");			\
524	  builtin_define ("__tune_pentium__");			\
525	  if (last_cpu_char == 'x')				\
526	    builtin_define ("__tune_pentium_mmx__");		\
527	}							\
528      else if (TARGET_PENTIUMPRO)				\
529	{							\
530	  builtin_define ("__tune_i686__");			\
531	  builtin_define ("__tune_pentiumpro__");		\
532	  switch (last_cpu_char)				\
533	    {							\
534	    case '3':						\
535	      builtin_define ("__tune_pentium3__");		\
536	      /* FALLTHRU */					\
537	    case '2':						\
538	      builtin_define ("__tune_pentium2__");		\
539	      break;						\
540	    }							\
541	}							\
542      else if (TARGET_K6)					\
543	{							\
544	  builtin_define ("__tune_k6__");			\
545	  if (last_cpu_char == '2')				\
546	    builtin_define ("__tune_k6_2__");			\
547	  else if (last_cpu_char == '3')			\
548	    builtin_define ("__tune_k6_3__");			\
549	}							\
550      else if (TARGET_ATHLON)					\
551	{							\
552	  builtin_define ("__tune_athlon__");			\
553	  /* Only plain "athlon" lacks SSE.  */			\
554	  if (last_cpu_char != 'n')				\
555	    builtin_define ("__tune_athlon_sse__");		\
556	}							\
557      else if (TARGET_PENTIUM4)					\
558	builtin_define ("__tune_pentium4__");			\
559								\
560      if (TARGET_MMX)						\
561	builtin_define ("__MMX__");				\
562      if (TARGET_3DNOW)						\
563	builtin_define ("__3dNOW__");				\
564      if (TARGET_3DNOW_A)					\
565	builtin_define ("__3dNOW_A__");				\
566      if (TARGET_SSE)						\
567	builtin_define ("__SSE__");				\
568      if (TARGET_SSE2)						\
569	builtin_define ("__SSE2__");				\
570      if (TARGET_PNI)						\
571	builtin_define ("__PNI__");				\
572      if (TARGET_SSE_MATH && TARGET_SSE)			\
573	builtin_define ("__SSE_MATH__");			\
574      if (TARGET_SSE_MATH && TARGET_SSE2)			\
575	builtin_define ("__SSE2_MATH__");			\
576								\
577      /* Built-ins based on -march=.  */			\
578      if (ix86_arch == PROCESSOR_I486)				\
579	{							\
580	  builtin_define ("__i486");				\
581	  builtin_define ("__i486__");				\
582	}							\
583      else if (ix86_arch == PROCESSOR_PENTIUM)			\
584	{							\
585	  builtin_define ("__i586");				\
586	  builtin_define ("__i586__");				\
587	  builtin_define ("__pentium");				\
588	  builtin_define ("__pentium__");			\
589	  if (last_arch_char == 'x')				\
590	    builtin_define ("__pentium_mmx__");			\
591	}							\
592      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
593	{							\
594	  builtin_define ("__i686");				\
595	  builtin_define ("__i686__");				\
596	  builtin_define ("__pentiumpro");			\
597	  builtin_define ("__pentiumpro__");			\
598	}							\
599      else if (ix86_arch == PROCESSOR_K6)			\
600	{							\
601								\
602	  builtin_define ("__k6");				\
603	  builtin_define ("__k6__");				\
604	  if (last_arch_char == '2')				\
605	    builtin_define ("__k6_2__");			\
606	  else if (last_arch_char == '3')			\
607	    builtin_define ("__k6_3__");			\
608	}							\
609      else if (ix86_arch == PROCESSOR_ATHLON)			\
610	{							\
611	  builtin_define ("__athlon");				\
612	  builtin_define ("__athlon__");			\
613	  /* Only plain "athlon" lacks SSE.  */			\
614	  if (last_arch_char != 'n')				\
615	    builtin_define ("__athlon_sse__");			\
616	}							\
617      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
618	{							\
619	  builtin_define ("__pentium4");			\
620	  builtin_define ("__pentium4__");			\
621	}							\
622    }								\
623  while (0)
624
625#define TARGET_CPU_DEFAULT_i386 0
626#define TARGET_CPU_DEFAULT_i486 1
627#define TARGET_CPU_DEFAULT_pentium 2
628#define TARGET_CPU_DEFAULT_pentium_mmx 3
629#define TARGET_CPU_DEFAULT_pentiumpro 4
630#define TARGET_CPU_DEFAULT_pentium2 5
631#define TARGET_CPU_DEFAULT_pentium3 6
632#define TARGET_CPU_DEFAULT_pentium4 7
633#define TARGET_CPU_DEFAULT_k6 8
634#define TARGET_CPU_DEFAULT_k6_2 9
635#define TARGET_CPU_DEFAULT_k6_3 10
636#define TARGET_CPU_DEFAULT_athlon 11
637#define TARGET_CPU_DEFAULT_athlon_sse 12
638
639#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
640				  "pentiumpro", "pentium2", "pentium3", \
641				  "pentium4", "k6", "k6-2", "k6-3",\
642				  "athlon", "athlon-4"}
643
644#ifndef CC1_SPEC
645#define CC1_SPEC "%(cc1_cpu) "
646#endif
647
648/* This macro defines names of additional specifications to put in the
649   specs that can be used in various specifications like CC1_SPEC.  Its
650   definition is an initializer with a subgrouping for each command option.
651
652   Each subgrouping contains a string constant, that defines the
653   specification name, and a string constant that used by the GNU CC driver
654   program.
655
656   Do not define this macro if it does not need to do anything.  */
657
658#ifndef SUBTARGET_EXTRA_SPECS
659#define SUBTARGET_EXTRA_SPECS
660#endif
661
662#define EXTRA_SPECS							\
663  { "cc1_cpu",  CC1_CPU_SPEC },						\
664  SUBTARGET_EXTRA_SPECS
665
666/* target machine storage layout */
667
668/* Define for XFmode or TFmode extended real floating point support.
669   The XFmode is specified by i386 ABI, while TFmode may be faster
670   due to alignment and simplifications in the address calculations.  */
671#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
672#define MAX_LONG_DOUBLE_TYPE_SIZE 128
673#ifdef __x86_64__
674#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
675#else
676#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
677#endif
678
679/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
680   FPU, assume that the fpcw is set to extended precision; when using
681   only SSE, rounding is correct; when using both SSE and the FPU,
682   the rounding precision is indeterminate, since either may be chosen
683   apparently at random.  */
684#define TARGET_FLT_EVAL_METHOD \
685  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
686
687#define SHORT_TYPE_SIZE 16
688#define INT_TYPE_SIZE 32
689#define FLOAT_TYPE_SIZE 32
690#ifndef LONG_TYPE_SIZE
691#define LONG_TYPE_SIZE BITS_PER_WORD
692#endif
693#define MAX_WCHAR_TYPE_SIZE 32
694#define DOUBLE_TYPE_SIZE 64
695#define LONG_LONG_TYPE_SIZE 64
696
697#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
698#define MAX_BITS_PER_WORD 64
699#define MAX_LONG_TYPE_SIZE 64
700#else
701#define MAX_BITS_PER_WORD 32
702#define MAX_LONG_TYPE_SIZE 32
703#endif
704
705/* Define this if most significant byte of a word is the lowest numbered.  */
706/* That is true on the 80386.  */
707
708#define BITS_BIG_ENDIAN 0
709
710/* Define this if most significant byte of a word is the lowest numbered.  */
711/* That is not true on the 80386.  */
712#define BYTES_BIG_ENDIAN 0
713
714/* Define this if most significant word of a multiword number is the lowest
715   numbered.  */
716/* Not true for 80386 */
717#define WORDS_BIG_ENDIAN 0
718
719/* Width of a word, in units (bytes).  */
720#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
721#ifdef IN_LIBGCC2
722#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
723#else
724#define MIN_UNITS_PER_WORD	4
725#endif
726
727/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
728#define PARM_BOUNDARY BITS_PER_WORD
729
730/* Boundary (in *bits*) on which stack pointer should be aligned.  */
731#define STACK_BOUNDARY BITS_PER_WORD
732
733/* Boundary (in *bits*) on which the stack pointer preferrs to be
734   aligned; the compiler cannot rely on having this alignment.  */
735#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
736
737/* As of July 2001, many runtimes to not align the stack properly when
738   entering main.  This causes expand_main_function to forcably align
739   the stack, which results in aligned frames for functions called from
740   main, though it does nothing for the alignment of main itself.  */
741#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
742  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
743
744/* Minimum allocation boundary for the code of a function.  */
745#define FUNCTION_BOUNDARY 8
746
747/* C++ stores the virtual bit in the lowest bit of function pointers.  */
748#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
749
750/* Alignment of field after `int : 0' in a structure.  */
751
752#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
753
754/* Minimum size in bits of the largest boundary to which any
755   and all fundamental data types supported by the hardware
756   might need to be aligned. No data type wants to be aligned
757   rounder than this.
758
759   Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
760   and Pentium Pro XFmode values at 128 bit boundaries.  */
761
762#define BIGGEST_ALIGNMENT 128
763
764/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
765#define ALIGN_MODE_128(MODE) \
766 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
767
768/* The published ABIs say that doubles should be aligned on word
769   boundaries, so lower the aligment for structure fields unless
770   -malign-double is set.  */
771
772/* ??? Blah -- this macro is used directly by libobjc.  Since it
773   supports no vector modes, cut out the complexity and fall back
774   on BIGGEST_FIELD_ALIGNMENT.  */
775#ifdef IN_TARGET_LIBS
776#ifdef __x86_64__
777#define BIGGEST_FIELD_ALIGNMENT 128
778#else
779#define BIGGEST_FIELD_ALIGNMENT 32
780#endif
781#else
782#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
783   x86_field_alignment (FIELD, COMPUTED)
784#endif
785
786/* If defined, a C expression to compute the alignment given to a
787   constant that is being placed in memory.  EXP is the constant
788   and ALIGN is the alignment that the object would ordinarily have.
789   The value of this macro is used instead of that alignment to align
790   the object.
791
792   If this macro is not defined, then ALIGN is used.
793
794   The typical use of this macro is to increase alignment for string
795   constants to be word aligned so that `strcpy' calls that copy
796   constants can be done inline.  */
797
798#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
799
800/* If defined, a C expression to compute the alignment for a static
801   variable.  TYPE is the data type, and ALIGN is the alignment that
802   the object would ordinarily have.  The value of this macro is used
803   instead of that alignment to align the object.
804
805   If this macro is not defined, then ALIGN is used.
806
807   One use of this macro is to increase alignment of medium-size
808   data to make it all fit in fewer cache lines.  Another is to
809   cause character arrays to be word-aligned so that `strcpy' calls
810   that copy constants to character arrays can be done inline.  */
811
812#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
813
814/* If defined, a C expression to compute the alignment for a local
815   variable.  TYPE is the data type, and ALIGN is the alignment that
816   the object would ordinarily have.  The value of this macro is used
817   instead of that alignment to align the object.
818
819   If this macro is not defined, then ALIGN is used.
820
821   One use of this macro is to increase alignment of medium-size
822   data to make it all fit in fewer cache lines.  */
823
824#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
825
826/* If defined, a C expression that gives the alignment boundary, in
827   bits, of an argument with the specified mode and type.  If it is
828   not defined, `PARM_BOUNDARY' is used for all arguments.  */
829
830#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
831  ix86_function_arg_boundary ((MODE), (TYPE))
832
833/* Set this nonzero if move instructions will actually fail to work
834   when given unaligned data.  */
835#define STRICT_ALIGNMENT 0
836
837/* If bit field type is int, don't let it cross an int,
838   and give entire struct the alignment of an int.  */
839/* Required on the 386 since it doesn't have bit-field insns.  */
840#define PCC_BITFIELD_TYPE_MATTERS 1
841
842/* Standard register usage.  */
843
844/* This processor has special stack-like registers.  See reg-stack.c
845   for details.  */
846
847#define STACK_REGS
848#define IS_STACK_MODE(MODE)					\
849  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
850   || (MODE) == TFmode)
851
852/* Number of actual hardware registers.
853   The hardware registers are assigned numbers for the compiler
854   from 0 to just below FIRST_PSEUDO_REGISTER.
855   All registers that the compiler knows about must be given numbers,
856   even those that are not normally considered general registers.
857
858   In the 80386 we give the 8 general purpose registers the numbers 0-7.
859   We number the floating point registers 8-15.
860   Note that registers 0-7 can be accessed as a  short or int,
861   while only 0-3 may be used with byte `mov' instructions.
862
863   Reg 16 does not correspond to any hardware register, but instead
864   appears in the RTL as an argument pointer prior to reload, and is
865   eliminated during reloading in favor of either the stack or frame
866   pointer.  */
867
868#define FIRST_PSEUDO_REGISTER 53
869
870/* Number of hardware registers that go into the DWARF-2 unwind info.
871   If not defined, equals FIRST_PSEUDO_REGISTER.  */
872
873#define DWARF_FRAME_REGISTERS 17
874
875/* 1 for registers that have pervasive standard uses
876   and are not available for the register allocator.
877   On the 80386, the stack pointer is such, as is the arg pointer.
878
879   The value is an mask - bit 1 is set for fixed registers
880   for 32bit target, while 2 is set for fixed registers for 64bit.
881   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
882 */
883#define FIXED_REGISTERS						\
884/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
885{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
886/*arg,flags,fpsr,dir,frame*/					\
887    3,    3,   3,  3,    3,					\
888/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
889     0,   0,   0,   0,   0,   0,   0,   0,			\
890/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
891     0,   0,   0,   0,   0,   0,   0,   0,			\
892/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
893     1,   1,   1,   1,   1,   1,   1,   1,			\
894/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
895     1,   1,    1,    1,    1,    1,    1,    1}
896
897
898/* 1 for registers not available across function calls.
899   These must include the FIXED_REGISTERS and also any
900   registers that can be used without being saved.
901   The latter must include the registers where values are returned
902   and the register where structure-value addresses are passed.
903   Aside from that, you can include as many other registers as you like.
904
905   The value is an mask - bit 1 is set for call used
906   for 32bit target, while 2 is set for call used for 64bit.
907   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
908*/
909#define CALL_USED_REGISTERS					\
910/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
911{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
912/*arg,flags,fpsr,dir,frame*/					\
913     3,   3,   3,  3,    3,					\
914/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
915     3,   3,   3,   3,   3,  3,    3,   3,			\
916/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
917     3,   3,   3,   3,   3,   3,   3,   3,			\
918/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
919     3,   3,   3,   3,   1,   1,   1,   1,			\
920/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
921     3,   3,    3,    3,    3,    3,    3,    3}		\
922
923/* Order in which to allocate registers.  Each register must be
924   listed once, even those in FIXED_REGISTERS.  List frame pointer
925   late and fixed registers last.  Note that, in general, we prefer
926   registers listed in CALL_USED_REGISTERS, keeping the others
927   available for storage of persistent values.
928
929   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
930   so this is just empty initializer for array.  */
931
932#define REG_ALLOC_ORDER 					\
933{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
934   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
935   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
936   48, 49, 50, 51, 52 }
937
938/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
939   to be rearranged based on a particular function.  When using sse math,
940   we want to allocase SSE before x87 registers and vice vera.  */
941
942#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
943
944
945/* Macro to conditionally modify fixed_regs/call_used_regs.  */
946#define CONDITIONAL_REGISTER_USAGE					\
947do {									\
948    int i;								\
949    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
950      {									\
951        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
952        call_used_regs[i] = (call_used_regs[i]				\
953			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
954      }									\
955    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
956      {									\
957	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
958	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
959      }									\
960    if (! TARGET_MMX)							\
961      {									\
962	int i;								\
963        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
964          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
965	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
966      }									\
967    if (! TARGET_SSE)							\
968      {									\
969	int i;								\
970        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
971          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
972	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
973      }									\
974    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
975      {									\
976	int i;								\
977	HARD_REG_SET x;							\
978        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
979        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
980          if (TEST_HARD_REG_BIT (x, i)) 				\
981	    fixed_regs[i] = call_used_regs[i] = 1;			\
982      }									\
983  } while (0)
984
985/* Return number of consecutive hard regs needed starting at reg REGNO
986   to hold something of mode MODE.
987   This is ordinarily the length in words of a value of mode MODE
988   but can be less for certain modes in special long registers.
989
990   Actually there are no two word move instructions for consecutive
991   registers.  And only registers 0-3 may have mov byte instructions
992   applied to them.
993   */
994
995#define HARD_REGNO_NREGS(REGNO, MODE)   \
996  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
997   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
998   : ((MODE) == TFmode							\
999      ? (TARGET_64BIT ? 2 : 3)						\
1000      : (MODE) == TCmode						\
1001      ? (TARGET_64BIT ? 4 : 6)						\
1002      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1003
1004#define VALID_SSE2_REG_MODE(MODE) \
1005    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
1006     || (MODE) == V2DImode)
1007
1008#define VALID_SSE_REG_MODE(MODE)					\
1009    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1010     || (MODE) == SFmode						\
1011     /* Always accept SSE2 modes so that xmmintrin.h compiles.  */	\
1012     || VALID_SSE2_REG_MODE (MODE)					\
1013     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1014
1015#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1016    ((MODE) == V2SFmode || (MODE) == SFmode)
1017
1018#define VALID_MMX_REG_MODE(MODE)					\
1019    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1020     || (MODE) == V2SImode || (MODE) == SImode)
1021
1022#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1023    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1024     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1025     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1026
1027#define VALID_FP_MODE_P(MODE)						\
1028    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1029     || (!TARGET_64BIT && (MODE) == XFmode)				\
1030     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1031     || (!TARGET_64BIT && (MODE) == XCmode))
1032
1033#define VALID_INT_MODE_P(MODE)						\
1034    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1035     || (MODE) == DImode						\
1036     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1037     || (MODE) == CDImode						\
1038     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1039
1040/* Return true for modes passed in SSE registers.  */
1041#define SSE_REG_MODE_P(MODE) \
1042 ((MODE) == TImode || (MODE) == V16QImode				\
1043   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
1044   || (MODE) == V4SFmode || (MODE) == V4SImode)
1045
1046/* Return true for modes passed in MMX registers.  */
1047#define MMX_REG_MODE_P(MODE) \
1048 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode	\
1049   || (MODE) == V2SFmode)
1050
1051/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1052
1053#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1054   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1055
1056/* Value is 1 if it is a good idea to tie two pseudo registers
1057   when one has mode MODE1 and one has mode MODE2.
1058   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1059   for any hard reg, then this must be 0 for correct output.  */
1060
1061#define MODES_TIEABLE_P(MODE1, MODE2)				\
1062  ((MODE1) == (MODE2)						\
1063   || (((MODE1) == HImode || (MODE1) == SImode			\
1064	|| ((MODE1) == QImode					\
1065	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1066        || ((MODE1) == DImode && TARGET_64BIT))			\
1067       && ((MODE2) == HImode || (MODE2) == SImode		\
1068	   || ((MODE2) == QImode				\
1069	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1070	   || ((MODE2) == DImode && TARGET_64BIT))))
1071
1072
1073/* Specify the modes required to caller save a given hard regno.
1074   We do this on i386 to prevent flags from being saved at all.
1075
1076   Kill any attempts to combine saving of modes.  */
1077
1078#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1079  (CC_REGNO_P (REGNO) ? VOIDmode					\
1080   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1081   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1082   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1083   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1084   : (MODE))
1085/* Specify the registers used for certain standard purposes.
1086   The values of these macros are register numbers.  */
1087
1088/* on the 386 the pc register is %eip, and is not usable as a general
1089   register.  The ordinary mov instructions won't work */
1090/* #define PC_REGNUM  */
1091
1092/* Register to use for pushing function arguments.  */
1093#define STACK_POINTER_REGNUM 7
1094
1095/* Base register for access to local variables of the function.  */
1096#define HARD_FRAME_POINTER_REGNUM 6
1097
1098/* Base register for access to local variables of the function.  */
1099#define FRAME_POINTER_REGNUM 20
1100
1101/* First floating point reg */
1102#define FIRST_FLOAT_REG 8
1103
1104/* First & last stack-like regs */
1105#define FIRST_STACK_REG FIRST_FLOAT_REG
1106#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1107
1108#define FLAGS_REG 17
1109#define FPSR_REG 18
1110#define DIRFLAG_REG 19
1111
1112#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1113#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1114
1115#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1116#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1117
1118#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1119#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1120
1121#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1122#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1123
1124/* Value should be nonzero if functions must have frame pointers.
1125   Zero means the frame pointer need not be set up (and parms
1126   may be accessed via the stack pointer) in functions that seem suitable.
1127   This is computed in `reload', in reload1.c.  */
1128#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1129
1130/* Override this in other tm.h files to cope with various OS losage
1131   requiring a frame pointer.  */
1132#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1133#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1134#endif
1135
1136/* Make sure we can access arbitrary call frames.  */
1137#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1138
1139/* Base register for access to arguments of the function.  */
1140#define ARG_POINTER_REGNUM 16
1141
1142/* Register in which static-chain is passed to a function.
1143   We do use ECX as static chain register for 32 bit ABI.  On the
1144   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1145#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1146
1147/* Register to hold the addressing base for position independent
1148   code access to data items.  We don't use PIC pointer for 64bit
1149   mode.  Define the regnum to dummy value to prevent gcc from
1150   pessimizing code dealing with EBX.
1151
1152   To avoid clobbering a call-saved register unnecessarily, we renumber
1153   the pic register when possible.  The change is visible after the
1154   prologue has been emitted.  */
1155
1156#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1157
1158#define PIC_OFFSET_TABLE_REGNUM				\
1159  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM		\
1160   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1161   : REAL_PIC_OFFSET_TABLE_REGNUM)
1162
1163#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1164
1165/* Register in which address to store a structure value
1166   arrives in the function.  On the 386, the prologue
1167   copies this from the stack to register %eax.  */
1168#define STRUCT_VALUE_INCOMING 0
1169
1170/* Place in which caller passes the structure value address.
1171   0 means push the value on the stack like an argument.  */
1172#define STRUCT_VALUE 0
1173
1174/* A C expression which can inhibit the returning of certain function
1175   values in registers, based on the type of value.  A nonzero value
1176   says to return the function value in memory, just as large
1177   structures are always returned.  Here TYPE will be a C expression
1178   of type `tree', representing the data type of the value.
1179
1180   Note that values of mode `BLKmode' must be explicitly handled by
1181   this macro.  Also, the option `-fpcc-struct-return' takes effect
1182   regardless of this macro.  On most systems, it is possible to
1183   leave the macro undefined; this causes a default definition to be
1184   used, whose value is the constant 1 for `BLKmode' values, and 0
1185   otherwise.
1186
1187   Do not use this macro to indicate that structures and unions
1188   should always be returned in memory.  You should instead use
1189   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1190
1191#define RETURN_IN_MEMORY(TYPE) \
1192  ix86_return_in_memory (TYPE)
1193
1194
1195/* Define the classes of registers for register constraints in the
1196   machine description.  Also define ranges of constants.
1197
1198   One of the classes must always be named ALL_REGS and include all hard regs.
1199   If there is more than one class, another class must be named NO_REGS
1200   and contain no registers.
1201
1202   The name GENERAL_REGS must be the name of a class (or an alias for
1203   another name such as ALL_REGS).  This is the class of registers
1204   that is allowed by "g" or "r" in a register constraint.
1205   Also, registers outside this class are allocated only when
1206   instructions express preferences for them.
1207
1208   The classes must be numbered in nondecreasing order; that is,
1209   a larger-numbered class must never be contained completely
1210   in a smaller-numbered class.
1211
1212   For any two classes, it is very desirable that there be another
1213   class that represents their union.
1214
1215   It might seem that class BREG is unnecessary, since no useful 386
1216   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1217   and the "b" register constraint is useful in asms for syscalls.
1218
1219   The flags and fpsr registers are in no class.  */
1220
1221enum reg_class
1222{
1223  NO_REGS,
1224  AREG, DREG, CREG, BREG, SIREG, DIREG,
1225  AD_REGS,			/* %eax/%edx for DImode */
1226  Q_REGS,			/* %eax %ebx %ecx %edx */
1227  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1228  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1229  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1230  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1231  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1232  FLOAT_REGS,
1233  SSE_REGS,
1234  MMX_REGS,
1235  FP_TOP_SSE_REGS,
1236  FP_SECOND_SSE_REGS,
1237  FLOAT_SSE_REGS,
1238  FLOAT_INT_REGS,
1239  INT_SSE_REGS,
1240  FLOAT_INT_SSE_REGS,
1241  ALL_REGS, LIM_REG_CLASSES
1242};
1243
1244#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1245
1246#define INTEGER_CLASS_P(CLASS) \
1247  reg_class_subset_p ((CLASS), GENERAL_REGS)
1248#define FLOAT_CLASS_P(CLASS) \
1249  reg_class_subset_p ((CLASS), FLOAT_REGS)
1250#define SSE_CLASS_P(CLASS) \
1251  reg_class_subset_p ((CLASS), SSE_REGS)
1252#define MMX_CLASS_P(CLASS) \
1253  reg_class_subset_p ((CLASS), MMX_REGS)
1254#define MAYBE_INTEGER_CLASS_P(CLASS) \
1255  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1256#define MAYBE_FLOAT_CLASS_P(CLASS) \
1257  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1258#define MAYBE_SSE_CLASS_P(CLASS) \
1259  reg_classes_intersect_p (SSE_REGS, (CLASS))
1260#define MAYBE_MMX_CLASS_P(CLASS) \
1261  reg_classes_intersect_p (MMX_REGS, (CLASS))
1262
1263#define Q_CLASS_P(CLASS) \
1264  reg_class_subset_p ((CLASS), Q_REGS)
1265
1266/* Give names of register classes as strings for dump file.   */
1267
1268#define REG_CLASS_NAMES \
1269{  "NO_REGS",				\
1270   "AREG", "DREG", "CREG", "BREG",	\
1271   "SIREG", "DIREG",			\
1272   "AD_REGS",				\
1273   "Q_REGS", "NON_Q_REGS",		\
1274   "INDEX_REGS",			\
1275   "LEGACY_REGS",			\
1276   "GENERAL_REGS",			\
1277   "FP_TOP_REG", "FP_SECOND_REG",	\
1278   "FLOAT_REGS",			\
1279   "SSE_REGS",				\
1280   "MMX_REGS",				\
1281   "FP_TOP_SSE_REGS",			\
1282   "FP_SECOND_SSE_REGS",		\
1283   "FLOAT_SSE_REGS",			\
1284   "FLOAT_INT_REGS",			\
1285   "INT_SSE_REGS",			\
1286   "FLOAT_INT_SSE_REGS",		\
1287   "ALL_REGS" }
1288
1289/* Define which registers fit in which classes.
1290   This is an initializer for a vector of HARD_REG_SET
1291   of length N_REG_CLASSES.  */
1292
1293#define REG_CLASS_CONTENTS						\
1294{     { 0x00,     0x0 },						\
1295      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1296      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1297      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1298      { 0x03,     0x0 },		/* AD_REGS */			\
1299      { 0x0f,     0x0 },		/* Q_REGS */			\
1300  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1301      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1302  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1303  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1304     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1305    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1306{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1307{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1308{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1309{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1310{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1311   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1312{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1313{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1314{ 0xffffffff,0x1fffff }							\
1315}
1316
1317/* The same information, inverted:
1318   Return the class number of the smallest class containing
1319   reg number REGNO.  This could be a conditional expression
1320   or could index an array.  */
1321
1322#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1323
1324/* When defined, the compiler allows registers explicitly used in the
1325   rtl to be used as spill registers but prevents the compiler from
1326   extending the lifetime of these registers.  */
1327
1328#define SMALL_REGISTER_CLASSES 1
1329
1330#define QI_REG_P(X) \
1331  (REG_P (X) && REGNO (X) < 4)
1332
1333#define GENERAL_REGNO_P(N) \
1334  ((N) < 8 || REX_INT_REGNO_P (N))
1335
1336#define GENERAL_REG_P(X) \
1337  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1338
1339#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1340
1341#define NON_QI_REG_P(X) \
1342  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1343
1344#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1345#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1346
1347#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1348#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1349#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1350#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1351
1352#define SSE_REGNO_P(N) \
1353  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1354   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1355
1356#define SSE_REGNO(N) \
1357  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1358#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1359
1360#define SSE_FLOAT_MODE_P(MODE) \
1361  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1362
1363#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1364#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1365
1366#define STACK_REG_P(XOP)		\
1367  (REG_P (XOP) &&		       	\
1368   REGNO (XOP) >= FIRST_STACK_REG &&	\
1369   REGNO (XOP) <= LAST_STACK_REG)
1370
1371#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1372
1373#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1374
1375#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1376#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1377
1378/* Indicate whether hard register numbered REG_NO should be converted
1379   to SSA form.  */
1380#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1381  ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1382
1383/* The class value for index registers, and the one for base regs.  */
1384
1385#define INDEX_REG_CLASS INDEX_REGS
1386#define BASE_REG_CLASS GENERAL_REGS
1387
1388/* Get reg_class from a letter such as appears in the machine description.  */
1389
1390#define REG_CLASS_FROM_LETTER(C)	\
1391  ((C) == 'r' ? GENERAL_REGS :					\
1392   (C) == 'R' ? LEGACY_REGS :					\
1393   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1394   (C) == 'Q' ? Q_REGS :					\
1395   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1396		 ? FLOAT_REGS					\
1397		 : NO_REGS) :					\
1398   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1399		 ? FP_TOP_REG					\
1400		 : NO_REGS) :					\
1401   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1402		 ? FP_SECOND_REG				\
1403		 : NO_REGS) :					\
1404   (C) == 'a' ? AREG :						\
1405   (C) == 'b' ? BREG :						\
1406   (C) == 'c' ? CREG :						\
1407   (C) == 'd' ? DREG :						\
1408   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1409   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1410   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1411   (C) == 'A' ? AD_REGS :					\
1412   (C) == 'D' ? DIREG :						\
1413   (C) == 'S' ? SIREG : NO_REGS)
1414
1415/* The letters I, J, K, L and M in a register constraint string
1416   can be used to stand for particular ranges of immediate operands.
1417   This macro defines what the ranges are.
1418   C is the letter, and VALUE is a constant value.
1419   Return 1 if VALUE is in the range specified by C.
1420
1421   I is for non-DImode shifts.
1422   J is for DImode shifts.
1423   K is for signed imm8 operands.
1424   L is for andsi as zero-extending move.
1425   M is for shifts that can be executed by the "lea" opcode.
1426   N is for immedaite operands for out/in instructions (0-255)
1427   */
1428
1429#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1430  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1431   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1432   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1433   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1434   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1435   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1436   : 0)
1437
1438/* Similar, but for floating constants, and defining letters G and H.
1439   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1440   TARGET_387 isn't set, because the stack register converter may need to
1441   load 0.0 into the function value register.  */
1442
1443#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1444  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1445   : 0)
1446
1447/* A C expression that defines the optional machine-dependent
1448   constraint letters that can be used to segregate specific types of
1449   operands, usually memory references, for the target machine.  Any
1450   letter that is not elsewhere defined and not matched by
1451   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1452   be defined.
1453
1454   If it is required for a particular target machine, it should
1455   return 1 if VALUE corresponds to the operand type represented by
1456   the constraint letter C.  If C is not defined as an extra
1457   constraint, the value returned should be 0 regardless of VALUE.  */
1458
1459#define EXTRA_CONSTRAINT(VALUE, D)				\
1460  ((D) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1461   : (D) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1462   : (D) == 'C' ? standard_sse_constant_p (VALUE)		\
1463   : 0)
1464
1465/* Place additional restrictions on the register class to use when it
1466   is necessary to be able to hold a value of mode MODE in a reload
1467   register for which class CLASS would ordinarily be used.  */
1468
1469#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1470  ((MODE) == QImode && !TARGET_64BIT				\
1471   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1472       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1473   ? Q_REGS : (CLASS))
1474
1475/* Given an rtx X being reloaded into a reg required to be
1476   in class CLASS, return the class of reg to actually use.
1477   In general this is just CLASS; but on some machines
1478   in some cases it is preferable to use a more restrictive class.
1479   On the 80386 series, we prevent floating constants from being
1480   reloaded into floating registers (since no move-insn can do that)
1481   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1482
1483/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1484   QImode must go into class Q_REGS.
1485   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1486   movdf to do mem-to-mem moves through integer regs.  */
1487
1488#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1489   ix86_preferred_reload_class ((X), (CLASS))
1490
1491/* If we are copying between general and FP registers, we need a memory
1492   location. The same is true for SSE and MMX registers.  */
1493#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1494  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1495
1496/* QImode spills from non-QI registers need a scratch.  This does not
1497   happen often -- the only example so far requires an uninitialized
1498   pseudo.  */
1499
1500#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1501  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1502    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1503   ? Q_REGS : NO_REGS)
1504
1505/* Return the maximum number of consecutive registers
1506   needed to represent mode MODE in a register of class CLASS.  */
1507/* On the 80386, this is the size of MODE in words,
1508   except in the FP regs, where a single reg is always enough.
1509   The TFmodes are really just 80bit values, so we use only 3 registers
1510   to hold them, instead of 4, as the size would suggest.
1511 */
1512#define CLASS_MAX_NREGS(CLASS, MODE)					\
1513 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1514  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1515  : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1516     + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1517
1518/* A C expression whose value is nonzero if pseudos that have been
1519   assigned to registers of class CLASS would likely be spilled
1520   because registers of CLASS are needed for spill registers.
1521
1522   The default value of this macro returns 1 if CLASS has exactly one
1523   register and zero otherwise.  On most machines, this default
1524   should be used.  Only define this macro to some other expression
1525   if pseudo allocated by `local-alloc.c' end up in memory because
1526   their hard registers were needed for spill registers.  If this
1527   macro returns nonzero for those classes, those pseudos will only
1528   be allocated by `global.c', which knows how to reallocate the
1529   pseudo to another register.  If there would not be another
1530   register available for reallocation, you should not change the
1531   definition of this macro since the only effect of such a
1532   definition would be to slow down register allocation.  */
1533
1534#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1535  (((CLASS) == AREG)							\
1536   || ((CLASS) == DREG)							\
1537   || ((CLASS) == CREG)							\
1538   || ((CLASS) == BREG)							\
1539   || ((CLASS) == AD_REGS)						\
1540   || ((CLASS) == SIREG)						\
1541   || ((CLASS) == DIREG))
1542
1543/* Return a class of registers that cannot change FROM mode to TO mode.
1544
1545   x87 registers can't do subreg as all values are reformated to extended
1546   precision.  XMM registers does not support with nonzero offsets equal
1547   to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1548   determine these, prohibit all nonparadoxical subregs changing size.  */
1549
1550#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1551  (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM)		\
1552   ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS))	\
1553     || MAYBE_MMX_CLASS_P (CLASS) 			\
1554   : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1555   ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1556
1557/* A C statement that adds to CLOBBERS any hard regs the port wishes
1558   to automatically clobber for all asms.
1559
1560   We do this in the new i386 backend to maintain source compatibility
1561   with the old cc0-based compiler.  */
1562
1563#define MD_ASM_CLOBBERS(CLOBBERS)					\
1564  do {									\
1565    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1566			    (CLOBBERS));				\
1567    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1568			    (CLOBBERS));				\
1569    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1570			    (CLOBBERS));				\
1571  } while (0)
1572
1573/* Stack layout; function entry, exit and calling.  */
1574
1575/* Define this if pushing a word on the stack
1576   makes the stack pointer a smaller address.  */
1577#define STACK_GROWS_DOWNWARD
1578
1579/* Define this if the nominal address of the stack frame
1580   is at the high-address end of the local variables;
1581   that is, each additional local variable allocated
1582   goes at a more negative offset in the frame.  */
1583#define FRAME_GROWS_DOWNWARD
1584
1585/* Offset within stack frame to start allocating local variables at.
1586   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1587   first local allocated.  Otherwise, it is the offset to the BEGINNING
1588   of the first local allocated.  */
1589#define STARTING_FRAME_OFFSET 0
1590
1591/* If we generate an insn to push BYTES bytes,
1592   this says how many the stack pointer really advances by.
1593   On 386 pushw decrements by exactly 2 no matter what the position was.
1594   On the 386 there is no pushb; we use pushw instead, and this
1595   has the effect of rounding up to 2.
1596
1597   For 64bit ABI we round up to 8 bytes.
1598 */
1599
1600#define PUSH_ROUNDING(BYTES) \
1601  (TARGET_64BIT		     \
1602   ? (((BYTES) + 7) & (-8))  \
1603   : (((BYTES) + 1) & (-2)))
1604
1605/* If defined, the maximum amount of space required for outgoing arguments will
1606   be computed and placed into the variable
1607   `current_function_outgoing_args_size'.  No space will be pushed onto the
1608   stack for each call; instead, the function prologue should increase the stack
1609   frame size by this amount.  */
1610
1611#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1612
1613/* If defined, a C expression whose value is nonzero when we want to use PUSH
1614   instructions to pass outgoing arguments.  */
1615
1616#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1617
1618/* We want the stack and args grow in opposite directions, even if
1619   PUSH_ARGS is 0.  */
1620#define PUSH_ARGS_REVERSED 1
1621
1622/* Offset of first parameter from the argument pointer register value.  */
1623#define FIRST_PARM_OFFSET(FNDECL) 0
1624
1625/* Define this macro if functions should assume that stack space has been
1626   allocated for arguments even when their values are passed in registers.
1627
1628   The value of this macro is the size, in bytes, of the area reserved for
1629   arguments passed in registers for the function represented by FNDECL.
1630
1631   This space can be allocated by the caller, or be a part of the
1632   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1633   which.  */
1634#define REG_PARM_STACK_SPACE(FNDECL) 0
1635
1636/* Define as a C expression that evaluates to nonzero if we do not know how
1637   to pass TYPE solely in registers.  The file expr.h defines a
1638   definition that is usually appropriate, refer to expr.h for additional
1639   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1640   computed in the stack and then loaded into a register.  */
1641#define MUST_PASS_IN_STACK(MODE, TYPE)				\
1642  ((TYPE) != 0							\
1643   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1644       || TREE_ADDRESSABLE (TYPE)				\
1645       || ((MODE) == TImode)					\
1646       || ((MODE) == BLKmode 					\
1647	   && ! ((TYPE) != 0					\
1648		 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1649		 && 0 == (int_size_in_bytes (TYPE)		\
1650			  % (PARM_BOUNDARY / BITS_PER_UNIT)))	\
1651	   && (FUNCTION_ARG_PADDING (MODE, TYPE)		\
1652	       == (BYTES_BIG_ENDIAN ? upward : downward)))))
1653
1654/* Value is the number of bytes of arguments automatically
1655   popped when returning from a subroutine call.
1656   FUNDECL is the declaration node of the function (as a tree),
1657   FUNTYPE is the data type of the function (as a tree),
1658   or for a library call it is an identifier node for the subroutine name.
1659   SIZE is the number of bytes of arguments passed on the stack.
1660
1661   On the 80386, the RTD insn may be used to pop them if the number
1662     of args is fixed, but if the number is variable then the caller
1663     must pop them all.  RTD can't be used for library calls now
1664     because the library is compiled with the Unix compiler.
1665   Use of RTD is a selectable option, since it is incompatible with
1666   standard Unix calling sequences.  If the option is not selected,
1667   the caller must always pop the args.
1668
1669   The attribute stdcall is equivalent to RTD on a per module basis.  */
1670
1671#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1672  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1673
1674/* Define how to find the value returned by a function.
1675   VALTYPE is the data type of the value (as a tree).
1676   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1677   otherwise, FUNC is 0.  */
1678#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1679   ix86_function_value (VALTYPE)
1680
1681#define FUNCTION_VALUE_REGNO_P(N) \
1682  ix86_function_value_regno_p (N)
1683
1684/* Define how to find the value returned by a library function
1685   assuming the value has mode MODE.  */
1686
1687#define LIBCALL_VALUE(MODE) \
1688  ix86_libcall_value (MODE)
1689
1690/* Define the size of the result block used for communication between
1691   untyped_call and untyped_return.  The block contains a DImode value
1692   followed by the block used by fnsave and frstor.  */
1693
1694#define APPLY_RESULT_SIZE (8+108)
1695
1696/* 1 if N is a possible register number for function argument passing.  */
1697#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1698
1699/* Define a data type for recording info about an argument list
1700   during the scan of that argument list.  This data type should
1701   hold all necessary information about the function itself
1702   and about the args processed so far, enough to enable macros
1703   such as FUNCTION_ARG to determine where the next arg should go.  */
1704
1705typedef struct ix86_args {
1706  int words;			/* # words passed so far */
1707  int nregs;			/* # registers available for passing */
1708  int regno;			/* next available register number */
1709  int sse_words;		/* # sse words passed so far */
1710  int sse_nregs;		/* # sse registers available for passing */
1711  int sse_regno;		/* next available sse register number */
1712  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1713} CUMULATIVE_ARGS;
1714
1715/* Initialize a variable CUM of type CUMULATIVE_ARGS
1716   for a call to a function whose data type is FNTYPE.
1717   For a library call, FNTYPE is 0.  */
1718
1719#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1720  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1721
1722/* Update the data in CUM to advance over an argument
1723   of mode MODE and data type TYPE.
1724   (TYPE is null for libcalls where that information may not be available.)  */
1725
1726#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1727  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1728
1729/* Define where to put the arguments to a function.
1730   Value is zero to push the argument on the stack,
1731   or a hard register in which to store the argument.
1732
1733   MODE is the argument's machine mode.
1734   TYPE is the data type of the argument (as a tree).
1735    This is null for libcalls where that information may
1736    not be available.
1737   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1738    the preceding args and about the function being called.
1739   NAMED is nonzero if this argument is a named parameter
1740    (otherwise it is an extra parameter matching an ellipsis).  */
1741
1742#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1743  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1744
1745/* For an arg passed partly in registers and partly in memory,
1746   this is the number of registers used.
1747   For args passed entirely in registers or entirely in memory, zero.  */
1748
1749#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1750
1751/* A C expression that indicates when an argument must be passed by
1752   reference.  If nonzero for an argument, a copy of that argument is
1753   made in memory and a pointer to the argument is passed instead of
1754   the argument itself.  The pointer is passed in whatever way is
1755   appropriate for passing a pointer to that type.  */
1756
1757#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1758  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1759
1760/* If PIC, we cannot make sibling calls to global functions
1761   because the PLT requires %ebx live.
1762   If we are returning floats on the 80387 register stack, we cannot
1763   make a sibcall from a function that doesn't return a float to a
1764   function that does or, conversely, from a function that does return
1765   a float to a function that doesn't; the necessary stack adjustment
1766   would not be executed.  */
1767#define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1768  ((DECL)								\
1769   && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1770   && (! TARGET_FLOAT_RETURNS_IN_80387					\
1771       || (FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1772           == FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl)))))))
1773
1774/* Perform any needed actions needed for a function that is receiving a
1775   variable number of arguments.
1776
1777   CUM is as above.
1778
1779   MODE and TYPE are the mode and type of the current parameter.
1780
1781   PRETEND_SIZE is a variable that should be set to the amount of stack
1782   that must be pushed by the prolog to pretend that our caller pushed
1783   it.
1784
1785   Normally, this macro will push all remaining incoming registers on the
1786   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1787
1788#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1789  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1790			       (NO_RTL))
1791
1792/* Define the `__builtin_va_list' type for the ABI.  */
1793#define BUILD_VA_LIST_TYPE(VALIST) \
1794  ((VALIST) = ix86_build_va_list ())
1795
1796/* Implement `va_start' for varargs and stdarg.  */
1797#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1798  ix86_va_start (VALIST, NEXTARG)
1799
1800/* Implement `va_arg'.  */
1801#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1802  ix86_va_arg ((VALIST), (TYPE))
1803
1804/* This macro is invoked at the end of compilation.  It is used here to
1805   output code for -fpic that will load the return address into %ebx.  */
1806
1807#undef ASM_FILE_END
1808#define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1809
1810/* Output assembler code to FILE to increment profiler label # LABELNO
1811   for profiling a function entry.  */
1812
1813#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1814
1815#define MCOUNT_NAME "_mcount"
1816
1817#define PROFILE_COUNT_REGISTER "edx"
1818
1819/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1820   the stack pointer does not matter.  The value is tested only in
1821   functions that have frame pointers.
1822   No definition is equivalent to always zero.  */
1823/* Note on the 386 it might be more efficient not to define this since
1824   we have to restore it ourselves from the frame pointer, in order to
1825   use pop */
1826
1827#define EXIT_IGNORE_STACK 1
1828
1829/* Output assembler code for a block containing the constant parts
1830   of a trampoline, leaving space for the variable parts.  */
1831
1832/* On the 386, the trampoline contains two instructions:
1833     mov #STATIC,ecx
1834     jmp FUNCTION
1835   The trampoline is generated entirely at runtime.  The operand of JMP
1836   is the address of FUNCTION relative to the instruction following the
1837   JMP (which is 5 bytes long).  */
1838
1839/* Length in units of the trampoline for entering a nested function.  */
1840
1841#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1842
1843/* Emit RTL insns to initialize the variable parts of a trampoline.
1844   FNADDR is an RTX for the address of the function's pure code.
1845   CXT is an RTX for the static chain value for the function.  */
1846
1847#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1848  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1849
1850/* Definitions for register eliminations.
1851
1852   This is an array of structures.  Each structure initializes one pair
1853   of eliminable registers.  The "from" register number is given first,
1854   followed by "to".  Eliminations of the same "from" register are listed
1855   in order of preference.
1856
1857   There are two registers that can always be eliminated on the i386.
1858   The frame pointer and the arg pointer can be replaced by either the
1859   hard frame pointer or to the stack pointer, depending upon the
1860   circumstances.  The hard frame pointer is not used before reload and
1861   so it is not eligible for elimination.  */
1862
1863#define ELIMINABLE_REGS					\
1864{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1865 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1866 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1867 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1868
1869/* Given FROM and TO register numbers, say whether this elimination is
1870   allowed.  Frame pointer elimination is automatically handled.
1871
1872   All other eliminations are valid.  */
1873
1874#define CAN_ELIMINATE(FROM, TO) \
1875  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1876
1877/* Define the offset between two registers, one to be eliminated, and the other
1878   its replacement, at the start of a routine.  */
1879
1880#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1881  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1882
1883/* Addressing modes, and classification of registers for them.  */
1884
1885/* #define HAVE_POST_INCREMENT 0 */
1886/* #define HAVE_POST_DECREMENT 0 */
1887
1888/* #define HAVE_PRE_DECREMENT 0 */
1889/* #define HAVE_PRE_INCREMENT 0 */
1890
1891/* Macros to check register numbers against specific register classes.  */
1892
1893/* These assume that REGNO is a hard or pseudo reg number.
1894   They give nonzero only if REGNO is a hard reg of the suitable class
1895   or a pseudo reg currently allocated to a suitable hard reg.
1896   Since they use reg_renumber, they are safe only once reg_renumber
1897   has been allocated, which happens in local-alloc.c.  */
1898
1899#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1900  ((REGNO) < STACK_POINTER_REGNUM 					\
1901   || (REGNO >= FIRST_REX_INT_REG					\
1902       && (REGNO) <= LAST_REX_INT_REG)					\
1903   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1904       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1905   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1906
1907#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1908  ((REGNO) <= STACK_POINTER_REGNUM 					\
1909   || (REGNO) == ARG_POINTER_REGNUM 					\
1910   || (REGNO) == FRAME_POINTER_REGNUM 					\
1911   || (REGNO >= FIRST_REX_INT_REG					\
1912       && (REGNO) <= LAST_REX_INT_REG)					\
1913   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1914       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1915   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1916
1917#define REGNO_OK_FOR_SIREG_P(REGNO) \
1918  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1919#define REGNO_OK_FOR_DIREG_P(REGNO) \
1920  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1921
1922/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1923   and check its validity for a certain class.
1924   We have two alternate definitions for each of them.
1925   The usual definition accepts all pseudo regs; the other rejects
1926   them unless they have been allocated suitable hard regs.
1927   The symbol REG_OK_STRICT causes the latter definition to be used.
1928
1929   Most source files want to accept pseudo regs in the hope that
1930   they will get allocated to the class that the insn wants them to be in.
1931   Source files for reload pass need to be strict.
1932   After reload, it makes no difference, since pseudo regs have
1933   been eliminated by then.  */
1934
1935
1936/* Non strict versions, pseudos are ok */
1937#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1938  (REGNO (X) < STACK_POINTER_REGNUM					\
1939   || (REGNO (X) >= FIRST_REX_INT_REG					\
1940       && REGNO (X) <= LAST_REX_INT_REG)				\
1941   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1942
1943#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1944  (REGNO (X) <= STACK_POINTER_REGNUM					\
1945   || REGNO (X) == ARG_POINTER_REGNUM					\
1946   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1947   || (REGNO (X) >= FIRST_REX_INT_REG					\
1948       && REGNO (X) <= LAST_REX_INT_REG)				\
1949   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1950
1951/* Strict versions, hard registers only */
1952#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1953#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1954
1955#ifndef REG_OK_STRICT
1956#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1957#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1958
1959#else
1960#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1961#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1962#endif
1963
1964/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1965   that is a valid memory address for an instruction.
1966   The MODE argument is the machine mode for the MEM expression
1967   that wants to use this address.
1968
1969   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1970   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1971
1972   See legitimize_pic_address in i386.c for details as to what
1973   constitutes a legitimate address when -fpic is used.  */
1974
1975#define MAX_REGS_PER_ADDRESS 2
1976
1977#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1978
1979/* Nonzero if the constant value X is a legitimate general operand.
1980   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1981
1982#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1983
1984#ifdef REG_OK_STRICT
1985#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1986do {									\
1987  if (legitimate_address_p ((MODE), (X), 1))				\
1988    goto ADDR;								\
1989} while (0)
1990
1991#else
1992#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1993do {									\
1994  if (legitimate_address_p ((MODE), (X), 0))				\
1995    goto ADDR;								\
1996} while (0)
1997
1998#endif
1999
2000/* If defined, a C expression to determine the base term of address X.
2001   This macro is used in only one place: `find_base_term' in alias.c.
2002
2003   It is always safe for this macro to not be defined.  It exists so
2004   that alias analysis can understand machine-dependent addresses.
2005
2006   The typical use of this macro is to handle addresses containing
2007   a label_ref or symbol_ref within an UNSPEC.  */
2008
2009#define FIND_BASE_TERM(X) ix86_find_base_term (X)
2010
2011/* Try machine-dependent ways of modifying an illegitimate address
2012   to be legitimate.  If we find one, return the new, valid address.
2013   This macro is used in only one place: `memory_address' in explow.c.
2014
2015   OLDX is the address as it was before break_out_memory_refs was called.
2016   In some cases it is useful to look at this to decide what needs to be done.
2017
2018   MODE and WIN are passed so that this macro can use
2019   GO_IF_LEGITIMATE_ADDRESS.
2020
2021   It is always safe for this macro to do nothing.  It exists to recognize
2022   opportunities to optimize the output.
2023
2024   For the 80386, we handle X+REG by loading X into a register R and
2025   using R+REG.  R will go in a general reg and indexing will be used.
2026   However, if REG is a broken-out memory address or multiplication,
2027   nothing needs to be done because REG can certainly go in a general reg.
2028
2029   When -fpic is used, special handling is needed for symbolic references.
2030   See comments by legitimize_pic_address in i386.c for details.  */
2031
2032#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2033do {									\
2034  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2035  if (memory_address_p ((MODE), (X)))					\
2036    goto WIN;								\
2037} while (0)
2038
2039#define REWRITE_ADDRESS(X) rewrite_address (X)
2040
2041/* Nonzero if the constant value X is a legitimate general operand
2042   when generating PIC code.  It is given that flag_pic is on and
2043   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2044
2045#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2046
2047#define SYMBOLIC_CONST(X)	\
2048  (GET_CODE (X) == SYMBOL_REF						\
2049   || GET_CODE (X) == LABEL_REF						\
2050   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2051
2052/* Go to LABEL if ADDR (a legitimate address expression)
2053   has an effect that depends on the machine mode it is used for.
2054   On the 80386, only postdecrement and postincrement address depend thus
2055   (the amount of decrement or increment being the length of the operand).  */
2056#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2057do {							\
2058 if (GET_CODE (ADDR) == POST_INC			\
2059     || GET_CODE (ADDR) == POST_DEC)			\
2060   goto LABEL;						\
2061} while (0)
2062
2063/* Codes for all the SSE/MMX builtins.  */
2064enum ix86_builtins
2065{
2066  IX86_BUILTIN_ADDPS,
2067  IX86_BUILTIN_ADDSS,
2068  IX86_BUILTIN_DIVPS,
2069  IX86_BUILTIN_DIVSS,
2070  IX86_BUILTIN_MULPS,
2071  IX86_BUILTIN_MULSS,
2072  IX86_BUILTIN_SUBPS,
2073  IX86_BUILTIN_SUBSS,
2074
2075  IX86_BUILTIN_CMPEQPS,
2076  IX86_BUILTIN_CMPLTPS,
2077  IX86_BUILTIN_CMPLEPS,
2078  IX86_BUILTIN_CMPGTPS,
2079  IX86_BUILTIN_CMPGEPS,
2080  IX86_BUILTIN_CMPNEQPS,
2081  IX86_BUILTIN_CMPNLTPS,
2082  IX86_BUILTIN_CMPNLEPS,
2083  IX86_BUILTIN_CMPNGTPS,
2084  IX86_BUILTIN_CMPNGEPS,
2085  IX86_BUILTIN_CMPORDPS,
2086  IX86_BUILTIN_CMPUNORDPS,
2087  IX86_BUILTIN_CMPNEPS,
2088  IX86_BUILTIN_CMPEQSS,
2089  IX86_BUILTIN_CMPLTSS,
2090  IX86_BUILTIN_CMPLESS,
2091  IX86_BUILTIN_CMPNEQSS,
2092  IX86_BUILTIN_CMPNLTSS,
2093  IX86_BUILTIN_CMPNLESS,
2094  IX86_BUILTIN_CMPORDSS,
2095  IX86_BUILTIN_CMPUNORDSS,
2096  IX86_BUILTIN_CMPNESS,
2097
2098  IX86_BUILTIN_COMIEQSS,
2099  IX86_BUILTIN_COMILTSS,
2100  IX86_BUILTIN_COMILESS,
2101  IX86_BUILTIN_COMIGTSS,
2102  IX86_BUILTIN_COMIGESS,
2103  IX86_BUILTIN_COMINEQSS,
2104  IX86_BUILTIN_UCOMIEQSS,
2105  IX86_BUILTIN_UCOMILTSS,
2106  IX86_BUILTIN_UCOMILESS,
2107  IX86_BUILTIN_UCOMIGTSS,
2108  IX86_BUILTIN_UCOMIGESS,
2109  IX86_BUILTIN_UCOMINEQSS,
2110
2111  IX86_BUILTIN_CVTPI2PS,
2112  IX86_BUILTIN_CVTPS2PI,
2113  IX86_BUILTIN_CVTSI2SS,
2114  IX86_BUILTIN_CVTSI642SS,
2115  IX86_BUILTIN_CVTSS2SI,
2116  IX86_BUILTIN_CVTSS2SI64,
2117  IX86_BUILTIN_CVTTPS2PI,
2118  IX86_BUILTIN_CVTTSS2SI,
2119  IX86_BUILTIN_CVTTSS2SI64,
2120
2121  IX86_BUILTIN_MAXPS,
2122  IX86_BUILTIN_MAXSS,
2123  IX86_BUILTIN_MINPS,
2124  IX86_BUILTIN_MINSS,
2125
2126  IX86_BUILTIN_LOADAPS,
2127  IX86_BUILTIN_LOADUPS,
2128  IX86_BUILTIN_STOREAPS,
2129  IX86_BUILTIN_STOREUPS,
2130  IX86_BUILTIN_LOADSS,
2131  IX86_BUILTIN_STORESS,
2132  IX86_BUILTIN_MOVSS,
2133
2134  IX86_BUILTIN_MOVHLPS,
2135  IX86_BUILTIN_MOVLHPS,
2136  IX86_BUILTIN_LOADHPS,
2137  IX86_BUILTIN_LOADLPS,
2138  IX86_BUILTIN_STOREHPS,
2139  IX86_BUILTIN_STORELPS,
2140
2141  IX86_BUILTIN_MASKMOVQ,
2142  IX86_BUILTIN_MOVMSKPS,
2143  IX86_BUILTIN_PMOVMSKB,
2144
2145  IX86_BUILTIN_MOVNTPS,
2146  IX86_BUILTIN_MOVNTQ,
2147
2148  IX86_BUILTIN_LOADDQA,
2149  IX86_BUILTIN_LOADDQU,
2150  IX86_BUILTIN_STOREDQA,
2151  IX86_BUILTIN_STOREDQU,
2152  IX86_BUILTIN_MOVQ,
2153  IX86_BUILTIN_LOADD,
2154  IX86_BUILTIN_STORED,
2155
2156  IX86_BUILTIN_CLRTI,
2157
2158  IX86_BUILTIN_PACKSSWB,
2159  IX86_BUILTIN_PACKSSDW,
2160  IX86_BUILTIN_PACKUSWB,
2161
2162  IX86_BUILTIN_PADDB,
2163  IX86_BUILTIN_PADDW,
2164  IX86_BUILTIN_PADDD,
2165  IX86_BUILTIN_PADDQ,
2166  IX86_BUILTIN_PADDSB,
2167  IX86_BUILTIN_PADDSW,
2168  IX86_BUILTIN_PADDUSB,
2169  IX86_BUILTIN_PADDUSW,
2170  IX86_BUILTIN_PSUBB,
2171  IX86_BUILTIN_PSUBW,
2172  IX86_BUILTIN_PSUBD,
2173  IX86_BUILTIN_PSUBQ,
2174  IX86_BUILTIN_PSUBSB,
2175  IX86_BUILTIN_PSUBSW,
2176  IX86_BUILTIN_PSUBUSB,
2177  IX86_BUILTIN_PSUBUSW,
2178
2179  IX86_BUILTIN_PAND,
2180  IX86_BUILTIN_PANDN,
2181  IX86_BUILTIN_POR,
2182  IX86_BUILTIN_PXOR,
2183
2184  IX86_BUILTIN_PAVGB,
2185  IX86_BUILTIN_PAVGW,
2186
2187  IX86_BUILTIN_PCMPEQB,
2188  IX86_BUILTIN_PCMPEQW,
2189  IX86_BUILTIN_PCMPEQD,
2190  IX86_BUILTIN_PCMPGTB,
2191  IX86_BUILTIN_PCMPGTW,
2192  IX86_BUILTIN_PCMPGTD,
2193
2194  IX86_BUILTIN_PEXTRW,
2195  IX86_BUILTIN_PINSRW,
2196
2197  IX86_BUILTIN_PMADDWD,
2198
2199  IX86_BUILTIN_PMAXSW,
2200  IX86_BUILTIN_PMAXUB,
2201  IX86_BUILTIN_PMINSW,
2202  IX86_BUILTIN_PMINUB,
2203
2204  IX86_BUILTIN_PMULHUW,
2205  IX86_BUILTIN_PMULHW,
2206  IX86_BUILTIN_PMULLW,
2207
2208  IX86_BUILTIN_PSADBW,
2209  IX86_BUILTIN_PSHUFW,
2210
2211  IX86_BUILTIN_PSLLW,
2212  IX86_BUILTIN_PSLLD,
2213  IX86_BUILTIN_PSLLQ,
2214  IX86_BUILTIN_PSRAW,
2215  IX86_BUILTIN_PSRAD,
2216  IX86_BUILTIN_PSRLW,
2217  IX86_BUILTIN_PSRLD,
2218  IX86_BUILTIN_PSRLQ,
2219  IX86_BUILTIN_PSLLWI,
2220  IX86_BUILTIN_PSLLDI,
2221  IX86_BUILTIN_PSLLQI,
2222  IX86_BUILTIN_PSRAWI,
2223  IX86_BUILTIN_PSRADI,
2224  IX86_BUILTIN_PSRLWI,
2225  IX86_BUILTIN_PSRLDI,
2226  IX86_BUILTIN_PSRLQI,
2227
2228  IX86_BUILTIN_PUNPCKHBW,
2229  IX86_BUILTIN_PUNPCKHWD,
2230  IX86_BUILTIN_PUNPCKHDQ,
2231  IX86_BUILTIN_PUNPCKLBW,
2232  IX86_BUILTIN_PUNPCKLWD,
2233  IX86_BUILTIN_PUNPCKLDQ,
2234
2235  IX86_BUILTIN_SHUFPS,
2236
2237  IX86_BUILTIN_RCPPS,
2238  IX86_BUILTIN_RCPSS,
2239  IX86_BUILTIN_RSQRTPS,
2240  IX86_BUILTIN_RSQRTSS,
2241  IX86_BUILTIN_SQRTPS,
2242  IX86_BUILTIN_SQRTSS,
2243
2244  IX86_BUILTIN_UNPCKHPS,
2245  IX86_BUILTIN_UNPCKLPS,
2246
2247  IX86_BUILTIN_ANDPS,
2248  IX86_BUILTIN_ANDNPS,
2249  IX86_BUILTIN_ORPS,
2250  IX86_BUILTIN_XORPS,
2251
2252  IX86_BUILTIN_EMMS,
2253  IX86_BUILTIN_LDMXCSR,
2254  IX86_BUILTIN_STMXCSR,
2255  IX86_BUILTIN_SFENCE,
2256
2257  /* 3DNow! Original */
2258  IX86_BUILTIN_FEMMS,
2259  IX86_BUILTIN_PAVGUSB,
2260  IX86_BUILTIN_PF2ID,
2261  IX86_BUILTIN_PFACC,
2262  IX86_BUILTIN_PFADD,
2263  IX86_BUILTIN_PFCMPEQ,
2264  IX86_BUILTIN_PFCMPGE,
2265  IX86_BUILTIN_PFCMPGT,
2266  IX86_BUILTIN_PFMAX,
2267  IX86_BUILTIN_PFMIN,
2268  IX86_BUILTIN_PFMUL,
2269  IX86_BUILTIN_PFRCP,
2270  IX86_BUILTIN_PFRCPIT1,
2271  IX86_BUILTIN_PFRCPIT2,
2272  IX86_BUILTIN_PFRSQIT1,
2273  IX86_BUILTIN_PFRSQRT,
2274  IX86_BUILTIN_PFSUB,
2275  IX86_BUILTIN_PFSUBR,
2276  IX86_BUILTIN_PI2FD,
2277  IX86_BUILTIN_PMULHRW,
2278
2279  /* 3DNow! Athlon Extensions */
2280  IX86_BUILTIN_PF2IW,
2281  IX86_BUILTIN_PFNACC,
2282  IX86_BUILTIN_PFPNACC,
2283  IX86_BUILTIN_PI2FW,
2284  IX86_BUILTIN_PSWAPDSI,
2285  IX86_BUILTIN_PSWAPDSF,
2286
2287  IX86_BUILTIN_SSE_ZERO,
2288  IX86_BUILTIN_MMX_ZERO,
2289
2290  /* SSE2 */
2291  IX86_BUILTIN_ADDPD,
2292  IX86_BUILTIN_ADDSD,
2293  IX86_BUILTIN_DIVPD,
2294  IX86_BUILTIN_DIVSD,
2295  IX86_BUILTIN_MULPD,
2296  IX86_BUILTIN_MULSD,
2297  IX86_BUILTIN_SUBPD,
2298  IX86_BUILTIN_SUBSD,
2299
2300  IX86_BUILTIN_CMPEQPD,
2301  IX86_BUILTIN_CMPLTPD,
2302  IX86_BUILTIN_CMPLEPD,
2303  IX86_BUILTIN_CMPGTPD,
2304  IX86_BUILTIN_CMPGEPD,
2305  IX86_BUILTIN_CMPNEQPD,
2306  IX86_BUILTIN_CMPNLTPD,
2307  IX86_BUILTIN_CMPNLEPD,
2308  IX86_BUILTIN_CMPNGTPD,
2309  IX86_BUILTIN_CMPNGEPD,
2310  IX86_BUILTIN_CMPORDPD,
2311  IX86_BUILTIN_CMPUNORDPD,
2312  IX86_BUILTIN_CMPNEPD,
2313  IX86_BUILTIN_CMPEQSD,
2314  IX86_BUILTIN_CMPLTSD,
2315  IX86_BUILTIN_CMPLESD,
2316  IX86_BUILTIN_CMPNEQSD,
2317  IX86_BUILTIN_CMPNLTSD,
2318  IX86_BUILTIN_CMPNLESD,
2319  IX86_BUILTIN_CMPORDSD,
2320  IX86_BUILTIN_CMPUNORDSD,
2321  IX86_BUILTIN_CMPNESD,
2322
2323  IX86_BUILTIN_COMIEQSD,
2324  IX86_BUILTIN_COMILTSD,
2325  IX86_BUILTIN_COMILESD,
2326  IX86_BUILTIN_COMIGTSD,
2327  IX86_BUILTIN_COMIGESD,
2328  IX86_BUILTIN_COMINEQSD,
2329  IX86_BUILTIN_UCOMIEQSD,
2330  IX86_BUILTIN_UCOMILTSD,
2331  IX86_BUILTIN_UCOMILESD,
2332  IX86_BUILTIN_UCOMIGTSD,
2333  IX86_BUILTIN_UCOMIGESD,
2334  IX86_BUILTIN_UCOMINEQSD,
2335
2336  IX86_BUILTIN_MAXPD,
2337  IX86_BUILTIN_MAXSD,
2338  IX86_BUILTIN_MINPD,
2339  IX86_BUILTIN_MINSD,
2340
2341  IX86_BUILTIN_ANDPD,
2342  IX86_BUILTIN_ANDNPD,
2343  IX86_BUILTIN_ORPD,
2344  IX86_BUILTIN_XORPD,
2345
2346  IX86_BUILTIN_SQRTPD,
2347  IX86_BUILTIN_SQRTSD,
2348
2349  IX86_BUILTIN_UNPCKHPD,
2350  IX86_BUILTIN_UNPCKLPD,
2351
2352  IX86_BUILTIN_SHUFPD,
2353
2354  IX86_BUILTIN_LOADAPD,
2355  IX86_BUILTIN_LOADUPD,
2356  IX86_BUILTIN_STOREAPD,
2357  IX86_BUILTIN_STOREUPD,
2358  IX86_BUILTIN_LOADSD,
2359  IX86_BUILTIN_STORESD,
2360  IX86_BUILTIN_MOVSD,
2361
2362  IX86_BUILTIN_LOADHPD,
2363  IX86_BUILTIN_LOADLPD,
2364  IX86_BUILTIN_STOREHPD,
2365  IX86_BUILTIN_STORELPD,
2366
2367  IX86_BUILTIN_CVTDQ2PD,
2368  IX86_BUILTIN_CVTDQ2PS,
2369
2370  IX86_BUILTIN_CVTPD2DQ,
2371  IX86_BUILTIN_CVTPD2PI,
2372  IX86_BUILTIN_CVTPD2PS,
2373  IX86_BUILTIN_CVTTPD2DQ,
2374  IX86_BUILTIN_CVTTPD2PI,
2375
2376  IX86_BUILTIN_CVTPI2PD,
2377  IX86_BUILTIN_CVTSI2SD,
2378  IX86_BUILTIN_CVTSI642SD,
2379
2380  IX86_BUILTIN_CVTSD2SI,
2381  IX86_BUILTIN_CVTSD2SI64,
2382  IX86_BUILTIN_CVTSD2SS,
2383  IX86_BUILTIN_CVTSS2SD,
2384  IX86_BUILTIN_CVTTSD2SI,
2385  IX86_BUILTIN_CVTTSD2SI64,
2386
2387  IX86_BUILTIN_CVTPS2DQ,
2388  IX86_BUILTIN_CVTPS2PD,
2389  IX86_BUILTIN_CVTTPS2DQ,
2390
2391  IX86_BUILTIN_MOVNTI,
2392  IX86_BUILTIN_MOVNTPD,
2393  IX86_BUILTIN_MOVNTDQ,
2394
2395  IX86_BUILTIN_SETPD1,
2396  IX86_BUILTIN_SETPD,
2397  IX86_BUILTIN_CLRPD,
2398  IX86_BUILTIN_SETRPD,
2399  IX86_BUILTIN_LOADPD1,
2400  IX86_BUILTIN_LOADRPD,
2401  IX86_BUILTIN_STOREPD1,
2402  IX86_BUILTIN_STORERPD,
2403
2404  /* SSE2 MMX */
2405  IX86_BUILTIN_MASKMOVDQU,
2406  IX86_BUILTIN_MOVMSKPD,
2407  IX86_BUILTIN_PMOVMSKB128,
2408  IX86_BUILTIN_MOVQ2DQ,
2409  IX86_BUILTIN_MOVDQ2Q,
2410
2411  IX86_BUILTIN_PACKSSWB128,
2412  IX86_BUILTIN_PACKSSDW128,
2413  IX86_BUILTIN_PACKUSWB128,
2414
2415  IX86_BUILTIN_PADDB128,
2416  IX86_BUILTIN_PADDW128,
2417  IX86_BUILTIN_PADDD128,
2418  IX86_BUILTIN_PADDQ128,
2419  IX86_BUILTIN_PADDSB128,
2420  IX86_BUILTIN_PADDSW128,
2421  IX86_BUILTIN_PADDUSB128,
2422  IX86_BUILTIN_PADDUSW128,
2423  IX86_BUILTIN_PSUBB128,
2424  IX86_BUILTIN_PSUBW128,
2425  IX86_BUILTIN_PSUBD128,
2426  IX86_BUILTIN_PSUBQ128,
2427  IX86_BUILTIN_PSUBSB128,
2428  IX86_BUILTIN_PSUBSW128,
2429  IX86_BUILTIN_PSUBUSB128,
2430  IX86_BUILTIN_PSUBUSW128,
2431
2432  IX86_BUILTIN_PAND128,
2433  IX86_BUILTIN_PANDN128,
2434  IX86_BUILTIN_POR128,
2435  IX86_BUILTIN_PXOR128,
2436
2437  IX86_BUILTIN_PAVGB128,
2438  IX86_BUILTIN_PAVGW128,
2439
2440  IX86_BUILTIN_PCMPEQB128,
2441  IX86_BUILTIN_PCMPEQW128,
2442  IX86_BUILTIN_PCMPEQD128,
2443  IX86_BUILTIN_PCMPGTB128,
2444  IX86_BUILTIN_PCMPGTW128,
2445  IX86_BUILTIN_PCMPGTD128,
2446
2447  IX86_BUILTIN_PEXTRW128,
2448  IX86_BUILTIN_PINSRW128,
2449
2450  IX86_BUILTIN_PMADDWD128,
2451
2452  IX86_BUILTIN_PMAXSW128,
2453  IX86_BUILTIN_PMAXUB128,
2454  IX86_BUILTIN_PMINSW128,
2455  IX86_BUILTIN_PMINUB128,
2456
2457  IX86_BUILTIN_PMULUDQ,
2458  IX86_BUILTIN_PMULUDQ128,
2459  IX86_BUILTIN_PMULHUW128,
2460  IX86_BUILTIN_PMULHW128,
2461  IX86_BUILTIN_PMULLW128,
2462
2463  IX86_BUILTIN_PSADBW128,
2464  IX86_BUILTIN_PSHUFHW,
2465  IX86_BUILTIN_PSHUFLW,
2466  IX86_BUILTIN_PSHUFD,
2467
2468  IX86_BUILTIN_PSLLW128,
2469  IX86_BUILTIN_PSLLD128,
2470  IX86_BUILTIN_PSLLQ128,
2471  IX86_BUILTIN_PSRAW128,
2472  IX86_BUILTIN_PSRAD128,
2473  IX86_BUILTIN_PSRLW128,
2474  IX86_BUILTIN_PSRLD128,
2475  IX86_BUILTIN_PSRLQ128,
2476  IX86_BUILTIN_PSLLDQI128,
2477  IX86_BUILTIN_PSLLWI128,
2478  IX86_BUILTIN_PSLLDI128,
2479  IX86_BUILTIN_PSLLQI128,
2480  IX86_BUILTIN_PSRAWI128,
2481  IX86_BUILTIN_PSRADI128,
2482  IX86_BUILTIN_PSRLDQI128,
2483  IX86_BUILTIN_PSRLWI128,
2484  IX86_BUILTIN_PSRLDI128,
2485  IX86_BUILTIN_PSRLQI128,
2486
2487  IX86_BUILTIN_PUNPCKHBW128,
2488  IX86_BUILTIN_PUNPCKHWD128,
2489  IX86_BUILTIN_PUNPCKHDQ128,
2490  IX86_BUILTIN_PUNPCKHQDQ128,
2491  IX86_BUILTIN_PUNPCKLBW128,
2492  IX86_BUILTIN_PUNPCKLWD128,
2493  IX86_BUILTIN_PUNPCKLDQ128,
2494  IX86_BUILTIN_PUNPCKLQDQ128,
2495
2496  IX86_BUILTIN_CLFLUSH,
2497  IX86_BUILTIN_MFENCE,
2498  IX86_BUILTIN_LFENCE,
2499
2500  /* Prescott New Instructions.  */
2501  IX86_BUILTIN_ADDSUBPS,
2502  IX86_BUILTIN_HADDPS,
2503  IX86_BUILTIN_HSUBPS,
2504  IX86_BUILTIN_MOVSHDUP,
2505  IX86_BUILTIN_MOVSLDUP,
2506  IX86_BUILTIN_ADDSUBPD,
2507  IX86_BUILTIN_HADDPD,
2508  IX86_BUILTIN_HSUBPD,
2509  IX86_BUILTIN_LOADDDUP,
2510  IX86_BUILTIN_MOVDDUP,
2511  IX86_BUILTIN_LDDQU,
2512
2513  IX86_BUILTIN_MONITOR,
2514  IX86_BUILTIN_MWAIT,
2515
2516  IX86_BUILTIN_MAX
2517};
2518
2519#define TARGET_ENCODE_SECTION_INFO  ix86_encode_section_info
2520#define TARGET_STRIP_NAME_ENCODING  ix86_strip_name_encoding
2521
2522#define ASM_OUTPUT_LABELREF(FILE,NAME)		\
2523  do {						\
2524    const char *xname = (NAME);			\
2525    if (xname[0] == '%')			\
2526      xname += 2;				\
2527    if (xname[0] == '*')			\
2528      xname += 1;				\
2529    else					\
2530      fputs (user_label_prefix, FILE);		\
2531    fputs (xname, FILE);			\
2532  } while (0)
2533
2534/* Max number of args passed in registers.  If this is more than 3, we will
2535   have problems with ebx (register #4), since it is a caller save register and
2536   is also used as the pic register in ELF.  So for now, don't allow more than
2537   3 registers to be passed in registers.  */
2538
2539#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2540
2541#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2542
2543
2544/* Specify the machine mode that this machine uses
2545   for the index in the tablejump instruction.  */
2546#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2547
2548/* Define as C expression which evaluates to nonzero if the tablejump
2549   instruction expects the table to contain offsets from the address of the
2550   table.
2551   Do not define this if the table should contain absolute addresses.  */
2552/* #define CASE_VECTOR_PC_RELATIVE 1 */
2553
2554/* Define this as 1 if `char' should by default be signed; else as 0.  */
2555#define DEFAULT_SIGNED_CHAR 1
2556
2557/* Number of bytes moved into a data cache for a single prefetch operation.  */
2558#define PREFETCH_BLOCK ix86_cost->prefetch_block
2559
2560/* Number of prefetch operations that can be done in parallel.  */
2561#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2562
2563/* Max number of bytes we can move from memory to memory
2564   in one reasonably fast instruction.  */
2565#define MOVE_MAX 16
2566
2567/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2568   move efficiently, as opposed to  MOVE_MAX which is the maximum
2569   number of bytes we can move with a single instruction.  */
2570#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2571
2572/* If a memory-to-memory move would take MOVE_RATIO or more simple
2573   move-instruction pairs, we will do a movstr or libcall instead.
2574   Increasing the value will always make code faster, but eventually
2575   incurs high cost in increased code size.
2576
2577   If you don't define this, a reasonable default is used.  */
2578
2579#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2580
2581/* Define if shifts truncate the shift count
2582   which implies one can omit a sign-extension or zero-extension
2583   of a shift count.  */
2584/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2585
2586/* #define SHIFT_COUNT_TRUNCATED */
2587
2588/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2589   is done just by pretending it is already truncated.  */
2590#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2591
2592/* We assume that the store-condition-codes instructions store 0 for false
2593   and some other value for true.  This is the value stored for true.  */
2594
2595#define STORE_FLAG_VALUE 1
2596
2597/* When a prototype says `char' or `short', really pass an `int'.
2598   (The 386 can't easily push less than an int.)  */
2599
2600#define PROMOTE_PROTOTYPES 1
2601
2602/* A macro to update M and UNSIGNEDP when an object whose type is
2603   TYPE and which has the specified mode and signedness is to be
2604   stored in a register.  This macro is only called when TYPE is a
2605   scalar type.
2606
2607   On i386 it is sometimes useful to promote HImode and QImode
2608   quantities to SImode.  The choice depends on target type.  */
2609
2610#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2611do {							\
2612  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2613      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2614    (MODE) = SImode;					\
2615} while (0)
2616
2617/* Specify the machine mode that pointers have.
2618   After generation of rtl, the compiler makes no further distinction
2619   between pointers and any other objects of this machine mode.  */
2620#define Pmode (TARGET_64BIT ? DImode : SImode)
2621
2622/* A function address in a call instruction
2623   is a byte address (for indexing purposes)
2624   so give the MEM rtx a byte's mode.  */
2625#define FUNCTION_MODE QImode
2626
2627/* A part of a C `switch' statement that describes the relative costs
2628   of constant RTL expressions.  It must contain `case' labels for
2629   expression codes `const_int', `const', `symbol_ref', `label_ref'
2630   and `const_double'.  Each case must ultimately reach a `return'
2631   statement to return the relative cost of the use of that kind of
2632   constant value in an expression.  The cost may depend on the
2633   precise value of the constant, which is available for examination
2634   in X, and the rtx code of the expression in which it is contained,
2635   found in OUTER_CODE.
2636
2637   CODE is the expression code--redundant, since it can be obtained
2638   with `GET_CODE (X)'.  */
2639
2640#define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2641  case CONST_INT:						\
2642  case CONST:							\
2643  case LABEL_REF:						\
2644  case SYMBOL_REF:						\
2645    if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2646      return 3;							\
2647    if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2648      return 2;							\
2649    return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2650								\
2651  case CONST_DOUBLE:						\
2652    if (GET_MODE (RTX) == VOIDmode)				\
2653      return 0;							\
2654    switch (standard_80387_constant_p (RTX))			\
2655      {								\
2656      case 1: /* 0.0 */						\
2657	return 1;						\
2658      case 2: /* 1.0 */						\
2659	return 2;						\
2660      default:							\
2661	/* Start with (MEM (SYMBOL_REF)), since that's where	\
2662	   it'll probably end up.  Add a penalty for size.  */	\
2663	return (COSTS_N_INSNS (1) + (flag_pic != 0)		\
2664		+ (GET_MODE (RTX) == SFmode ? 0			\
2665		   : GET_MODE (RTX) == DFmode ? 1 : 2));	\
2666      }
2667
2668/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2669#define TOPLEVEL_COSTS_N_INSNS(N) \
2670  do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2671
2672/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2673   This can be used, for example, to indicate how costly a multiply
2674   instruction is.  In writing this macro, you can use the construct
2675   `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2676   instructions.  OUTER_CODE is the code of the expression in which X
2677   is contained.
2678
2679   This macro is optional; do not define it if the default cost
2680   assumptions are adequate for the target machine.  */
2681
2682#define RTX_COSTS(X, CODE, OUTER_CODE)					\
2683  case ZERO_EXTEND:							\
2684    /* The zero extensions is often completely free on x86_64, so make	\
2685       it as cheap as possible.  */					\
2686    if (TARGET_64BIT && GET_MODE (X) == DImode				\
2687	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2688      {									\
2689	total = 1; goto egress_rtx_costs;				\
2690      } 								\
2691    else								\
2692      TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2693			      ix86_cost->add : ix86_cost->movzx);	\
2694    break;								\
2695  case SIGN_EXTEND:							\
2696    TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2697    break;								\
2698  case ASHIFT:								\
2699    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2700	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2701      {									\
2702	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2703	if (value == 1)							\
2704	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2705	if ((value == 2 || value == 3)					\
2706	    && !TARGET_DECOMPOSE_LEA					\
2707	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2708	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2709      }									\
2710    /* fall through */							\
2711		  							\
2712  case ROTATE:								\
2713  case ASHIFTRT:							\
2714  case LSHIFTRT:							\
2715  case ROTATERT:							\
2716    if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2717      {									\
2718	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2719	  {								\
2720	    if (INTVAL (XEXP (X, 1)) > 32)				\
2721	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2722	    else							\
2723	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2724	  }								\
2725	else								\
2726	  {								\
2727	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2728	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2729	    else							\
2730	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2731	  }								\
2732      }									\
2733    else								\
2734      {									\
2735	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2736	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2737	else								\
2738	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2739      }									\
2740    break;								\
2741									\
2742  case MULT:								\
2743    if (FLOAT_MODE_P (GET_MODE (X)))					\
2744      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul);				\
2745    else if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2746      {									\
2747	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2748	int nbits = 0;							\
2749									\
2750	while (value != 0)						\
2751	  {								\
2752	    nbits++;							\
2753	    value >>= 1;						\
2754	  } 								\
2755									\
2756	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2757			        + nbits * ix86_cost->mult_bit);		\
2758      }									\
2759    else			/* This is arbitrary */			\
2760      TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2761			      + 7 * ix86_cost->mult_bit);		\
2762									\
2763  case DIV:								\
2764  case UDIV:								\
2765  case MOD:								\
2766  case UMOD:								\
2767    if (FLOAT_MODE_P (GET_MODE (X)))					\
2768      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv);				\
2769    else								\
2770      TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);			\
2771    break;								\
2772									\
2773  case PLUS:								\
2774    if (FLOAT_MODE_P (GET_MODE (X)))					\
2775      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd);				\
2776    else if (!TARGET_DECOMPOSE_LEA					\
2777	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2778	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2779      {									\
2780        if (GET_CODE (XEXP (X, 0)) == PLUS				\
2781	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2782	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2783	    && CONSTANT_P (XEXP (X, 1)))				\
2784	  {								\
2785	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2786	    if (val == 2 || val == 4 || val == 8)			\
2787	      {								\
2788		return (COSTS_N_INSNS (ix86_cost->lea)			\
2789			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2790				    (OUTER_CODE))			\
2791			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2792				    (OUTER_CODE))			\
2793			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2794	      }								\
2795	  }								\
2796	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2797		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2798	  {								\
2799	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2800	    if (val == 2 || val == 4 || val == 8)			\
2801	      {								\
2802		return (COSTS_N_INSNS (ix86_cost->lea)			\
2803			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2804				    (OUTER_CODE))			\
2805			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2806	      }								\
2807	  }								\
2808	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2809	  {								\
2810	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2811		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2812		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2813		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2814	  }								\
2815      }									\
2816    /* fall through */							\
2817									\
2818  case MINUS:								\
2819    if (FLOAT_MODE_P (GET_MODE (X)))					\
2820      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd);				\
2821    /* fall through */							\
2822									\
2823  case AND:								\
2824  case IOR:								\
2825  case XOR:								\
2826    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2827      return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2828	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2829	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2830	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2831 	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2832    /* fall through */							\
2833									\
2834  case NEG:								\
2835    if (FLOAT_MODE_P (GET_MODE (X)))					\
2836      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs);				\
2837    /* fall through */							\
2838									\
2839  case NOT:								\
2840    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2841      TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2842    TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2843									\
2844  case FLOAT_EXTEND:							\
2845    if (!TARGET_SSE_MATH						\
2846	|| !VALID_SSE_REG_MODE (GET_MODE (X)))				\
2847      TOPLEVEL_COSTS_N_INSNS (0);					\
2848    break;								\
2849									\
2850  case ABS:								\
2851    if (FLOAT_MODE_P (GET_MODE (X)))					\
2852      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs);				\
2853    break;								\
2854									\
2855  case SQRT:								\
2856    if (FLOAT_MODE_P (GET_MODE (X)))					\
2857      TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt);			\
2858    break;								\
2859									\
2860  egress_rtx_costs:							\
2861    break;
2862
2863
2864/* An expression giving the cost of an addressing mode that contains
2865   ADDRESS.  If not defined, the cost is computed from the ADDRESS
2866   expression and the `CONST_COSTS' values.
2867
2868   For most CISC machines, the default cost is a good approximation
2869   of the true cost of the addressing mode.  However, on RISC
2870   machines, all instructions normally have the same length and
2871   execution time.  Hence all addresses will have equal costs.
2872
2873   In cases where more than one form of an address is known, the form
2874   with the lowest cost will be used.  If multiple forms have the
2875   same, lowest, cost, the one that is the most complex will be used.
2876
2877   For example, suppose an address that is equal to the sum of a
2878   register and a constant is used twice in the same basic block.
2879   When this macro is not defined, the address will be computed in a
2880   register and memory references will be indirect through that
2881   register.  On machines where the cost of the addressing mode
2882   containing the sum is no higher than that of a simple indirect
2883   reference, this will produce an additional instruction and
2884   possibly require an additional register.  Proper specification of
2885   this macro eliminates this overhead for such machines.
2886
2887   Similar use of this macro is made in strength reduction of loops.
2888
2889   ADDRESS need not be valid as an address.  In such a case, the cost
2890   is not relevant and can be any value; invalid addresses need not be
2891   assigned a different cost.
2892
2893   On machines where an address involving more than one register is as
2894   cheap as an address computation involving only one register,
2895   defining `ADDRESS_COST' to reflect this can cause two registers to
2896   be live over a region of code where only one would have been if
2897   `ADDRESS_COST' were not defined in that manner.  This effect should
2898   be considered in the definition of this macro.  Equivalent costs
2899   should probably only be given to addresses with different numbers
2900   of registers on machines with lots of registers.
2901
2902   This macro will normally either not be defined or be defined as a
2903   constant.
2904
2905   For i386, it is better to use a complex address than let gcc copy
2906   the address into a reg and make a new pseudo.  But not if the address
2907   requires to two regs - that would mean more pseudos with longer
2908   lifetimes.  */
2909
2910#define ADDRESS_COST(RTX) \
2911  ix86_address_cost (RTX)
2912
2913/* A C expression for the cost of moving data from a register in class FROM to
2914   one in class TO.  The classes are expressed using the enumeration values
2915   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2916   interpreted relative to that.
2917
2918   It is not required that the cost always equal 2 when FROM is the same as TO;
2919   on some machines it is expensive to move between registers if they are not
2920   general registers.  */
2921
2922#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2923   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2924
2925/* A C expression for the cost of moving data of mode M between a
2926   register and memory.  A value of 2 is the default; this cost is
2927   relative to those in `REGISTER_MOVE_COST'.
2928
2929   If moving between registers and memory is more expensive than
2930   between two registers, you should define this macro to express the
2931   relative cost.  */
2932
2933#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2934  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2935
2936/* A C expression for the cost of a branch instruction.  A value of 1
2937   is the default; other values are interpreted relative to that.  */
2938
2939#define BRANCH_COST ix86_branch_cost
2940
2941/* Define this macro as a C expression which is nonzero if accessing
2942   less than a word of memory (i.e. a `char' or a `short') is no
2943   faster than accessing a word of memory, i.e., if such access
2944   require more than one instruction or if there is no difference in
2945   cost between byte and (aligned) word loads.
2946
2947   When this macro is not defined, the compiler will access a field by
2948   finding the smallest containing object; when it is defined, a
2949   fullword load will be used if alignment permits.  Unless bytes
2950   accesses are faster than word accesses, using word accesses is
2951   preferable since it may eliminate subsequent memory access if
2952   subsequent accesses occur to other fields in the same word of the
2953   structure, but to different bytes.  */
2954
2955#define SLOW_BYTE_ACCESS 0
2956
2957/* Nonzero if access to memory by shorts is slow and undesirable.  */
2958#define SLOW_SHORT_ACCESS 0
2959
2960/* Define this macro to be the value 1 if unaligned accesses have a
2961   cost many times greater than aligned accesses, for example if they
2962   are emulated in a trap handler.
2963
2964   When this macro is nonzero, the compiler will act as if
2965   `STRICT_ALIGNMENT' were nonzero when generating code for block
2966   moves.  This can cause significantly more instructions to be
2967   produced.  Therefore, do not set this macro nonzero if unaligned
2968   accesses only add a cycle or two to the time for a memory access.
2969
2970   If the value of this macro is always zero, it need not be defined.  */
2971
2972/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2973
2974/* Define this macro to inhibit strength reduction of memory
2975   addresses.  (On some machines, such strength reduction seems to do
2976   harm rather than good.)  */
2977
2978/* #define DONT_REDUCE_ADDR */
2979
2980/* Define this macro if it is as good or better to call a constant
2981   function address than to call an address kept in a register.
2982
2983   Desirable on the 386 because a CALL with a constant address is
2984   faster than one with a register address.  */
2985
2986#define NO_FUNCTION_CSE
2987
2988/* Define this macro if it is as good or better for a function to call
2989   itself with an explicit address than to call an address kept in a
2990   register.  */
2991
2992#define NO_RECURSIVE_FUNCTION_CSE
2993
2994/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2995   return the mode to be used for the comparison.
2996
2997   For floating-point equality comparisons, CCFPEQmode should be used.
2998   VOIDmode should be used in all other cases.
2999
3000   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
3001   possible, to allow for more combinations.  */
3002
3003#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
3004
3005/* Return nonzero if MODE implies a floating point inequality can be
3006   reversed.  */
3007
3008#define REVERSIBLE_CC_MODE(MODE) 1
3009
3010/* A C expression whose value is reversed condition code of the CODE for
3011   comparison done in CC_MODE mode.  */
3012#define REVERSE_CONDITION(CODE, MODE) \
3013  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
3014   : reverse_condition_maybe_unordered (CODE))
3015
3016
3017/* Control the assembler format that we output, to the extent
3018   this does not vary between assemblers.  */
3019
3020/* How to refer to registers in assembler output.
3021   This sequence is indexed by compiler's hard-register-number (see above).  */
3022
3023/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
3024   For non floating point regs, the following are the HImode names.
3025
3026   For float regs, the stack top is sometimes referred to as "%st(0)"
3027   instead of just "%st".  PRINT_REG handles this with the "y" code.  */
3028
3029#undef  HI_REGISTER_NAMES
3030#define HI_REGISTER_NAMES						\
3031{"ax","dx","cx","bx","si","di","bp","sp",				\
3032 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
3033 "flags","fpsr", "dirflag", "frame",					\
3034 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
3035 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
3036 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
3037 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
3038
3039#define REGISTER_NAMES HI_REGISTER_NAMES
3040
3041/* Table of additional register names to use in user input.  */
3042
3043#define ADDITIONAL_REGISTER_NAMES \
3044{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
3045  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
3046  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
3047  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
3048  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
3049  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
3050  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
3051  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
3052
3053/* Note we are omitting these since currently I don't know how
3054to get gcc to use these, since they want the same but different
3055number as al, and ax.
3056*/
3057
3058#define QI_REGISTER_NAMES \
3059{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
3060
3061/* These parallel the array above, and can be used to access bits 8:15
3062   of regs 0 through 3.  */
3063
3064#define QI_HIGH_REGISTER_NAMES \
3065{"ah", "dh", "ch", "bh", }
3066
3067/* How to renumber registers for dbx and gdb.  */
3068
3069#define DBX_REGISTER_NUMBER(N) \
3070  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
3071
3072extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
3073extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
3074extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
3075
3076/* Before the prologue, RA is at 0(%esp).  */
3077#define INCOMING_RETURN_ADDR_RTX \
3078  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
3079
3080/* After the prologue, RA is at -4(AP) in the current frame.  */
3081#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
3082  ((COUNT) == 0								   \
3083   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3084   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
3085
3086/* PC is dbx register 8; let's use that column for RA.  */
3087#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
3088
3089/* Before the prologue, the top of the frame is at 4(%esp).  */
3090#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
3091
3092/* Describe how we implement __builtin_eh_return.  */
3093#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
3094#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
3095
3096
3097/* Select a format to encode pointers in exception handling data.  CODE
3098   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
3099   true if the symbol may be affected by dynamic relocations.
3100
3101   ??? All x86 object file formats are capable of representing this.
3102   After all, the relocation needed is the same as for the call insn.
3103   Whether or not a particular assembler allows us to enter such, I
3104   guess we'll have to see.  */
3105#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
3106  (flag_pic								\
3107    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
3108   : DW_EH_PE_absptr)
3109
3110/* Store in OUTPUT a string (made with alloca) containing
3111   an assembler-name for a local static variable named NAME.
3112   LABELNO is an integer which is different for each call.  */
3113
3114#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
3115( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
3116  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3117
3118/* This is how to output an insn to push a register on the stack.
3119   It need not be very fast code.  */
3120
3121#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
3122do {									\
3123  if (TARGET_64BIT)							\
3124    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
3125		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
3126  else									\
3127    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
3128} while (0)
3129
3130/* This is how to output an insn to pop a register from the stack.
3131   It need not be very fast code.  */
3132
3133#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
3134do {									\
3135  if (TARGET_64BIT)							\
3136    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
3137		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
3138  else									\
3139    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
3140} while (0)
3141
3142/* This is how to output an element of a case-vector that is absolute.  */
3143
3144#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
3145  ix86_output_addr_vec_elt ((FILE), (VALUE))
3146
3147/* This is how to output an element of a case-vector that is relative.  */
3148
3149#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3150  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
3151
3152/* Under some conditions we need jump tables in the text section, because
3153   the assembler cannot handle label differences between sections.  */
3154
3155#define JUMP_TABLES_IN_TEXT_SECTION \
3156  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
3157
3158/* A C statement that outputs an address constant appropriate to
3159   for DWARF debugging.  */
3160
3161#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3162  i386_dwarf_output_addr_const ((FILE), (X))
3163
3164/* Either simplify a location expression, or return the original.  */
3165
3166#define ASM_SIMPLIFY_DWARF_ADDR(X) \
3167  i386_simplify_dwarf_addr (X)
3168
3169/* Emit a dtp-relative reference to a TLS variable.  */
3170
3171#ifdef HAVE_AS_TLS
3172#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3173  i386_output_dwarf_dtprel (FILE, SIZE, X)
3174#endif
3175
3176/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3177   and switch back.  For x86 we do this only to save a few bytes that
3178   would otherwise be unused in the text section.  */
3179#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3180   asm (SECTION_OP "\n\t"				\
3181	"call " USER_LABEL_PREFIX #FUNC "\n"		\
3182	TEXT_SECTION_ASM_OP);
3183
3184/* Print operand X (an rtx) in assembler syntax to file FILE.
3185   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3186   Effect of various CODE letters is described in i386.c near
3187   print_operand function.  */
3188
3189#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3190  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
3191
3192/* Print the name of a register based on its machine mode and number.
3193   If CODE is 'w', pretend the mode is HImode.
3194   If CODE is 'b', pretend the mode is QImode.
3195   If CODE is 'k', pretend the mode is SImode.
3196   If CODE is 'q', pretend the mode is DImode.
3197   If CODE is 'h', pretend the reg is the `high' byte register.
3198   If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
3199
3200#define PRINT_REG(X, CODE, FILE)  \
3201  print_reg ((X), (CODE), (FILE))
3202
3203#define PRINT_OPERAND(FILE, X, CODE)  \
3204  print_operand ((FILE), (X), (CODE))
3205
3206#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
3207  print_operand_address ((FILE), (ADDR))
3208
3209#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
3210do {						\
3211  if (! output_addr_const_extra (FILE, (X)))	\
3212    goto FAIL;					\
3213} while (0);
3214
3215/* Print the name of a register for based on its machine mode and number.
3216   This macro is used to print debugging output.
3217   This macro is different from PRINT_REG in that it may be used in
3218   programs that are not linked with aux-output.o.  */
3219
3220#define DEBUG_PRINT_REG(X, CODE, FILE)			\
3221  do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
3222       static const char * const qi_name[] = QI_REGISTER_NAMES;	\
3223       fprintf ((FILE), "%d ", REGNO (X));		\
3224       if (REGNO (X) == FLAGS_REG)			\
3225	 { fputs ("flags", (FILE)); break; }		\
3226       if (REGNO (X) == DIRFLAG_REG)			\
3227	 { fputs ("dirflag", (FILE)); break; }		\
3228       if (REGNO (X) == FPSR_REG)			\
3229	 { fputs ("fpsr", (FILE)); break; }		\
3230       if (REGNO (X) == ARG_POINTER_REGNUM)		\
3231	 { fputs ("argp", (FILE)); break; }		\
3232       if (REGNO (X) == FRAME_POINTER_REGNUM)		\
3233	 { fputs ("frame", (FILE)); break; }		\
3234       if (STACK_TOP_P (X))				\
3235	 { fputs ("st(0)", (FILE)); break; }		\
3236       if (FP_REG_P (X))				\
3237	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
3238       if (REX_INT_REG_P (X))				\
3239	 {						\
3240	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
3241	     {						\
3242	     default:					\
3243	     case 8:					\
3244	       fprintf ((FILE), "r%i", REGNO (X)	\
3245			- FIRST_REX_INT_REG + 8);	\
3246	       break;					\
3247	     case 4:					\
3248	       fprintf ((FILE), "r%id", REGNO (X)	\
3249			- FIRST_REX_INT_REG + 8);	\
3250	       break;					\
3251	     case 2:					\
3252	       fprintf ((FILE), "r%iw", REGNO (X)	\
3253			- FIRST_REX_INT_REG + 8);	\
3254	       break;					\
3255	     case 1:					\
3256	       fprintf ((FILE), "r%ib", REGNO (X)	\
3257			- FIRST_REX_INT_REG + 8);	\
3258	       break;					\
3259	     }						\
3260	   break;					\
3261	 }						\
3262       switch (GET_MODE_SIZE (GET_MODE (X)))		\
3263	 {						\
3264	 case 8:					\
3265	   fputs ("r", (FILE));				\
3266	   fputs (hi_name[REGNO (X)], (FILE));		\
3267	   break;					\
3268	 default:					\
3269	   fputs ("e", (FILE));				\
3270	 case 2:					\
3271	   fputs (hi_name[REGNO (X)], (FILE));		\
3272	   break;					\
3273	 case 1:					\
3274	   fputs (qi_name[REGNO (X)], (FILE));		\
3275	   break;					\
3276	 }						\
3277     } while (0)
3278
3279/* a letter which is not needed by the normal asm syntax, which
3280   we can use for operand syntax in the extended asm */
3281
3282#define ASM_OPERAND_LETTER '#'
3283#define RET return ""
3284#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3285
3286/* Define the codes that are matched by predicates in i386.c.  */
3287
3288#define PREDICATE_CODES							\
3289  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3290				SYMBOL_REF, LABEL_REF, CONST}},		\
3291  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3292				SYMBOL_REF, LABEL_REF, CONST}},		\
3293  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3294				SYMBOL_REF, LABEL_REF, CONST}},		\
3295  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3296				     SYMBOL_REF, LABEL_REF, CONST}},	\
3297  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3298			      SYMBOL_REF, LABEL_REF, CONST}},		\
3299  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3300				   SYMBOL_REF, LABEL_REF, CONST}},	\
3301  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3302				       SYMBOL_REF, LABEL_REF}},		\
3303  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3304  {"const_int_1_operand", {CONST_INT}},					\
3305  {"const_int_1_31_operand", {CONST_INT}},				\
3306  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3307  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3308		       LABEL_REF, SUBREG, REG, MEM}},			\
3309  {"pic_symbolic_operand", {CONST}},					\
3310  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3311  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3312  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3313  {"const1_operand", {CONST_INT}},					\
3314  {"const248_operand", {CONST_INT}},					\
3315  {"incdec_operand", {CONST_INT}},					\
3316  {"mmx_reg_operand", {REG}},						\
3317  {"reg_no_sp_operand", {SUBREG, REG}},					\
3318  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3319			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3320  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3321  {"index_register_operand", {SUBREG, REG}},				\
3322  {"q_regs_operand", {SUBREG, REG}},					\
3323  {"non_q_regs_operand", {SUBREG, REG}},				\
3324  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3325				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3326				 GE, UNGE, LTGT, UNEQ}},		\
3327  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3328			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3329			       }},					\
3330  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3331			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3332			       UNGE, UNGT, LTGT, UNEQ }},		\
3333  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3334  {"ext_register_operand", {SUBREG, REG}},				\
3335  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3336  {"mult_operator", {MULT}},						\
3337  {"div_operator", {DIV}},						\
3338  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3339				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3340				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3341				 LSHIFTRT, ROTATERT}},			\
3342  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3343  {"memory_displacement_operand", {MEM}},				\
3344  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3345		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3346  {"long_memory_operand", {MEM}},					\
3347  {"tls_symbolic_operand", {SYMBOL_REF}},				\
3348  {"global_dynamic_symbolic_operand", {SYMBOL_REF}},			\
3349  {"local_dynamic_symbolic_operand", {SYMBOL_REF}},			\
3350  {"initial_exec_symbolic_operand", {SYMBOL_REF}},			\
3351  {"local_exec_symbolic_operand", {SYMBOL_REF}},			\
3352  {"any_fp_register_operand", {REG}},					\
3353  {"register_and_not_any_fp_reg_operand", {REG}},			\
3354  {"fp_register_operand", {REG}},					\
3355  {"register_and_not_fp_reg_operand", {REG}},				\
3356  {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}},		\
3357
3358/* A list of predicates that do special things with modes, and so
3359   should not elicit warnings for VOIDmode match_operand.  */
3360
3361#define SPECIAL_MODE_PREDICATES \
3362  "ext_register_operand",
3363
3364/* Which processor to schedule for. The cpu attribute defines a list that
3365   mirrors this list, so changes to i386.md must be made at the same time.  */
3366
3367enum processor_type
3368{
3369  PROCESSOR_I386,			/* 80386 */
3370  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
3371  PROCESSOR_PENTIUM,
3372  PROCESSOR_PENTIUMPRO,
3373  PROCESSOR_K6,
3374  PROCESSOR_ATHLON,
3375  PROCESSOR_PENTIUM4,
3376  PROCESSOR_max
3377};
3378
3379extern enum processor_type ix86_cpu;
3380extern const char *ix86_cpu_string;
3381
3382extern enum processor_type ix86_arch;
3383extern const char *ix86_arch_string;
3384
3385enum fpmath_unit
3386{
3387  FPMATH_387 = 1,
3388  FPMATH_SSE = 2
3389};
3390
3391extern enum fpmath_unit ix86_fpmath;
3392extern const char *ix86_fpmath_string;
3393
3394enum tls_dialect
3395{
3396  TLS_DIALECT_GNU,
3397  TLS_DIALECT_SUN
3398};
3399
3400extern enum tls_dialect ix86_tls_dialect;
3401extern const char *ix86_tls_dialect_string;
3402
3403enum cmodel {
3404  CM_32,	/* The traditional 32-bit ABI.  */
3405  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
3406  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
3407  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
3408  CM_LARGE,	/* No assumptions.  */
3409  CM_SMALL_PIC	/* Assumes code+data+got/plt fits in a 31 bit region.  */
3410};
3411
3412extern enum cmodel ix86_cmodel;
3413extern const char *ix86_cmodel_string;
3414
3415/* Size of the RED_ZONE area.  */
3416#define RED_ZONE_SIZE 128
3417/* Reserved area of the red zone for temporaries.  */
3418#define RED_ZONE_RESERVE 8
3419
3420enum asm_dialect {
3421  ASM_ATT,
3422  ASM_INTEL
3423};
3424
3425extern const char *ix86_asm_string;
3426extern enum asm_dialect ix86_asm_dialect;
3427
3428extern int ix86_regparm;
3429extern const char *ix86_regparm_string;
3430
3431extern int ix86_preferred_stack_boundary;
3432extern const char *ix86_preferred_stack_boundary_string;
3433
3434extern int ix86_branch_cost;
3435extern const char *ix86_branch_cost_string;
3436
3437extern const char *ix86_debug_arg_string;
3438extern const char *ix86_debug_addr_string;
3439
3440/* Obsoleted by -f options.  Remove before 3.2 ships.  */
3441extern const char *ix86_align_loops_string;
3442extern const char *ix86_align_jumps_string;
3443extern const char *ix86_align_funcs_string;
3444
3445/* Smallest class containing REGNO.  */
3446extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3447
3448extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3449extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3450
3451/* To properly truncate FP values into integers, we need to set i387 control
3452   word.  We can't emit proper mode switching code before reload, as spills
3453   generated by reload may truncate values incorrectly, but we still can avoid
3454   redundant computation of new control word by the mode switching pass.
3455   The fldcw instructions are still emitted redundantly, but this is probably
3456   not going to be noticeable problem, as most CPUs do have fast path for
3457   the sequence.
3458
3459   The machinery is to emit simple truncation instructions and split them
3460   before reload to instructions having USEs of two memory locations that
3461   are filled by this code to old and new control word.
3462
3463   Post-reload pass may be later used to eliminate the redundant fildcw if
3464   needed.  */
3465
3466enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3467
3468/* Define this macro if the port needs extra instructions inserted
3469   for mode switching in an optimizing compilation.  */
3470
3471#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3472
3473/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3474   initializer for an array of integers.  Each initializer element N
3475   refers to an entity that needs mode switching, and specifies the
3476   number of different modes that might need to be set for this
3477   entity.  The position of the initializer in the initializer -
3478   starting counting at zero - determines the integer that is used to
3479   refer to the mode-switched entity in question.  */
3480
3481#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3482
3483/* ENTITY is an integer specifying a mode-switched entity.  If
3484   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3485   return an integer value not larger than the corresponding element
3486   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3487   must be switched into prior to the execution of INSN.  */
3488
3489#define MODE_NEEDED(ENTITY, I)						\
3490  (GET_CODE (I) == CALL_INSN						\
3491   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3492				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3493   ? FP_CW_UNINITIALIZED						\
3494   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3495   ? FP_CW_ANY								\
3496   : FP_CW_STORED)
3497
3498/* This macro specifies the order in which modes for ENTITY are
3499   processed.  0 is the highest priority.  */
3500
3501#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3502
3503/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3504   is the set of hard registers live at the point where the insn(s)
3505   are to be inserted.  */
3506
3507#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3508  ((MODE) == FP_CW_STORED						\
3509   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3510				  assign_386_stack_local (HImode, 2)), 0\
3511   : 0)
3512
3513/* Avoid renaming of stack registers, as doing so in combination with
3514   scheduling just increases amount of live registers at time and in
3515   the turn amount of fxch instructions needed.
3516
3517   ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3518
3519#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3520   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3521
3522
3523#define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3524
3525#define DLL_IMPORT_EXPORT_PREFIX '@'
3526
3527/*
3528Local variables:
3529version-control: t
3530End:
3531*/
3532