1//===-- tsan_interface_atomic.cc ------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14// ThreadSanitizer atomic operations are based on C++11/C1x standards.
15// For background see C++11 standard.  A slightly older, publicly
16// available draft of the standard (not entirely up-to-date, but close enough
17// for casual browsing) is available here:
18// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
19// The following page contains more background information:
20// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
21
22#include "sanitizer_common/sanitizer_placement_new.h"
23#include "sanitizer_common/sanitizer_stacktrace.h"
24#include "sanitizer_common/sanitizer_mutex.h"
25#include "tsan_flags.h"
26#include "tsan_rtl.h"
27
28using namespace __tsan;  // NOLINT
29
30// These should match declarations from public tsan_interface_atomic.h header.
31typedef unsigned char      a8;
32typedef unsigned short     a16;  // NOLINT
33typedef unsigned int       a32;
34typedef unsigned long long a64;  // NOLINT
35#if !defined(SANITIZER_GO) && (defined(__SIZEOF_INT128__) \
36    || (__clang_major__ * 100 + __clang_minor__ >= 302)) && !defined(__mips64)
37__extension__ typedef __int128 a128;
38# define __TSAN_HAS_INT128 1
39#else
40# define __TSAN_HAS_INT128 0
41#endif
42
43#if !defined(SANITIZER_GO) && __TSAN_HAS_INT128
44// Protects emulation of 128-bit atomic operations.
45static StaticSpinMutex mutex128;
46#endif
47
48// Part of ABI, do not change.
49// http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup
50typedef enum {
51  mo_relaxed,
52  mo_consume,
53  mo_acquire,
54  mo_release,
55  mo_acq_rel,
56  mo_seq_cst
57} morder;
58
59static bool IsLoadOrder(morder mo) {
60  return mo == mo_relaxed || mo == mo_consume
61      || mo == mo_acquire || mo == mo_seq_cst;
62}
63
64static bool IsStoreOrder(morder mo) {
65  return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
66}
67
68static bool IsReleaseOrder(morder mo) {
69  return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
70}
71
72static bool IsAcquireOrder(morder mo) {
73  return mo == mo_consume || mo == mo_acquire
74      || mo == mo_acq_rel || mo == mo_seq_cst;
75}
76
77static bool IsAcqRelOrder(morder mo) {
78  return mo == mo_acq_rel || mo == mo_seq_cst;
79}
80
81template<typename T> T func_xchg(volatile T *v, T op) {
82  T res = __sync_lock_test_and_set(v, op);
83  // __sync_lock_test_and_set does not contain full barrier.
84  __sync_synchronize();
85  return res;
86}
87
88template<typename T> T func_add(volatile T *v, T op) {
89  return __sync_fetch_and_add(v, op);
90}
91
92template<typename T> T func_sub(volatile T *v, T op) {
93  return __sync_fetch_and_sub(v, op);
94}
95
96template<typename T> T func_and(volatile T *v, T op) {
97  return __sync_fetch_and_and(v, op);
98}
99
100template<typename T> T func_or(volatile T *v, T op) {
101  return __sync_fetch_and_or(v, op);
102}
103
104template<typename T> T func_xor(volatile T *v, T op) {
105  return __sync_fetch_and_xor(v, op);
106}
107
108template<typename T> T func_nand(volatile T *v, T op) {
109  // clang does not support __sync_fetch_and_nand.
110  T cmp = *v;
111  for (;;) {
112    T newv = ~(cmp & op);
113    T cur = __sync_val_compare_and_swap(v, cmp, newv);
114    if (cmp == cur)
115      return cmp;
116    cmp = cur;
117  }
118}
119
120template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
121  return __sync_val_compare_and_swap(v, cmp, xch);
122}
123
124// clang does not support 128-bit atomic ops.
125// Atomic ops are executed under tsan internal mutex,
126// here we assume that the atomic variables are not accessed
127// from non-instrumented code.
128#if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !defined(SANITIZER_GO) \
129    && __TSAN_HAS_INT128
130a128 func_xchg(volatile a128 *v, a128 op) {
131  SpinMutexLock lock(&mutex128);
132  a128 cmp = *v;
133  *v = op;
134  return cmp;
135}
136
137a128 func_add(volatile a128 *v, a128 op) {
138  SpinMutexLock lock(&mutex128);
139  a128 cmp = *v;
140  *v = cmp + op;
141  return cmp;
142}
143
144a128 func_sub(volatile a128 *v, a128 op) {
145  SpinMutexLock lock(&mutex128);
146  a128 cmp = *v;
147  *v = cmp - op;
148  return cmp;
149}
150
151a128 func_and(volatile a128 *v, a128 op) {
152  SpinMutexLock lock(&mutex128);
153  a128 cmp = *v;
154  *v = cmp & op;
155  return cmp;
156}
157
158a128 func_or(volatile a128 *v, a128 op) {
159  SpinMutexLock lock(&mutex128);
160  a128 cmp = *v;
161  *v = cmp | op;
162  return cmp;
163}
164
165a128 func_xor(volatile a128 *v, a128 op) {
166  SpinMutexLock lock(&mutex128);
167  a128 cmp = *v;
168  *v = cmp ^ op;
169  return cmp;
170}
171
172a128 func_nand(volatile a128 *v, a128 op) {
173  SpinMutexLock lock(&mutex128);
174  a128 cmp = *v;
175  *v = ~(cmp & op);
176  return cmp;
177}
178
179a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
180  SpinMutexLock lock(&mutex128);
181  a128 cur = *v;
182  if (cur == cmp)
183    *v = xch;
184  return cur;
185}
186#endif
187
188template<typename T>
189static int SizeLog() {
190  if (sizeof(T) <= 1)
191    return kSizeLog1;
192  else if (sizeof(T) <= 2)
193    return kSizeLog2;
194  else if (sizeof(T) <= 4)
195    return kSizeLog4;
196  else
197    return kSizeLog8;
198  // For 16-byte atomics we also use 8-byte memory access,
199  // this leads to false negatives only in very obscure cases.
200}
201
202#ifndef SANITIZER_GO
203static atomic_uint8_t *to_atomic(const volatile a8 *a) {
204  return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
205}
206
207static atomic_uint16_t *to_atomic(const volatile a16 *a) {
208  return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
209}
210#endif
211
212static atomic_uint32_t *to_atomic(const volatile a32 *a) {
213  return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
214}
215
216static atomic_uint64_t *to_atomic(const volatile a64 *a) {
217  return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
218}
219
220static memory_order to_mo(morder mo) {
221  switch (mo) {
222  case mo_relaxed: return memory_order_relaxed;
223  case mo_consume: return memory_order_consume;
224  case mo_acquire: return memory_order_acquire;
225  case mo_release: return memory_order_release;
226  case mo_acq_rel: return memory_order_acq_rel;
227  case mo_seq_cst: return memory_order_seq_cst;
228  }
229  CHECK(0);
230  return memory_order_seq_cst;
231}
232
233template<typename T>
234static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
235  return atomic_load(to_atomic(a), to_mo(mo));
236}
237
238#if __TSAN_HAS_INT128 && !defined(SANITIZER_GO)
239static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
240  SpinMutexLock lock(&mutex128);
241  return *a;
242}
243#endif
244
245template<typename T>
246static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
247    morder mo) {
248  CHECK(IsLoadOrder(mo));
249  // This fast-path is critical for performance.
250  // Assume the access is atomic.
251  if (!IsAcquireOrder(mo)) {
252    MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
253    return NoTsanAtomicLoad(a, mo);
254  }
255  SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, false);
256  AcquireImpl(thr, pc, &s->clock);
257  T v = NoTsanAtomicLoad(a, mo);
258  s->mtx.ReadUnlock();
259  MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
260  return v;
261}
262
263template<typename T>
264static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
265  atomic_store(to_atomic(a), v, to_mo(mo));
266}
267
268#if __TSAN_HAS_INT128 && !defined(SANITIZER_GO)
269static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
270  SpinMutexLock lock(&mutex128);
271  *a = v;
272}
273#endif
274
275template<typename T>
276static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
277    morder mo) {
278  CHECK(IsStoreOrder(mo));
279  MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
280  // This fast-path is critical for performance.
281  // Assume the access is atomic.
282  // Strictly saying even relaxed store cuts off release sequence,
283  // so must reset the clock.
284  if (!IsReleaseOrder(mo)) {
285    NoTsanAtomicStore(a, v, mo);
286    return;
287  }
288  __sync_synchronize();
289  SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
290  thr->fast_state.IncrementEpoch();
291  // Can't increment epoch w/o writing to the trace as well.
292  TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
293  ReleaseImpl(thr, pc, &s->clock);
294  NoTsanAtomicStore(a, v, mo);
295  s->mtx.Unlock();
296}
297
298template<typename T, T (*F)(volatile T *v, T op)>
299static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
300  MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
301  SyncVar *s = 0;
302  if (mo != mo_relaxed) {
303    s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
304    thr->fast_state.IncrementEpoch();
305    // Can't increment epoch w/o writing to the trace as well.
306    TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
307    if (IsAcqRelOrder(mo))
308      AcquireReleaseImpl(thr, pc, &s->clock);
309    else if (IsReleaseOrder(mo))
310      ReleaseImpl(thr, pc, &s->clock);
311    else if (IsAcquireOrder(mo))
312      AcquireImpl(thr, pc, &s->clock);
313  }
314  v = F(a, v);
315  if (s)
316    s->mtx.Unlock();
317  return v;
318}
319
320template<typename T>
321static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
322  return func_xchg(a, v);
323}
324
325template<typename T>
326static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
327  return func_add(a, v);
328}
329
330template<typename T>
331static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
332  return func_sub(a, v);
333}
334
335template<typename T>
336static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
337  return func_and(a, v);
338}
339
340template<typename T>
341static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
342  return func_or(a, v);
343}
344
345template<typename T>
346static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
347  return func_xor(a, v);
348}
349
350template<typename T>
351static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
352  return func_nand(a, v);
353}
354
355template<typename T>
356static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
357    morder mo) {
358  return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
359}
360
361template<typename T>
362static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
363    morder mo) {
364  return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
365}
366
367template<typename T>
368static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
369    morder mo) {
370  return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
371}
372
373template<typename T>
374static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
375    morder mo) {
376  return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
377}
378
379template<typename T>
380static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
381    morder mo) {
382  return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
383}
384
385template<typename T>
386static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
387    morder mo) {
388  return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
389}
390
391template<typename T>
392static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
393    morder mo) {
394  return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
395}
396
397template<typename T>
398static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
399  return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
400}
401
402#if __TSAN_HAS_INT128
403static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
404    morder mo, morder fmo) {
405  a128 old = *c;
406  a128 cur = func_cas(a, old, v);
407  if (cur == old)
408    return true;
409  *c = cur;
410  return false;
411}
412#endif
413
414template<typename T>
415static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
416  NoTsanAtomicCAS(a, &c, v, mo, fmo);
417  return c;
418}
419
420template<typename T>
421static bool AtomicCAS(ThreadState *thr, uptr pc,
422    volatile T *a, T *c, T v, morder mo, morder fmo) {
423  (void)fmo;  // Unused because llvm does not pass it yet.
424  MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
425  SyncVar *s = 0;
426  bool write_lock = mo != mo_acquire && mo != mo_consume;
427  if (mo != mo_relaxed) {
428    s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
429    thr->fast_state.IncrementEpoch();
430    // Can't increment epoch w/o writing to the trace as well.
431    TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
432    if (IsAcqRelOrder(mo))
433      AcquireReleaseImpl(thr, pc, &s->clock);
434    else if (IsReleaseOrder(mo))
435      ReleaseImpl(thr, pc, &s->clock);
436    else if (IsAcquireOrder(mo))
437      AcquireImpl(thr, pc, &s->clock);
438  }
439  T cc = *c;
440  T pr = func_cas(a, cc, v);
441  if (s) {
442    if (write_lock)
443      s->mtx.Unlock();
444    else
445      s->mtx.ReadUnlock();
446  }
447  if (pr == cc)
448    return true;
449  *c = pr;
450  return false;
451}
452
453template<typename T>
454static T AtomicCAS(ThreadState *thr, uptr pc,
455    volatile T *a, T c, T v, morder mo, morder fmo) {
456  AtomicCAS(thr, pc, a, &c, v, mo, fmo);
457  return c;
458}
459
460#ifndef SANITIZER_GO
461static void NoTsanAtomicFence(morder mo) {
462  __sync_synchronize();
463}
464
465static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
466  // FIXME(dvyukov): not implemented.
467  __sync_synchronize();
468}
469#endif
470
471// Interface functions follow.
472#ifndef SANITIZER_GO
473
474// C/C++
475
476#define SCOPED_ATOMIC(func, ...) \
477    const uptr callpc = (uptr)__builtin_return_address(0); \
478    uptr pc = StackTrace::GetCurrentPc(); \
479    mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
480    ThreadState *const thr = cur_thread(); \
481    if (thr->ignore_interceptors) \
482      return NoTsanAtomic##func(__VA_ARGS__); \
483    AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
484    ScopedAtomic sa(thr, callpc, a, mo, __func__); \
485    return Atomic##func(thr, pc, __VA_ARGS__); \
486/**/
487
488class ScopedAtomic {
489 public:
490  ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
491               morder mo, const char *func)
492      : thr_(thr) {
493    FuncEntry(thr_, pc);
494    DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
495  }
496  ~ScopedAtomic() {
497    ProcessPendingSignals(thr_);
498    FuncExit(thr_);
499  }
500 private:
501  ThreadState *thr_;
502};
503
504static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
505  StatInc(thr, StatAtomic);
506  StatInc(thr, t);
507  StatInc(thr, size == 1 ? StatAtomic1
508             : size == 2 ? StatAtomic2
509             : size == 4 ? StatAtomic4
510             : size == 8 ? StatAtomic8
511             :             StatAtomic16);
512  StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
513             : mo == mo_consume ? StatAtomicConsume
514             : mo == mo_acquire ? StatAtomicAcquire
515             : mo == mo_release ? StatAtomicRelease
516             : mo == mo_acq_rel ? StatAtomicAcq_Rel
517             :                    StatAtomicSeq_Cst);
518}
519
520extern "C" {
521SANITIZER_INTERFACE_ATTRIBUTE
522a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
523  SCOPED_ATOMIC(Load, a, mo);
524}
525
526SANITIZER_INTERFACE_ATTRIBUTE
527a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
528  SCOPED_ATOMIC(Load, a, mo);
529}
530
531SANITIZER_INTERFACE_ATTRIBUTE
532a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
533  SCOPED_ATOMIC(Load, a, mo);
534}
535
536SANITIZER_INTERFACE_ATTRIBUTE
537a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
538  SCOPED_ATOMIC(Load, a, mo);
539}
540
541#if __TSAN_HAS_INT128
542SANITIZER_INTERFACE_ATTRIBUTE
543a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
544  SCOPED_ATOMIC(Load, a, mo);
545}
546#endif
547
548SANITIZER_INTERFACE_ATTRIBUTE
549void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
550  SCOPED_ATOMIC(Store, a, v, mo);
551}
552
553SANITIZER_INTERFACE_ATTRIBUTE
554void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
555  SCOPED_ATOMIC(Store, a, v, mo);
556}
557
558SANITIZER_INTERFACE_ATTRIBUTE
559void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
560  SCOPED_ATOMIC(Store, a, v, mo);
561}
562
563SANITIZER_INTERFACE_ATTRIBUTE
564void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
565  SCOPED_ATOMIC(Store, a, v, mo);
566}
567
568#if __TSAN_HAS_INT128
569SANITIZER_INTERFACE_ATTRIBUTE
570void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
571  SCOPED_ATOMIC(Store, a, v, mo);
572}
573#endif
574
575SANITIZER_INTERFACE_ATTRIBUTE
576a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
577  SCOPED_ATOMIC(Exchange, a, v, mo);
578}
579
580SANITIZER_INTERFACE_ATTRIBUTE
581a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
582  SCOPED_ATOMIC(Exchange, a, v, mo);
583}
584
585SANITIZER_INTERFACE_ATTRIBUTE
586a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
587  SCOPED_ATOMIC(Exchange, a, v, mo);
588}
589
590SANITIZER_INTERFACE_ATTRIBUTE
591a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
592  SCOPED_ATOMIC(Exchange, a, v, mo);
593}
594
595#if __TSAN_HAS_INT128
596SANITIZER_INTERFACE_ATTRIBUTE
597a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
598  SCOPED_ATOMIC(Exchange, a, v, mo);
599}
600#endif
601
602SANITIZER_INTERFACE_ATTRIBUTE
603a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
604  SCOPED_ATOMIC(FetchAdd, a, v, mo);
605}
606
607SANITIZER_INTERFACE_ATTRIBUTE
608a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
609  SCOPED_ATOMIC(FetchAdd, a, v, mo);
610}
611
612SANITIZER_INTERFACE_ATTRIBUTE
613a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
614  SCOPED_ATOMIC(FetchAdd, a, v, mo);
615}
616
617SANITIZER_INTERFACE_ATTRIBUTE
618a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
619  SCOPED_ATOMIC(FetchAdd, a, v, mo);
620}
621
622#if __TSAN_HAS_INT128
623SANITIZER_INTERFACE_ATTRIBUTE
624a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
625  SCOPED_ATOMIC(FetchAdd, a, v, mo);
626}
627#endif
628
629SANITIZER_INTERFACE_ATTRIBUTE
630a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
631  SCOPED_ATOMIC(FetchSub, a, v, mo);
632}
633
634SANITIZER_INTERFACE_ATTRIBUTE
635a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
636  SCOPED_ATOMIC(FetchSub, a, v, mo);
637}
638
639SANITIZER_INTERFACE_ATTRIBUTE
640a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
641  SCOPED_ATOMIC(FetchSub, a, v, mo);
642}
643
644SANITIZER_INTERFACE_ATTRIBUTE
645a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
646  SCOPED_ATOMIC(FetchSub, a, v, mo);
647}
648
649#if __TSAN_HAS_INT128
650SANITIZER_INTERFACE_ATTRIBUTE
651a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
652  SCOPED_ATOMIC(FetchSub, a, v, mo);
653}
654#endif
655
656SANITIZER_INTERFACE_ATTRIBUTE
657a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
658  SCOPED_ATOMIC(FetchAnd, a, v, mo);
659}
660
661SANITIZER_INTERFACE_ATTRIBUTE
662a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
663  SCOPED_ATOMIC(FetchAnd, a, v, mo);
664}
665
666SANITIZER_INTERFACE_ATTRIBUTE
667a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
668  SCOPED_ATOMIC(FetchAnd, a, v, mo);
669}
670
671SANITIZER_INTERFACE_ATTRIBUTE
672a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
673  SCOPED_ATOMIC(FetchAnd, a, v, mo);
674}
675
676#if __TSAN_HAS_INT128
677SANITIZER_INTERFACE_ATTRIBUTE
678a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
679  SCOPED_ATOMIC(FetchAnd, a, v, mo);
680}
681#endif
682
683SANITIZER_INTERFACE_ATTRIBUTE
684a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
685  SCOPED_ATOMIC(FetchOr, a, v, mo);
686}
687
688SANITIZER_INTERFACE_ATTRIBUTE
689a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
690  SCOPED_ATOMIC(FetchOr, a, v, mo);
691}
692
693SANITIZER_INTERFACE_ATTRIBUTE
694a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
695  SCOPED_ATOMIC(FetchOr, a, v, mo);
696}
697
698SANITIZER_INTERFACE_ATTRIBUTE
699a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
700  SCOPED_ATOMIC(FetchOr, a, v, mo);
701}
702
703#if __TSAN_HAS_INT128
704SANITIZER_INTERFACE_ATTRIBUTE
705a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
706  SCOPED_ATOMIC(FetchOr, a, v, mo);
707}
708#endif
709
710SANITIZER_INTERFACE_ATTRIBUTE
711a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
712  SCOPED_ATOMIC(FetchXor, a, v, mo);
713}
714
715SANITIZER_INTERFACE_ATTRIBUTE
716a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
717  SCOPED_ATOMIC(FetchXor, a, v, mo);
718}
719
720SANITIZER_INTERFACE_ATTRIBUTE
721a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
722  SCOPED_ATOMIC(FetchXor, a, v, mo);
723}
724
725SANITIZER_INTERFACE_ATTRIBUTE
726a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
727  SCOPED_ATOMIC(FetchXor, a, v, mo);
728}
729
730#if __TSAN_HAS_INT128
731SANITIZER_INTERFACE_ATTRIBUTE
732a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
733  SCOPED_ATOMIC(FetchXor, a, v, mo);
734}
735#endif
736
737SANITIZER_INTERFACE_ATTRIBUTE
738a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
739  SCOPED_ATOMIC(FetchNand, a, v, mo);
740}
741
742SANITIZER_INTERFACE_ATTRIBUTE
743a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
744  SCOPED_ATOMIC(FetchNand, a, v, mo);
745}
746
747SANITIZER_INTERFACE_ATTRIBUTE
748a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
749  SCOPED_ATOMIC(FetchNand, a, v, mo);
750}
751
752SANITIZER_INTERFACE_ATTRIBUTE
753a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
754  SCOPED_ATOMIC(FetchNand, a, v, mo);
755}
756
757#if __TSAN_HAS_INT128
758SANITIZER_INTERFACE_ATTRIBUTE
759a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
760  SCOPED_ATOMIC(FetchNand, a, v, mo);
761}
762#endif
763
764SANITIZER_INTERFACE_ATTRIBUTE
765int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
766    morder mo, morder fmo) {
767  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
768}
769
770SANITIZER_INTERFACE_ATTRIBUTE
771int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
772    morder mo, morder fmo) {
773  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
774}
775
776SANITIZER_INTERFACE_ATTRIBUTE
777int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
778    morder mo, morder fmo) {
779  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
780}
781
782SANITIZER_INTERFACE_ATTRIBUTE
783int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
784    morder mo, morder fmo) {
785  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
786}
787
788#if __TSAN_HAS_INT128
789SANITIZER_INTERFACE_ATTRIBUTE
790int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
791    morder mo, morder fmo) {
792  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
793}
794#endif
795
796SANITIZER_INTERFACE_ATTRIBUTE
797int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
798    morder mo, morder fmo) {
799  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
800}
801
802SANITIZER_INTERFACE_ATTRIBUTE
803int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
804    morder mo, morder fmo) {
805  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
806}
807
808SANITIZER_INTERFACE_ATTRIBUTE
809int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
810    morder mo, morder fmo) {
811  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
812}
813
814SANITIZER_INTERFACE_ATTRIBUTE
815int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
816    morder mo, morder fmo) {
817  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
818}
819
820#if __TSAN_HAS_INT128
821SANITIZER_INTERFACE_ATTRIBUTE
822int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
823    morder mo, morder fmo) {
824  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
825}
826#endif
827
828SANITIZER_INTERFACE_ATTRIBUTE
829a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
830    morder mo, morder fmo) {
831  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
832}
833
834SANITIZER_INTERFACE_ATTRIBUTE
835a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
836    morder mo, morder fmo) {
837  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
838}
839
840SANITIZER_INTERFACE_ATTRIBUTE
841a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
842    morder mo, morder fmo) {
843  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
844}
845
846SANITIZER_INTERFACE_ATTRIBUTE
847a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
848    morder mo, morder fmo) {
849  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
850}
851
852#if __TSAN_HAS_INT128
853SANITIZER_INTERFACE_ATTRIBUTE
854a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
855    morder mo, morder fmo) {
856  SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
857}
858#endif
859
860SANITIZER_INTERFACE_ATTRIBUTE
861void __tsan_atomic_thread_fence(morder mo) {
862  char* a = 0;
863  SCOPED_ATOMIC(Fence, mo);
864}
865
866SANITIZER_INTERFACE_ATTRIBUTE
867void __tsan_atomic_signal_fence(morder mo) {
868}
869}  // extern "C"
870
871#else  // #ifndef SANITIZER_GO
872
873// Go
874
875#define ATOMIC(func, ...) \
876    if (thr->ignore_sync) { \
877      NoTsanAtomic##func(__VA_ARGS__); \
878    } else { \
879      FuncEntry(thr, cpc); \
880      Atomic##func(thr, pc, __VA_ARGS__); \
881      FuncExit(thr); \
882    } \
883/**/
884
885#define ATOMIC_RET(func, ret, ...) \
886    if (thr->ignore_sync) { \
887      (ret) = NoTsanAtomic##func(__VA_ARGS__); \
888    } else { \
889      FuncEntry(thr, cpc); \
890      (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
891      FuncExit(thr); \
892    } \
893/**/
894
895extern "C" {
896SANITIZER_INTERFACE_ATTRIBUTE
897void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
898  ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
899}
900
901SANITIZER_INTERFACE_ATTRIBUTE
902void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
903  ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
904}
905
906SANITIZER_INTERFACE_ATTRIBUTE
907void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
908  ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
909}
910
911SANITIZER_INTERFACE_ATTRIBUTE
912void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
913  ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
914}
915
916SANITIZER_INTERFACE_ATTRIBUTE
917void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
918  ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
919}
920
921SANITIZER_INTERFACE_ATTRIBUTE
922void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
923  ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
924}
925
926SANITIZER_INTERFACE_ATTRIBUTE
927void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
928  ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
929}
930
931SANITIZER_INTERFACE_ATTRIBUTE
932void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
933  ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
934}
935
936SANITIZER_INTERFACE_ATTRIBUTE
937void __tsan_go_atomic32_compare_exchange(
938    ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
939  a32 cur = 0;
940  a32 cmp = *(a32*)(a+8);
941  ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
942  *(bool*)(a+16) = (cur == cmp);
943}
944
945SANITIZER_INTERFACE_ATTRIBUTE
946void __tsan_go_atomic64_compare_exchange(
947    ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
948  a64 cur = 0;
949  a64 cmp = *(a64*)(a+8);
950  ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
951  *(bool*)(a+24) = (cur == cmp);
952}
953}  // extern "C"
954#endif  // #ifndef SANITIZER_GO
955