ffs_bswap.c revision 299461
1/*	$NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $	*/
2
3/*
4 * Copyright (c) 1998 Manuel Bouyer.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Manuel Bouyer.
17 * 4. The name of the author may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/usr.sbin/makefs/ffs/ffs_bswap.c 299461 2016-05-11 16:42:13Z cem $");
35
36#include <sys/param.h>
37#if defined(_KERNEL)
38#include <sys/systm.h>
39#endif
40
41#include <ufs/ufs/dinode.h>
42#include "ffs/ufs_bswap.h"
43#include <ufs/ffs/fs.h>
44
45#if !defined(_KERNEL)
46#include <stddef.h>
47#include <stdio.h>
48#include <stdlib.h>
49#include <string.h>
50#define panic(x)	printf("%s\n", (x)), abort()
51#endif
52
53#define	fs_old_postbloff	fs_spare5[0]
54#define	fs_old_rotbloff		fs_spare5[1]
55#define	fs_old_postbl_start	fs_maxbsize
56#define	fs_old_headswitch	fs_id[0]
57#define	fs_old_trkseek	fs_id[1]
58#define	fs_old_csmask	fs_spare1[0]
59#define	fs_old_csshift	fs_spare1[1]
60
61#define	FS_42POSTBLFMT		-1	/* 4.2BSD rotational table format */
62#define	FS_DYNAMICPOSTBLFMT	1	/* dynamic rotational table format */
63
64void ffs_csum_swap(struct csum *o, struct csum *n, int size);
65void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n);
66
67void
68ffs_sb_swap(struct fs *o, struct fs *n)
69{
70	size_t i;
71	u_int32_t *o32, *n32;
72
73	/*
74	 * In order to avoid a lot of lines, as the first N fields (52)
75	 * of the superblock up to fs_fmod are u_int32_t, we just loop
76	 * here to convert them.
77	 */
78	o32 = (u_int32_t *)o;
79	n32 = (u_int32_t *)n;
80	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
81		n32[i] = bswap32(o32[i]);
82
83	n->fs_swuid = bswap64(o->fs_swuid);
84	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
85	n->fs_old_cpc = bswap32(o->fs_old_cpc);
86
87	/* These fields overlap with a possible location for the
88	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
89	 * first half of the historic FS_42POSTBLFMT postbl table.
90	 */
91	n->fs_maxbsize = bswap32(o->fs_maxbsize);
92	n->fs_sblockloc = bswap64(o->fs_sblockloc);
93	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
94	n->fs_time = bswap64(o->fs_time);
95	n->fs_size = bswap64(o->fs_size);
96	n->fs_dsize = bswap64(o->fs_dsize);
97	n->fs_csaddr = bswap64(o->fs_csaddr);
98	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
99	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
100
101	/* These fields overlap with the second half of the
102	 * historic FS_42POSTBLFMT postbl table
103	 */
104	for (i = 0; i < FSMAXSNAP; i++)
105		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
106	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
107	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
108	/* fs_sparecon[28] - ignore for now */
109	n->fs_flags = bswap32(o->fs_flags);
110	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
111	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
112	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
113	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
114	n->fs_qbmask = bswap64(o->fs_qbmask);
115	n->fs_qfmask = bswap64(o->fs_qfmask);
116	n->fs_state = bswap32(o->fs_state);
117	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
118	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
119	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
120	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
121
122	n->fs_magic = bswap32(o->fs_magic);
123}
124
125void
126ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
127{
128
129	n->di_mode = bswap16(o->di_mode);
130	n->di_nlink = bswap16(o->di_nlink);
131	n->di_size = bswap64(o->di_size);
132	n->di_atime = bswap32(o->di_atime);
133	n->di_atimensec = bswap32(o->di_atimensec);
134	n->di_mtime = bswap32(o->di_mtime);
135	n->di_mtimensec = bswap32(o->di_mtimensec);
136	n->di_ctime = bswap32(o->di_ctime);
137	n->di_ctimensec = bswap32(o->di_ctimensec);
138	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
139	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
140	n->di_flags = bswap32(o->di_flags);
141	n->di_blocks = bswap32(o->di_blocks);
142	n->di_gen = bswap32(o->di_gen);
143	n->di_uid = bswap32(o->di_uid);
144	n->di_gid = bswap32(o->di_gid);
145}
146
147void
148ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
149{
150	n->di_mode = bswap16(o->di_mode);
151	n->di_nlink = bswap16(o->di_nlink);
152	n->di_uid = bswap32(o->di_uid);
153	n->di_gid = bswap32(o->di_gid);
154	n->di_blksize = bswap32(o->di_blksize);
155	n->di_size = bswap64(o->di_size);
156	n->di_blocks = bswap64(o->di_blocks);
157	n->di_atime = bswap64(o->di_atime);
158	n->di_atimensec = bswap32(o->di_atimensec);
159	n->di_mtime = bswap64(o->di_mtime);
160	n->di_mtimensec = bswap32(o->di_mtimensec);
161	n->di_ctime = bswap64(o->di_ctime);
162	n->di_ctimensec = bswap32(o->di_ctimensec);
163	n->di_birthtime = bswap64(o->di_ctime);
164	n->di_birthnsec = bswap32(o->di_ctimensec);
165	n->di_gen = bswap32(o->di_gen);
166	n->di_kernflags = bswap32(o->di_kernflags);
167	n->di_flags = bswap32(o->di_flags);
168	n->di_extsize = bswap32(o->di_extsize);
169	memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb));
170	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
171	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
172}
173
174void
175ffs_csum_swap(struct csum *o, struct csum *n, int size)
176{
177	size_t i;
178	u_int32_t *oint, *nint;
179
180	oint = (u_int32_t*)o;
181	nint = (u_int32_t*)n;
182
183	for (i = 0; i < size / sizeof(u_int32_t); i++)
184		nint[i] = bswap32(oint[i]);
185}
186
187void
188ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
189{
190	n->cs_ndir = bswap64(o->cs_ndir);
191	n->cs_nbfree = bswap64(o->cs_nbfree);
192	n->cs_nifree = bswap64(o->cs_nifree);
193	n->cs_nffree = bswap64(o->cs_nffree);
194}
195
196/*
197 * Note that ffs_cg_swap may be called with o == n.
198 */
199void
200ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
201{
202	int i;
203	u_int32_t *n32, *o32;
204	u_int16_t *n16, *o16;
205	int32_t btotoff, boff, clustersumoff;
206
207	n->cg_firstfield = bswap32(o->cg_firstfield);
208	n->cg_magic = bswap32(o->cg_magic);
209	n->cg_old_time = bswap32(o->cg_old_time);
210	n->cg_cgx = bswap32(o->cg_cgx);
211	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
212	n->cg_old_niblk = bswap16(o->cg_old_niblk);
213	n->cg_ndblk = bswap32(o->cg_ndblk);
214	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
215	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
216	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
217	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
218	n->cg_rotor = bswap32(o->cg_rotor);
219	n->cg_frotor = bswap32(o->cg_frotor);
220	n->cg_irotor = bswap32(o->cg_irotor);
221	for (i = 0; i < MAXFRAG; i++)
222		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
223
224	n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
225	n->cg_old_boff = bswap32(o->cg_old_boff);
226	n->cg_iusedoff = bswap32(o->cg_iusedoff);
227	n->cg_freeoff = bswap32(o->cg_freeoff);
228	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
229	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
230	n->cg_clusteroff = bswap32(o->cg_clusteroff);
231	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
232	n->cg_niblk = bswap32(o->cg_niblk);
233	n->cg_initediblk = bswap32(o->cg_initediblk);
234	n->cg_time = bswap64(o->cg_time);
235
236	if (fs->fs_magic == FS_UFS2_MAGIC)
237		return;
238
239	if (n->cg_magic == CG_MAGIC) {
240		btotoff = n->cg_old_btotoff;
241		boff = n->cg_old_boff;
242		clustersumoff = n->cg_clustersumoff;
243	} else {
244		btotoff = bswap32(n->cg_old_btotoff);
245		boff = bswap32(n->cg_old_boff);
246		clustersumoff = bswap32(n->cg_clustersumoff);
247	}
248	n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
249	o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
250	n16 = (u_int16_t *)((u_int8_t *)n + boff);
251	o16 = (u_int16_t *)((u_int8_t *)o + boff);
252
253	for (i = 0; i < fs->fs_old_cpg; i++)
254		n32[i] = bswap32(o32[i]);
255
256	for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
257		n16[i] = bswap16(o16[i]);
258
259	n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
260	o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
261	for (i = 1; i < fs->fs_contigsumsize + 1; i++)
262		n32[i] = bswap32(o32[i]);
263}
264