1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software posted to USENET.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#if 0
33#ifndef lint
34static const char copyright[] =
35"@(#) Copyright (c) 1989, 1993\n\
36	The Regents of the University of California.  All rights reserved.\n";
37#endif /* not lint */
38
39#ifndef lint
40static const char sccsid[] = "@(#)pom.c       8.1 (Berkeley) 5/31/93";
41#endif /* not lint */
42#endif
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46/*
47 * Phase of the Moon.  Calculates the current phase of the moon.
48 * Based on routines from `Practical Astronomy with Your Calculator',
49 * by Duffett-Smith.  Comments give the section from the book that
50 * particular piece of code was adapted from.
51 *
52 * -- Keith E. Brandt  VIII 1984
53 *
54 */
55
56#include <stdio.h>
57#include <stdlib.h>
58#include <math.h>
59#include <string.h>
60#include <sysexits.h>
61#include <time.h>
62#include <unistd.h>
63
64#include "calendar.h"
65
66#ifndef	PI
67#define	PI	  3.14159265358979323846
68#endif
69#define	EPOCH	  85
70#define	EPSILONg  279.611371	/* solar ecliptic long at EPOCH */
71#define	RHOg	  282.680403	/* solar ecliptic long of perigee at EPOCH */
72#define	ECCEN	  0.01671542	/* solar orbit eccentricity */
73#define	lzero	  18.251907	/* lunar mean long at EPOCH */
74#define	Pzero	  192.917585	/* lunar mean long of perigee at EPOCH */
75#define	Nzero	  55.204723	/* lunar mean long of node at EPOCH */
76#define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
77
78static void	adj360(double *);
79static double	dtor(double);
80static double	potm(double onday);
81static double	potm_minute(double onday, int olddir);
82
83void
84pom(int year, double utcoffset, int *fms, int *nms)
85{
86	double ffms[MAXMOONS];
87	double fnms[MAXMOONS];
88	int i, j;
89
90	fpom(year, utcoffset, ffms, fnms);
91
92	j = 0;
93	for (i = 0; ffms[i] != 0; i++)
94		fms[j++] = round(ffms[i]);
95	fms[i] = -1;
96	for (i = 0; fnms[i] != 0; i++)
97		nms[i] = round(fnms[i]);
98	nms[i] = -1;
99}
100
101void
102fpom(int year, double utcoffset, double *ffms, double *fnms)
103{
104	time_t tt;
105	struct tm GMT, tmd_today, tmd_tomorrow;
106	double days_today, days_tomorrow, today, tomorrow;
107	int cnt, d;
108	int yeardays;
109	int olddir, newdir;
110	double *pfnms, *pffms, t;
111
112	pfnms = fnms;
113	pffms = ffms;
114
115	/*
116	 * We take the phase of the moon one second before and one second
117	 * after midnight.
118	 */
119	memset(&tmd_today, 0, sizeof(tmd_today));
120	tmd_today.tm_year = year - 1900;
121	tmd_today.tm_mon = 0;
122	tmd_today.tm_mday = -1;		/* 31 December */
123	tmd_today.tm_hour = 23;
124	tmd_today.tm_min = 59;
125	tmd_today.tm_sec = 59;
126	memset(&tmd_tomorrow, 0, sizeof(tmd_tomorrow));
127	tmd_tomorrow.tm_year = year - 1900;
128	tmd_tomorrow.tm_mon = 0;
129	tmd_tomorrow.tm_mday = 0;	/* 01 January */
130	tmd_tomorrow.tm_hour = 0;
131	tmd_tomorrow.tm_min = 0;
132	tmd_tomorrow.tm_sec = 1;
133
134	tt = mktime(&tmd_today);
135	gmtime_r(&tt, &GMT);
136	yeardays = 0;
137	for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
138		yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
139	days_today = (GMT.tm_yday + 1) + ((GMT.tm_hour +
140	    (GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
141	    FHOURSPERDAY);
142	days_today += yeardays;
143
144	tt = mktime(&tmd_tomorrow);
145	gmtime_r(&tt, &GMT);
146	yeardays = 0;
147	for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
148		yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
149	days_tomorrow = (GMT.tm_yday + 1) + ((GMT.tm_hour +
150	    (GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
151	    FHOURSPERDAY);
152	days_tomorrow += yeardays;
153
154	today = potm(days_today);		/* 30 December 23:59:59 */
155	tomorrow = potm(days_tomorrow);		/* 31 December 00:00:01 */
156	olddir = today > tomorrow ? -1 : +1;
157
158	yeardays = 1 + (isleap(year) ? DAYSPERLEAPYEAR : DAYSPERYEAR); /* reuse */
159	for (d = 0; d <= yeardays; d++) {
160		today = potm(days_today);
161		tomorrow = potm(days_tomorrow);
162		newdir = today > tomorrow ? -1 : +1;
163		if (olddir != newdir) {
164			t = potm_minute(days_today - 1, olddir) +
165			     utcoffset / FHOURSPERDAY;
166			if (olddir == -1 && newdir == +1) {
167				*pfnms = d - 1 + t;
168				pfnms++;
169			} else if (olddir == +1 && newdir == -1) {
170				*pffms = d - 1 + t;
171				pffms++;
172			}
173		}
174		olddir = newdir;
175		days_today++;
176		days_tomorrow++;
177	}
178	*pffms = -1;
179	*pfnms = -1;
180}
181
182static double
183potm_minute(double onday, int olddir) {
184	double period = FSECSPERDAY / 2.0;
185	double p1, p2;
186	double before, after;
187	int newdir;
188
189//	printf("---> days:%g olddir:%d\n", days, olddir);
190
191	p1 = onday + (period / SECSPERDAY);
192	period /= 2;
193
194	while (period > 30) {	/* half a minute */
195//		printf("period:%g - p1:%g - ", period, p1);
196		p2 = p1 + (2.0 / SECSPERDAY);
197		before = potm(p1);
198		after = potm(p2);
199//		printf("before:%10.10g - after:%10.10g\n", before, after);
200		newdir = before < after ? -1 : +1;
201		if (olddir != newdir)
202			p1 += (period / SECSPERDAY);
203		else
204			p1 -= (period / SECSPERDAY);
205		period /= 2;
206//		printf("newdir:%d - p1:%10.10f - period:%g\n",
207//		    newdir, p1, period);
208	}
209	p1 -= floor(p1);
210	//exit(0);
211	return (p1);
212}
213
214/*
215 * potm --
216 *	return phase of the moon, as a percentage [0 ... 100]
217 */
218static double
219potm(double onday)
220{
221	double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
222	double A4, lprime, V, ldprime, D, Nm;
223
224	N = 360 * onday / 365.2422;				/* sec 42 #3 */
225	adj360(&N);
226	Msol = N + EPSILONg - RHOg;				/* sec 42 #4 */
227	adj360(&Msol);
228	Ec = 360 / PI * ECCEN * sin(dtor(Msol));		/* sec 42 #5 */
229	LambdaSol = N + Ec + EPSILONg;				/* sec 42 #6 */
230	adj360(&LambdaSol);
231	l = 13.1763966 * onday + lzero;				/* sec 61 #4 */
232	adj360(&l);
233	Mm = l - (0.1114041 * onday) - Pzero;			/* sec 61 #5 */
234	adj360(&Mm);
235	Nm = Nzero - (0.0529539 * onday);			/* sec 61 #6 */
236	adj360(&Nm);
237	Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm));	/* sec 61 #7 */
238	Ac = 0.1858 * sin(dtor(Msol));				/* sec 61 #8 */
239	A3 = 0.37 * sin(dtor(Msol));
240	Mmprime = Mm + Ev - Ac - A3;				/* sec 61 #9 */
241	Ec = 6.2886 * sin(dtor(Mmprime));			/* sec 61 #10 */
242	A4 = 0.214 * sin(dtor(2 * Mmprime));			/* sec 61 #11 */
243	lprime = l + Ev + Ec - Ac + A4;				/* sec 61 #12 */
244	V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol)));	/* sec 61 #13 */
245	ldprime = lprime + V;					/* sec 61 #14 */
246	D = ldprime - LambdaSol;				/* sec 63 #2 */
247	return(50 * (1 - cos(dtor(D))));			/* sec 63 #3 */
248}
249
250/*
251 * dtor --
252 *	convert degrees to radians
253 */
254static double
255dtor(double deg)
256{
257
258	return(deg * PI / 180);
259}
260
261/*
262 * adj360 --
263 *	adjust value so 0 <= deg <= 360
264 */
265static void
266adj360(double *deg)
267{
268
269	for (;;)
270		if (*deg < 0)
271			*deg += 360;
272		else if (*deg > 360)
273			*deg -= 360;
274		else
275			break;
276}
277