vm_page.c revision 311513
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/11/sys/vm/vm_page.c 311513 2017-01-06 11:46:24Z kib $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/smp.h>
103#include <sys/sysctl.h>
104#include <sys/vmmeter.h>
105#include <sys/vnode.h>
106
107#include <vm/vm.h>
108#include <vm/pmap.h>
109#include <vm/vm_param.h>
110#include <vm/vm_kern.h>
111#include <vm/vm_object.h>
112#include <vm/vm_page.h>
113#include <vm/vm_pageout.h>
114#include <vm/vm_pager.h>
115#include <vm/vm_phys.h>
116#include <vm/vm_radix.h>
117#include <vm/vm_reserv.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122#include <machine/md_var.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct vm_domain vm_dom[MAXMEMDOM];
130struct mtx_padalign vm_page_queue_free_mtx;
131
132struct mtx_padalign pa_lock[PA_LOCK_COUNT];
133
134vm_page_t vm_page_array;
135long vm_page_array_size;
136long first_page;
137int vm_page_zero_count;
138
139static int boot_pages = UMA_BOOT_PAGES;
140SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
141    &boot_pages, 0,
142    "number of pages allocated for bootstrapping the VM system");
143
144static int pa_tryrelock_restart;
145SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static TAILQ_HEAD(, vm_page) blacklist_head;
149static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
150SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
151    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
152
153/* Is the page daemon waiting for free pages? */
154static int vm_pageout_pages_needed;
155
156static uma_zone_t fakepg_zone;
157
158static struct vnode *vm_page_alloc_init(vm_page_t m);
159static void vm_page_cache_turn_free(vm_page_t m);
160static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
161static void vm_page_enqueue(uint8_t queue, vm_page_t m);
162static void vm_page_free_wakeup(void);
163static void vm_page_init_fakepg(void *dummy);
164static int vm_page_insert_after(vm_page_t m, vm_object_t object,
165    vm_pindex_t pindex, vm_page_t mpred);
166static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
167    vm_page_t mpred);
168static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
169    vm_paddr_t high);
170
171SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
172
173static void
174vm_page_init_fakepg(void *dummy)
175{
176
177	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
178	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
179}
180
181/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
182#if PAGE_SIZE == 32768
183#ifdef CTASSERT
184CTASSERT(sizeof(u_long) >= 8);
185#endif
186#endif
187
188/*
189 * Try to acquire a physical address lock while a pmap is locked.  If we
190 * fail to trylock we unlock and lock the pmap directly and cache the
191 * locked pa in *locked.  The caller should then restart their loop in case
192 * the virtual to physical mapping has changed.
193 */
194int
195vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
196{
197	vm_paddr_t lockpa;
198
199	lockpa = *locked;
200	*locked = pa;
201	if (lockpa) {
202		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204			return (0);
205		PA_UNLOCK(lockpa);
206	}
207	if (PA_TRYLOCK(pa))
208		return (0);
209	PMAP_UNLOCK(pmap);
210	atomic_add_int(&pa_tryrelock_restart, 1);
211	PA_LOCK(pa);
212	PMAP_LOCK(pmap);
213	return (EAGAIN);
214}
215
216/*
217 *	vm_set_page_size:
218 *
219 *	Sets the page size, perhaps based upon the memory
220 *	size.  Must be called before any use of page-size
221 *	dependent functions.
222 */
223void
224vm_set_page_size(void)
225{
226	if (vm_cnt.v_page_size == 0)
227		vm_cnt.v_page_size = PAGE_SIZE;
228	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
229		panic("vm_set_page_size: page size not a power of two");
230}
231
232/*
233 *	vm_page_blacklist_next:
234 *
235 *	Find the next entry in the provided string of blacklist
236 *	addresses.  Entries are separated by space, comma, or newline.
237 *	If an invalid integer is encountered then the rest of the
238 *	string is skipped.  Updates the list pointer to the next
239 *	character, or NULL if the string is exhausted or invalid.
240 */
241static vm_paddr_t
242vm_page_blacklist_next(char **list, char *end)
243{
244	vm_paddr_t bad;
245	char *cp, *pos;
246
247	if (list == NULL || *list == NULL)
248		return (0);
249	if (**list =='\0') {
250		*list = NULL;
251		return (0);
252	}
253
254	/*
255	 * If there's no end pointer then the buffer is coming from
256	 * the kenv and we know it's null-terminated.
257	 */
258	if (end == NULL)
259		end = *list + strlen(*list);
260
261	/* Ensure that strtoq() won't walk off the end */
262	if (*end != '\0') {
263		if (*end == '\n' || *end == ' ' || *end  == ',')
264			*end = '\0';
265		else {
266			printf("Blacklist not terminated, skipping\n");
267			*list = NULL;
268			return (0);
269		}
270	}
271
272	for (pos = *list; *pos != '\0'; pos = cp) {
273		bad = strtoq(pos, &cp, 0);
274		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
275			if (bad == 0) {
276				if (++cp < end)
277					continue;
278				else
279					break;
280			}
281		} else
282			break;
283		if (*cp == '\0' || ++cp >= end)
284			*list = NULL;
285		else
286			*list = cp;
287		return (trunc_page(bad));
288	}
289	printf("Garbage in RAM blacklist, skipping\n");
290	*list = NULL;
291	return (0);
292}
293
294/*
295 *	vm_page_blacklist_check:
296 *
297 *	Iterate through the provided string of blacklist addresses, pulling
298 *	each entry out of the physical allocator free list and putting it
299 *	onto a list for reporting via the vm.page_blacklist sysctl.
300 */
301static void
302vm_page_blacklist_check(char *list, char *end)
303{
304	vm_paddr_t pa;
305	vm_page_t m;
306	char *next;
307	int ret;
308
309	next = list;
310	while (next != NULL) {
311		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
312			continue;
313		m = vm_phys_paddr_to_vm_page(pa);
314		if (m == NULL)
315			continue;
316		mtx_lock(&vm_page_queue_free_mtx);
317		ret = vm_phys_unfree_page(m);
318		mtx_unlock(&vm_page_queue_free_mtx);
319		if (ret == TRUE) {
320			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
321			if (bootverbose)
322				printf("Skipping page with pa 0x%jx\n",
323				    (uintmax_t)pa);
324		}
325	}
326}
327
328/*
329 *	vm_page_blacklist_load:
330 *
331 *	Search for a special module named "ram_blacklist".  It'll be a
332 *	plain text file provided by the user via the loader directive
333 *	of the same name.
334 */
335static void
336vm_page_blacklist_load(char **list, char **end)
337{
338	void *mod;
339	u_char *ptr;
340	u_int len;
341
342	mod = NULL;
343	ptr = NULL;
344
345	mod = preload_search_by_type("ram_blacklist");
346	if (mod != NULL) {
347		ptr = preload_fetch_addr(mod);
348		len = preload_fetch_size(mod);
349        }
350	*list = ptr;
351	if (ptr != NULL)
352		*end = ptr + len;
353	else
354		*end = NULL;
355	return;
356}
357
358static int
359sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
360{
361	vm_page_t m;
362	struct sbuf sbuf;
363	int error, first;
364
365	first = 1;
366	error = sysctl_wire_old_buffer(req, 0);
367	if (error != 0)
368		return (error);
369	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
370	TAILQ_FOREACH(m, &blacklist_head, listq) {
371		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
372		    (uintmax_t)m->phys_addr);
373		first = 0;
374	}
375	error = sbuf_finish(&sbuf);
376	sbuf_delete(&sbuf);
377	return (error);
378}
379
380static void
381vm_page_domain_init(struct vm_domain *vmd)
382{
383	struct vm_pagequeue *pq;
384	int i;
385
386	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
387	    "vm inactive pagequeue";
388	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
389	    &vm_cnt.v_inactive_count;
390	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
391	    "vm active pagequeue";
392	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
393	    &vm_cnt.v_active_count;
394	vmd->vmd_page_count = 0;
395	vmd->vmd_free_count = 0;
396	vmd->vmd_segs = 0;
397	vmd->vmd_oom = FALSE;
398	for (i = 0; i < PQ_COUNT; i++) {
399		pq = &vmd->vmd_pagequeues[i];
400		TAILQ_INIT(&pq->pq_pl);
401		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
402		    MTX_DEF | MTX_DUPOK);
403	}
404}
405
406/*
407 *	vm_page_startup:
408 *
409 *	Initializes the resident memory module.
410 *
411 *	Allocates memory for the page cells, and
412 *	for the object/offset-to-page hash table headers.
413 *	Each page cell is initialized and placed on the free list.
414 */
415vm_offset_t
416vm_page_startup(vm_offset_t vaddr)
417{
418	vm_offset_t mapped;
419	vm_paddr_t page_range;
420	vm_paddr_t new_end;
421	int i;
422	vm_paddr_t pa;
423	vm_paddr_t last_pa;
424	char *list, *listend;
425	vm_paddr_t end;
426	vm_paddr_t biggestsize;
427	vm_paddr_t low_water, high_water;
428	int biggestone;
429	int pages_per_zone;
430
431	biggestsize = 0;
432	biggestone = 0;
433	vaddr = round_page(vaddr);
434
435	for (i = 0; phys_avail[i + 1]; i += 2) {
436		phys_avail[i] = round_page(phys_avail[i]);
437		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
438	}
439
440	low_water = phys_avail[0];
441	high_water = phys_avail[1];
442
443	for (i = 0; i < vm_phys_nsegs; i++) {
444		if (vm_phys_segs[i].start < low_water)
445			low_water = vm_phys_segs[i].start;
446		if (vm_phys_segs[i].end > high_water)
447			high_water = vm_phys_segs[i].end;
448	}
449	for (i = 0; phys_avail[i + 1]; i += 2) {
450		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
451
452		if (size > biggestsize) {
453			biggestone = i;
454			biggestsize = size;
455		}
456		if (phys_avail[i] < low_water)
457			low_water = phys_avail[i];
458		if (phys_avail[i + 1] > high_water)
459			high_water = phys_avail[i + 1];
460	}
461
462	end = phys_avail[biggestone+1];
463
464	/*
465	 * Initialize the page and queue locks.
466	 */
467	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
468	for (i = 0; i < PA_LOCK_COUNT; i++)
469		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
470	for (i = 0; i < vm_ndomains; i++)
471		vm_page_domain_init(&vm_dom[i]);
472
473	/*
474	 * Almost all of the pages needed for boot strapping UMA are used
475	 * for zone structures, so if the number of CPUs results in those
476	 * structures taking more than one page each, we set aside more pages
477	 * in proportion to the zone structure size.
478	 */
479	pages_per_zone = howmany(sizeof(struct uma_zone) +
480	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
481	if (pages_per_zone > 1) {
482		/* Reserve more pages so that we don't run out. */
483		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
484	}
485
486	/*
487	 * Allocate memory for use when boot strapping the kernel memory
488	 * allocator.
489	 *
490	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
491	 * manually fetch the value.
492	 */
493	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
494	new_end = end - (boot_pages * UMA_SLAB_SIZE);
495	new_end = trunc_page(new_end);
496	mapped = pmap_map(&vaddr, new_end, end,
497	    VM_PROT_READ | VM_PROT_WRITE);
498	bzero((void *)mapped, end - new_end);
499	uma_startup((void *)mapped, boot_pages);
500
501#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
502    defined(__i386__) || defined(__mips__)
503	/*
504	 * Allocate a bitmap to indicate that a random physical page
505	 * needs to be included in a minidump.
506	 *
507	 * The amd64 port needs this to indicate which direct map pages
508	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
509	 *
510	 * However, i386 still needs this workspace internally within the
511	 * minidump code.  In theory, they are not needed on i386, but are
512	 * included should the sf_buf code decide to use them.
513	 */
514	last_pa = 0;
515	for (i = 0; dump_avail[i + 1] != 0; i += 2)
516		if (dump_avail[i + 1] > last_pa)
517			last_pa = dump_avail[i + 1];
518	page_range = last_pa / PAGE_SIZE;
519	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
520	new_end -= vm_page_dump_size;
521	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
522	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
523	bzero((void *)vm_page_dump, vm_page_dump_size);
524#endif
525#ifdef __amd64__
526	/*
527	 * Request that the physical pages underlying the message buffer be
528	 * included in a crash dump.  Since the message buffer is accessed
529	 * through the direct map, they are not automatically included.
530	 */
531	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
532	last_pa = pa + round_page(msgbufsize);
533	while (pa < last_pa) {
534		dump_add_page(pa);
535		pa += PAGE_SIZE;
536	}
537#endif
538	/*
539	 * Compute the number of pages of memory that will be available for
540	 * use (taking into account the overhead of a page structure per
541	 * page).
542	 */
543	first_page = low_water / PAGE_SIZE;
544#ifdef VM_PHYSSEG_SPARSE
545	page_range = 0;
546	for (i = 0; i < vm_phys_nsegs; i++) {
547		page_range += atop(vm_phys_segs[i].end -
548		    vm_phys_segs[i].start);
549	}
550	for (i = 0; phys_avail[i + 1] != 0; i += 2)
551		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
552#elif defined(VM_PHYSSEG_DENSE)
553	page_range = high_water / PAGE_SIZE - first_page;
554#else
555#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
556#endif
557	end = new_end;
558
559	/*
560	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
561	 */
562	vaddr += PAGE_SIZE;
563
564	/*
565	 * Initialize the mem entry structures now, and put them in the free
566	 * queue.
567	 */
568	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
569	mapped = pmap_map(&vaddr, new_end, end,
570	    VM_PROT_READ | VM_PROT_WRITE);
571	vm_page_array = (vm_page_t) mapped;
572#if VM_NRESERVLEVEL > 0
573	/*
574	 * Allocate memory for the reservation management system's data
575	 * structures.
576	 */
577	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
578#endif
579#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
580	/*
581	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
582	 * not kvm like i386, so the pages must be tracked for a crashdump to
583	 * include this data.  This includes the vm_page_array and the early
584	 * UMA bootstrap pages.
585	 */
586	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
587		dump_add_page(pa);
588#endif
589	phys_avail[biggestone + 1] = new_end;
590
591	/*
592	 * Add physical memory segments corresponding to the available
593	 * physical pages.
594	 */
595	for (i = 0; phys_avail[i + 1] != 0; i += 2)
596		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
597
598	/*
599	 * Clear all of the page structures
600	 */
601	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
602	for (i = 0; i < page_range; i++)
603		vm_page_array[i].order = VM_NFREEORDER;
604	vm_page_array_size = page_range;
605
606	/*
607	 * Initialize the physical memory allocator.
608	 */
609	vm_phys_init();
610
611	/*
612	 * Add every available physical page that is not blacklisted to
613	 * the free lists.
614	 */
615	vm_cnt.v_page_count = 0;
616	vm_cnt.v_free_count = 0;
617	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
618		pa = phys_avail[i];
619		last_pa = phys_avail[i + 1];
620		while (pa < last_pa) {
621			vm_phys_add_page(pa);
622			pa += PAGE_SIZE;
623		}
624	}
625
626	TAILQ_INIT(&blacklist_head);
627	vm_page_blacklist_load(&list, &listend);
628	vm_page_blacklist_check(list, listend);
629
630	list = kern_getenv("vm.blacklist");
631	vm_page_blacklist_check(list, NULL);
632
633	freeenv(list);
634#if VM_NRESERVLEVEL > 0
635	/*
636	 * Initialize the reservation management system.
637	 */
638	vm_reserv_init();
639#endif
640	return (vaddr);
641}
642
643void
644vm_page_reference(vm_page_t m)
645{
646
647	vm_page_aflag_set(m, PGA_REFERENCED);
648}
649
650/*
651 *	vm_page_busy_downgrade:
652 *
653 *	Downgrade an exclusive busy page into a single shared busy page.
654 */
655void
656vm_page_busy_downgrade(vm_page_t m)
657{
658	u_int x;
659	bool locked;
660
661	vm_page_assert_xbusied(m);
662	locked = mtx_owned(vm_page_lockptr(m));
663
664	for (;;) {
665		x = m->busy_lock;
666		x &= VPB_BIT_WAITERS;
667		if (x != 0 && !locked)
668			vm_page_lock(m);
669		if (atomic_cmpset_rel_int(&m->busy_lock,
670		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
671			break;
672		if (x != 0 && !locked)
673			vm_page_unlock(m);
674	}
675	if (x != 0) {
676		wakeup(m);
677		if (!locked)
678			vm_page_unlock(m);
679	}
680}
681
682/*
683 *	vm_page_sbusied:
684 *
685 *	Return a positive value if the page is shared busied, 0 otherwise.
686 */
687int
688vm_page_sbusied(vm_page_t m)
689{
690	u_int x;
691
692	x = m->busy_lock;
693	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
694}
695
696/*
697 *	vm_page_sunbusy:
698 *
699 *	Shared unbusy a page.
700 */
701void
702vm_page_sunbusy(vm_page_t m)
703{
704	u_int x;
705
706	vm_page_assert_sbusied(m);
707
708	for (;;) {
709		x = m->busy_lock;
710		if (VPB_SHARERS(x) > 1) {
711			if (atomic_cmpset_int(&m->busy_lock, x,
712			    x - VPB_ONE_SHARER))
713				break;
714			continue;
715		}
716		if ((x & VPB_BIT_WAITERS) == 0) {
717			KASSERT(x == VPB_SHARERS_WORD(1),
718			    ("vm_page_sunbusy: invalid lock state"));
719			if (atomic_cmpset_int(&m->busy_lock,
720			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
721				break;
722			continue;
723		}
724		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
725		    ("vm_page_sunbusy: invalid lock state for waiters"));
726
727		vm_page_lock(m);
728		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
729			vm_page_unlock(m);
730			continue;
731		}
732		wakeup(m);
733		vm_page_unlock(m);
734		break;
735	}
736}
737
738/*
739 *	vm_page_busy_sleep:
740 *
741 *	Sleep and release the page lock, using the page pointer as wchan.
742 *	This is used to implement the hard-path of busying mechanism.
743 *
744 *	The given page must be locked.
745 *
746 *	If nonshared is true, sleep only if the page is xbusy.
747 */
748void
749vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
750{
751	u_int x;
752
753	vm_page_assert_locked(m);
754
755	x = m->busy_lock;
756	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
757	    ((x & VPB_BIT_WAITERS) == 0 &&
758	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
759		vm_page_unlock(m);
760		return;
761	}
762	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
763}
764
765/*
766 *	vm_page_trysbusy:
767 *
768 *	Try to shared busy a page.
769 *	If the operation succeeds 1 is returned otherwise 0.
770 *	The operation never sleeps.
771 */
772int
773vm_page_trysbusy(vm_page_t m)
774{
775	u_int x;
776
777	for (;;) {
778		x = m->busy_lock;
779		if ((x & VPB_BIT_SHARED) == 0)
780			return (0);
781		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
782			return (1);
783	}
784}
785
786static void
787vm_page_xunbusy_locked(vm_page_t m)
788{
789
790	vm_page_assert_xbusied(m);
791	vm_page_assert_locked(m);
792
793	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
794	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
795	wakeup(m);
796}
797
798void
799vm_page_xunbusy_maybelocked(vm_page_t m)
800{
801	bool lockacq;
802
803	vm_page_assert_xbusied(m);
804
805	/*
806	 * Fast path for unbusy.  If it succeeds, we know that there
807	 * are no waiters, so we do not need a wakeup.
808	 */
809	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
810	    VPB_UNBUSIED))
811		return;
812
813	lockacq = !mtx_owned(vm_page_lockptr(m));
814	if (lockacq)
815		vm_page_lock(m);
816	vm_page_xunbusy_locked(m);
817	if (lockacq)
818		vm_page_unlock(m);
819}
820
821/*
822 *	vm_page_xunbusy_hard:
823 *
824 *	Called after the first try the exclusive unbusy of a page failed.
825 *	It is assumed that the waiters bit is on.
826 */
827void
828vm_page_xunbusy_hard(vm_page_t m)
829{
830
831	vm_page_assert_xbusied(m);
832
833	vm_page_lock(m);
834	vm_page_xunbusy_locked(m);
835	vm_page_unlock(m);
836}
837
838/*
839 *	vm_page_flash:
840 *
841 *	Wakeup anyone waiting for the page.
842 *	The ownership bits do not change.
843 *
844 *	The given page must be locked.
845 */
846void
847vm_page_flash(vm_page_t m)
848{
849	u_int x;
850
851	vm_page_lock_assert(m, MA_OWNED);
852
853	for (;;) {
854		x = m->busy_lock;
855		if ((x & VPB_BIT_WAITERS) == 0)
856			return;
857		if (atomic_cmpset_int(&m->busy_lock, x,
858		    x & (~VPB_BIT_WAITERS)))
859			break;
860	}
861	wakeup(m);
862}
863
864/*
865 * Keep page from being freed by the page daemon
866 * much of the same effect as wiring, except much lower
867 * overhead and should be used only for *very* temporary
868 * holding ("wiring").
869 */
870void
871vm_page_hold(vm_page_t mem)
872{
873
874	vm_page_lock_assert(mem, MA_OWNED);
875        mem->hold_count++;
876}
877
878void
879vm_page_unhold(vm_page_t mem)
880{
881
882	vm_page_lock_assert(mem, MA_OWNED);
883	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
884	--mem->hold_count;
885	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
886		vm_page_free_toq(mem);
887}
888
889/*
890 *	vm_page_unhold_pages:
891 *
892 *	Unhold each of the pages that is referenced by the given array.
893 */
894void
895vm_page_unhold_pages(vm_page_t *ma, int count)
896{
897	struct mtx *mtx, *new_mtx;
898
899	mtx = NULL;
900	for (; count != 0; count--) {
901		/*
902		 * Avoid releasing and reacquiring the same page lock.
903		 */
904		new_mtx = vm_page_lockptr(*ma);
905		if (mtx != new_mtx) {
906			if (mtx != NULL)
907				mtx_unlock(mtx);
908			mtx = new_mtx;
909			mtx_lock(mtx);
910		}
911		vm_page_unhold(*ma);
912		ma++;
913	}
914	if (mtx != NULL)
915		mtx_unlock(mtx);
916}
917
918vm_page_t
919PHYS_TO_VM_PAGE(vm_paddr_t pa)
920{
921	vm_page_t m;
922
923#ifdef VM_PHYSSEG_SPARSE
924	m = vm_phys_paddr_to_vm_page(pa);
925	if (m == NULL)
926		m = vm_phys_fictitious_to_vm_page(pa);
927	return (m);
928#elif defined(VM_PHYSSEG_DENSE)
929	long pi;
930
931	pi = atop(pa);
932	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
933		m = &vm_page_array[pi - first_page];
934		return (m);
935	}
936	return (vm_phys_fictitious_to_vm_page(pa));
937#else
938#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
939#endif
940}
941
942/*
943 *	vm_page_getfake:
944 *
945 *	Create a fictitious page with the specified physical address and
946 *	memory attribute.  The memory attribute is the only the machine-
947 *	dependent aspect of a fictitious page that must be initialized.
948 */
949vm_page_t
950vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
951{
952	vm_page_t m;
953
954	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
955	vm_page_initfake(m, paddr, memattr);
956	return (m);
957}
958
959void
960vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
961{
962
963	if ((m->flags & PG_FICTITIOUS) != 0) {
964		/*
965		 * The page's memattr might have changed since the
966		 * previous initialization.  Update the pmap to the
967		 * new memattr.
968		 */
969		goto memattr;
970	}
971	m->phys_addr = paddr;
972	m->queue = PQ_NONE;
973	/* Fictitious pages don't use "segind". */
974	m->flags = PG_FICTITIOUS;
975	/* Fictitious pages don't use "order" or "pool". */
976	m->oflags = VPO_UNMANAGED;
977	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
978	m->wire_count = 1;
979	pmap_page_init(m);
980memattr:
981	pmap_page_set_memattr(m, memattr);
982}
983
984/*
985 *	vm_page_putfake:
986 *
987 *	Release a fictitious page.
988 */
989void
990vm_page_putfake(vm_page_t m)
991{
992
993	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
994	KASSERT((m->flags & PG_FICTITIOUS) != 0,
995	    ("vm_page_putfake: bad page %p", m));
996	uma_zfree(fakepg_zone, m);
997}
998
999/*
1000 *	vm_page_updatefake:
1001 *
1002 *	Update the given fictitious page to the specified physical address and
1003 *	memory attribute.
1004 */
1005void
1006vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1007{
1008
1009	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1010	    ("vm_page_updatefake: bad page %p", m));
1011	m->phys_addr = paddr;
1012	pmap_page_set_memattr(m, memattr);
1013}
1014
1015/*
1016 *	vm_page_free:
1017 *
1018 *	Free a page.
1019 */
1020void
1021vm_page_free(vm_page_t m)
1022{
1023
1024	m->flags &= ~PG_ZERO;
1025	vm_page_free_toq(m);
1026}
1027
1028/*
1029 *	vm_page_free_zero:
1030 *
1031 *	Free a page to the zerod-pages queue
1032 */
1033void
1034vm_page_free_zero(vm_page_t m)
1035{
1036
1037	m->flags |= PG_ZERO;
1038	vm_page_free_toq(m);
1039}
1040
1041/*
1042 * Unbusy and handle the page queueing for a page from a getpages request that
1043 * was optionally read ahead or behind.
1044 */
1045void
1046vm_page_readahead_finish(vm_page_t m)
1047{
1048
1049	/* We shouldn't put invalid pages on queues. */
1050	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1051
1052	/*
1053	 * Since the page is not the actually needed one, whether it should
1054	 * be activated or deactivated is not obvious.  Empirical results
1055	 * have shown that deactivating the page is usually the best choice,
1056	 * unless the page is wanted by another thread.
1057	 */
1058	vm_page_lock(m);
1059	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1060		vm_page_activate(m);
1061	else
1062		vm_page_deactivate(m);
1063	vm_page_unlock(m);
1064	vm_page_xunbusy(m);
1065}
1066
1067/*
1068 *	vm_page_sleep_if_busy:
1069 *
1070 *	Sleep and release the page queues lock if the page is busied.
1071 *	Returns TRUE if the thread slept.
1072 *
1073 *	The given page must be unlocked and object containing it must
1074 *	be locked.
1075 */
1076int
1077vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1078{
1079	vm_object_t obj;
1080
1081	vm_page_lock_assert(m, MA_NOTOWNED);
1082	VM_OBJECT_ASSERT_WLOCKED(m->object);
1083
1084	if (vm_page_busied(m)) {
1085		/*
1086		 * The page-specific object must be cached because page
1087		 * identity can change during the sleep, causing the
1088		 * re-lock of a different object.
1089		 * It is assumed that a reference to the object is already
1090		 * held by the callers.
1091		 */
1092		obj = m->object;
1093		vm_page_lock(m);
1094		VM_OBJECT_WUNLOCK(obj);
1095		vm_page_busy_sleep(m, msg, false);
1096		VM_OBJECT_WLOCK(obj);
1097		return (TRUE);
1098	}
1099	return (FALSE);
1100}
1101
1102/*
1103 *	vm_page_dirty_KBI:		[ internal use only ]
1104 *
1105 *	Set all bits in the page's dirty field.
1106 *
1107 *	The object containing the specified page must be locked if the
1108 *	call is made from the machine-independent layer.
1109 *
1110 *	See vm_page_clear_dirty_mask().
1111 *
1112 *	This function should only be called by vm_page_dirty().
1113 */
1114void
1115vm_page_dirty_KBI(vm_page_t m)
1116{
1117
1118	/* These assertions refer to this operation by its public name. */
1119	KASSERT((m->flags & PG_CACHED) == 0,
1120	    ("vm_page_dirty: page in cache!"));
1121	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1122	    ("vm_page_dirty: page is invalid!"));
1123	m->dirty = VM_PAGE_BITS_ALL;
1124}
1125
1126/*
1127 *	vm_page_insert:		[ internal use only ]
1128 *
1129 *	Inserts the given mem entry into the object and object list.
1130 *
1131 *	The object must be locked.
1132 */
1133int
1134vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1135{
1136	vm_page_t mpred;
1137
1138	VM_OBJECT_ASSERT_WLOCKED(object);
1139	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1140	return (vm_page_insert_after(m, object, pindex, mpred));
1141}
1142
1143/*
1144 *	vm_page_insert_after:
1145 *
1146 *	Inserts the page "m" into the specified object at offset "pindex".
1147 *
1148 *	The page "mpred" must immediately precede the offset "pindex" within
1149 *	the specified object.
1150 *
1151 *	The object must be locked.
1152 */
1153static int
1154vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1155    vm_page_t mpred)
1156{
1157	vm_page_t msucc;
1158
1159	VM_OBJECT_ASSERT_WLOCKED(object);
1160	KASSERT(m->object == NULL,
1161	    ("vm_page_insert_after: page already inserted"));
1162	if (mpred != NULL) {
1163		KASSERT(mpred->object == object,
1164		    ("vm_page_insert_after: object doesn't contain mpred"));
1165		KASSERT(mpred->pindex < pindex,
1166		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1167		msucc = TAILQ_NEXT(mpred, listq);
1168	} else
1169		msucc = TAILQ_FIRST(&object->memq);
1170	if (msucc != NULL)
1171		KASSERT(msucc->pindex > pindex,
1172		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1173
1174	/*
1175	 * Record the object/offset pair in this page
1176	 */
1177	m->object = object;
1178	m->pindex = pindex;
1179
1180	/*
1181	 * Now link into the object's ordered list of backed pages.
1182	 */
1183	if (vm_radix_insert(&object->rtree, m)) {
1184		m->object = NULL;
1185		m->pindex = 0;
1186		return (1);
1187	}
1188	vm_page_insert_radixdone(m, object, mpred);
1189	return (0);
1190}
1191
1192/*
1193 *	vm_page_insert_radixdone:
1194 *
1195 *	Complete page "m" insertion into the specified object after the
1196 *	radix trie hooking.
1197 *
1198 *	The page "mpred" must precede the offset "m->pindex" within the
1199 *	specified object.
1200 *
1201 *	The object must be locked.
1202 */
1203static void
1204vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1205{
1206
1207	VM_OBJECT_ASSERT_WLOCKED(object);
1208	KASSERT(object != NULL && m->object == object,
1209	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1210	if (mpred != NULL) {
1211		KASSERT(mpred->object == object,
1212		    ("vm_page_insert_after: object doesn't contain mpred"));
1213		KASSERT(mpred->pindex < m->pindex,
1214		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1215	}
1216
1217	if (mpred != NULL)
1218		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1219	else
1220		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1221
1222	/*
1223	 * Show that the object has one more resident page.
1224	 */
1225	object->resident_page_count++;
1226
1227	/*
1228	 * Hold the vnode until the last page is released.
1229	 */
1230	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1231		vhold(object->handle);
1232
1233	/*
1234	 * Since we are inserting a new and possibly dirty page,
1235	 * update the object's OBJ_MIGHTBEDIRTY flag.
1236	 */
1237	if (pmap_page_is_write_mapped(m))
1238		vm_object_set_writeable_dirty(object);
1239}
1240
1241/*
1242 *	vm_page_remove:
1243 *
1244 *	Removes the given mem entry from the object/offset-page
1245 *	table and the object page list, but do not invalidate/terminate
1246 *	the backing store.
1247 *
1248 *	The object must be locked.  The page must be locked if it is managed.
1249 */
1250void
1251vm_page_remove(vm_page_t m)
1252{
1253	vm_object_t object;
1254
1255	if ((m->oflags & VPO_UNMANAGED) == 0)
1256		vm_page_assert_locked(m);
1257	if ((object = m->object) == NULL)
1258		return;
1259	VM_OBJECT_ASSERT_WLOCKED(object);
1260	if (vm_page_xbusied(m))
1261		vm_page_xunbusy_maybelocked(m);
1262
1263	/*
1264	 * Now remove from the object's list of backed pages.
1265	 */
1266	vm_radix_remove(&object->rtree, m->pindex);
1267	TAILQ_REMOVE(&object->memq, m, listq);
1268
1269	/*
1270	 * And show that the object has one fewer resident page.
1271	 */
1272	object->resident_page_count--;
1273
1274	/*
1275	 * The vnode may now be recycled.
1276	 */
1277	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1278		vdrop(object->handle);
1279
1280	m->object = NULL;
1281}
1282
1283/*
1284 *	vm_page_lookup:
1285 *
1286 *	Returns the page associated with the object/offset
1287 *	pair specified; if none is found, NULL is returned.
1288 *
1289 *	The object must be locked.
1290 */
1291vm_page_t
1292vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1293{
1294
1295	VM_OBJECT_ASSERT_LOCKED(object);
1296	return (vm_radix_lookup(&object->rtree, pindex));
1297}
1298
1299/*
1300 *	vm_page_find_least:
1301 *
1302 *	Returns the page associated with the object with least pindex
1303 *	greater than or equal to the parameter pindex, or NULL.
1304 *
1305 *	The object must be locked.
1306 */
1307vm_page_t
1308vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1309{
1310	vm_page_t m;
1311
1312	VM_OBJECT_ASSERT_LOCKED(object);
1313	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1314		m = vm_radix_lookup_ge(&object->rtree, pindex);
1315	return (m);
1316}
1317
1318/*
1319 * Returns the given page's successor (by pindex) within the object if it is
1320 * resident; if none is found, NULL is returned.
1321 *
1322 * The object must be locked.
1323 */
1324vm_page_t
1325vm_page_next(vm_page_t m)
1326{
1327	vm_page_t next;
1328
1329	VM_OBJECT_ASSERT_LOCKED(m->object);
1330	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1331		MPASS(next->object == m->object);
1332		if (next->pindex != m->pindex + 1)
1333			next = NULL;
1334	}
1335	return (next);
1336}
1337
1338/*
1339 * Returns the given page's predecessor (by pindex) within the object if it is
1340 * resident; if none is found, NULL is returned.
1341 *
1342 * The object must be locked.
1343 */
1344vm_page_t
1345vm_page_prev(vm_page_t m)
1346{
1347	vm_page_t prev;
1348
1349	VM_OBJECT_ASSERT_LOCKED(m->object);
1350	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1351		MPASS(prev->object == m->object);
1352		if (prev->pindex != m->pindex - 1)
1353			prev = NULL;
1354	}
1355	return (prev);
1356}
1357
1358/*
1359 * Uses the page mnew as a replacement for an existing page at index
1360 * pindex which must be already present in the object.
1361 *
1362 * The existing page must not be on a paging queue.
1363 */
1364vm_page_t
1365vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1366{
1367	vm_page_t mold;
1368
1369	VM_OBJECT_ASSERT_WLOCKED(object);
1370	KASSERT(mnew->object == NULL,
1371	    ("vm_page_replace: page already in object"));
1372
1373	/*
1374	 * This function mostly follows vm_page_insert() and
1375	 * vm_page_remove() without the radix, object count and vnode
1376	 * dance.  Double check such functions for more comments.
1377	 */
1378
1379	mnew->object = object;
1380	mnew->pindex = pindex;
1381	mold = vm_radix_replace(&object->rtree, mnew);
1382	KASSERT(mold->queue == PQ_NONE,
1383	    ("vm_page_replace: mold is on a paging queue"));
1384
1385	/* Keep the resident page list in sorted order. */
1386	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1387	TAILQ_REMOVE(&object->memq, mold, listq);
1388
1389	mold->object = NULL;
1390	vm_page_xunbusy_maybelocked(mold);
1391
1392	/*
1393	 * The object's resident_page_count does not change because we have
1394	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1395	 */
1396	if (pmap_page_is_write_mapped(mnew))
1397		vm_object_set_writeable_dirty(object);
1398	return (mold);
1399}
1400
1401/*
1402 *	vm_page_rename:
1403 *
1404 *	Move the given memory entry from its
1405 *	current object to the specified target object/offset.
1406 *
1407 *	Note: swap associated with the page must be invalidated by the move.  We
1408 *	      have to do this for several reasons:  (1) we aren't freeing the
1409 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1410 *	      moving the page from object A to B, and will then later move
1411 *	      the backing store from A to B and we can't have a conflict.
1412 *
1413 *	Note: we *always* dirty the page.  It is necessary both for the
1414 *	      fact that we moved it, and because we may be invalidating
1415 *	      swap.  If the page is on the cache, we have to deactivate it
1416 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1417 *	      on the cache.
1418 *
1419 *	The objects must be locked.
1420 */
1421int
1422vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1423{
1424	vm_page_t mpred;
1425	vm_pindex_t opidx;
1426
1427	VM_OBJECT_ASSERT_WLOCKED(new_object);
1428
1429	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1430	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1431	    ("vm_page_rename: pindex already renamed"));
1432
1433	/*
1434	 * Create a custom version of vm_page_insert() which does not depend
1435	 * by m_prev and can cheat on the implementation aspects of the
1436	 * function.
1437	 */
1438	opidx = m->pindex;
1439	m->pindex = new_pindex;
1440	if (vm_radix_insert(&new_object->rtree, m)) {
1441		m->pindex = opidx;
1442		return (1);
1443	}
1444
1445	/*
1446	 * The operation cannot fail anymore.  The removal must happen before
1447	 * the listq iterator is tainted.
1448	 */
1449	m->pindex = opidx;
1450	vm_page_lock(m);
1451	vm_page_remove(m);
1452
1453	/* Return back to the new pindex to complete vm_page_insert(). */
1454	m->pindex = new_pindex;
1455	m->object = new_object;
1456	vm_page_unlock(m);
1457	vm_page_insert_radixdone(m, new_object, mpred);
1458	vm_page_dirty(m);
1459	return (0);
1460}
1461
1462/*
1463 *	Convert all of the given object's cached pages that have a
1464 *	pindex within the given range into free pages.  If the value
1465 *	zero is given for "end", then the range's upper bound is
1466 *	infinity.  If the given object is backed by a vnode and it
1467 *	transitions from having one or more cached pages to none, the
1468 *	vnode's hold count is reduced.
1469 */
1470void
1471vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1472{
1473	vm_page_t m;
1474	boolean_t empty;
1475
1476	mtx_lock(&vm_page_queue_free_mtx);
1477	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1478		mtx_unlock(&vm_page_queue_free_mtx);
1479		return;
1480	}
1481	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1482		if (end != 0 && m->pindex >= end)
1483			break;
1484		vm_radix_remove(&object->cache, m->pindex);
1485		vm_page_cache_turn_free(m);
1486	}
1487	empty = vm_radix_is_empty(&object->cache);
1488	mtx_unlock(&vm_page_queue_free_mtx);
1489	if (object->type == OBJT_VNODE && empty)
1490		vdrop(object->handle);
1491}
1492
1493/*
1494 *	Returns the cached page that is associated with the given
1495 *	object and offset.  If, however, none exists, returns NULL.
1496 *
1497 *	The free page queue must be locked.
1498 */
1499static inline vm_page_t
1500vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1501{
1502
1503	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1504	return (vm_radix_lookup(&object->cache, pindex));
1505}
1506
1507/*
1508 *	Remove the given cached page from its containing object's
1509 *	collection of cached pages.
1510 *
1511 *	The free page queue must be locked.
1512 */
1513static void
1514vm_page_cache_remove(vm_page_t m)
1515{
1516
1517	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1518	KASSERT((m->flags & PG_CACHED) != 0,
1519	    ("vm_page_cache_remove: page %p is not cached", m));
1520	vm_radix_remove(&m->object->cache, m->pindex);
1521	m->object = NULL;
1522	vm_cnt.v_cache_count--;
1523}
1524
1525/*
1526 *	Transfer all of the cached pages with offset greater than or
1527 *	equal to 'offidxstart' from the original object's cache to the
1528 *	new object's cache.  However, any cached pages with offset
1529 *	greater than or equal to the new object's size are kept in the
1530 *	original object.  Initially, the new object's cache must be
1531 *	empty.  Offset 'offidxstart' in the original object must
1532 *	correspond to offset zero in the new object.
1533 *
1534 *	The new object must be locked.
1535 */
1536void
1537vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1538    vm_object_t new_object)
1539{
1540	vm_page_t m;
1541
1542	/*
1543	 * Insertion into an object's collection of cached pages
1544	 * requires the object to be locked.  In contrast, removal does
1545	 * not.
1546	 */
1547	VM_OBJECT_ASSERT_WLOCKED(new_object);
1548	KASSERT(vm_radix_is_empty(&new_object->cache),
1549	    ("vm_page_cache_transfer: object %p has cached pages",
1550	    new_object));
1551	mtx_lock(&vm_page_queue_free_mtx);
1552	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1553	    offidxstart)) != NULL) {
1554		/*
1555		 * Transfer all of the pages with offset greater than or
1556		 * equal to 'offidxstart' from the original object's
1557		 * cache to the new object's cache.
1558		 */
1559		if ((m->pindex - offidxstart) >= new_object->size)
1560			break;
1561		vm_radix_remove(&orig_object->cache, m->pindex);
1562		/* Update the page's object and offset. */
1563		m->object = new_object;
1564		m->pindex -= offidxstart;
1565		if (vm_radix_insert(&new_object->cache, m))
1566			vm_page_cache_turn_free(m);
1567	}
1568	mtx_unlock(&vm_page_queue_free_mtx);
1569}
1570
1571/*
1572 *	Returns TRUE if a cached page is associated with the given object and
1573 *	offset, and FALSE otherwise.
1574 *
1575 *	The object must be locked.
1576 */
1577boolean_t
1578vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1579{
1580	vm_page_t m;
1581
1582	/*
1583	 * Insertion into an object's collection of cached pages requires the
1584	 * object to be locked.  Therefore, if the object is locked and the
1585	 * object's collection is empty, there is no need to acquire the free
1586	 * page queues lock in order to prove that the specified page doesn't
1587	 * exist.
1588	 */
1589	VM_OBJECT_ASSERT_WLOCKED(object);
1590	if (__predict_true(vm_object_cache_is_empty(object)))
1591		return (FALSE);
1592	mtx_lock(&vm_page_queue_free_mtx);
1593	m = vm_page_cache_lookup(object, pindex);
1594	mtx_unlock(&vm_page_queue_free_mtx);
1595	return (m != NULL);
1596}
1597
1598/*
1599 *	vm_page_alloc:
1600 *
1601 *	Allocate and return a page that is associated with the specified
1602 *	object and offset pair.  By default, this page is exclusive busied.
1603 *
1604 *	The caller must always specify an allocation class.
1605 *
1606 *	allocation classes:
1607 *	VM_ALLOC_NORMAL		normal process request
1608 *	VM_ALLOC_SYSTEM		system *really* needs a page
1609 *	VM_ALLOC_INTERRUPT	interrupt time request
1610 *
1611 *	optional allocation flags:
1612 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1613 *				intends to allocate
1614 *	VM_ALLOC_IFCACHED	return page only if it is cached
1615 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1616 *				is cached
1617 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1618 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1619 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1620 *				should not be exclusive busy
1621 *	VM_ALLOC_SBUSY		shared busy the allocated page
1622 *	VM_ALLOC_WIRED		wire the allocated page
1623 *	VM_ALLOC_ZERO		prefer a zeroed page
1624 *
1625 *	This routine may not sleep.
1626 */
1627vm_page_t
1628vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1629{
1630	struct vnode *vp = NULL;
1631	vm_object_t m_object;
1632	vm_page_t m, mpred;
1633	int flags, req_class;
1634
1635	mpred = 0;	/* XXX: pacify gcc */
1636	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1637	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1638	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1639	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1640	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1641	    req));
1642	if (object != NULL)
1643		VM_OBJECT_ASSERT_WLOCKED(object);
1644
1645	req_class = req & VM_ALLOC_CLASS_MASK;
1646
1647	/*
1648	 * The page daemon is allowed to dig deeper into the free page list.
1649	 */
1650	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1651		req_class = VM_ALLOC_SYSTEM;
1652
1653	if (object != NULL) {
1654		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1655		KASSERT(mpred == NULL || mpred->pindex != pindex,
1656		   ("vm_page_alloc: pindex already allocated"));
1657	}
1658
1659	/*
1660	 * The page allocation request can came from consumers which already
1661	 * hold the free page queue mutex, like vm_page_insert() in
1662	 * vm_page_cache().
1663	 */
1664	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1665	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1666	    (req_class == VM_ALLOC_SYSTEM &&
1667	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1668	    (req_class == VM_ALLOC_INTERRUPT &&
1669	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1670		/*
1671		 * Allocate from the free queue if the number of free pages
1672		 * exceeds the minimum for the request class.
1673		 */
1674		if (object != NULL &&
1675		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1676			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1677				mtx_unlock(&vm_page_queue_free_mtx);
1678				return (NULL);
1679			}
1680			if (vm_phys_unfree_page(m))
1681				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1682#if VM_NRESERVLEVEL > 0
1683			else if (!vm_reserv_reactivate_page(m))
1684#else
1685			else
1686#endif
1687				panic("vm_page_alloc: cache page %p is missing"
1688				    " from the free queue", m);
1689		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1690			mtx_unlock(&vm_page_queue_free_mtx);
1691			return (NULL);
1692#if VM_NRESERVLEVEL > 0
1693		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1694		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1695		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1696#else
1697		} else {
1698#endif
1699			m = vm_phys_alloc_pages(object != NULL ?
1700			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1701#if VM_NRESERVLEVEL > 0
1702			if (m == NULL && vm_reserv_reclaim_inactive()) {
1703				m = vm_phys_alloc_pages(object != NULL ?
1704				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1705				    0);
1706			}
1707#endif
1708		}
1709	} else {
1710		/*
1711		 * Not allocatable, give up.
1712		 */
1713		mtx_unlock(&vm_page_queue_free_mtx);
1714		atomic_add_int(&vm_pageout_deficit,
1715		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1716		pagedaemon_wakeup();
1717		return (NULL);
1718	}
1719
1720	/*
1721	 *  At this point we had better have found a good page.
1722	 */
1723	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1724	KASSERT(m->queue == PQ_NONE,
1725	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1726	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1727	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1728	KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m));
1729	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1730	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1731	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1732	    pmap_page_get_memattr(m)));
1733	if ((m->flags & PG_CACHED) != 0) {
1734		KASSERT((m->flags & PG_ZERO) == 0,
1735		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1736		KASSERT(m->valid != 0,
1737		    ("vm_page_alloc: cached page %p is invalid", m));
1738		if (m->object == object && m->pindex == pindex)
1739			vm_cnt.v_reactivated++;
1740		else
1741			m->valid = 0;
1742		m_object = m->object;
1743		vm_page_cache_remove(m);
1744		if (m_object->type == OBJT_VNODE &&
1745		    vm_object_cache_is_empty(m_object))
1746			vp = m_object->handle;
1747	} else {
1748		KASSERT(m->valid == 0,
1749		    ("vm_page_alloc: free page %p is valid", m));
1750		vm_phys_freecnt_adj(m, -1);
1751		if ((m->flags & PG_ZERO) != 0)
1752			vm_page_zero_count--;
1753	}
1754	mtx_unlock(&vm_page_queue_free_mtx);
1755
1756	/*
1757	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1758	 */
1759	flags = 0;
1760	if ((req & VM_ALLOC_ZERO) != 0)
1761		flags = PG_ZERO;
1762	flags &= m->flags;
1763	if ((req & VM_ALLOC_NODUMP) != 0)
1764		flags |= PG_NODUMP;
1765	m->flags = flags;
1766	m->aflags = 0;
1767	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1768	    VPO_UNMANAGED : 0;
1769	m->busy_lock = VPB_UNBUSIED;
1770	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1771		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1772	if ((req & VM_ALLOC_SBUSY) != 0)
1773		m->busy_lock = VPB_SHARERS_WORD(1);
1774	if (req & VM_ALLOC_WIRED) {
1775		/*
1776		 * The page lock is not required for wiring a page until that
1777		 * page is inserted into the object.
1778		 */
1779		atomic_add_int(&vm_cnt.v_wire_count, 1);
1780		m->wire_count = 1;
1781	}
1782	m->act_count = 0;
1783
1784	if (object != NULL) {
1785		if (vm_page_insert_after(m, object, pindex, mpred)) {
1786			/* See the comment below about hold count. */
1787			if (vp != NULL)
1788				vdrop(vp);
1789			pagedaemon_wakeup();
1790			if (req & VM_ALLOC_WIRED) {
1791				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1792				m->wire_count = 0;
1793			}
1794			m->object = NULL;
1795			m->oflags = VPO_UNMANAGED;
1796			m->busy_lock = VPB_UNBUSIED;
1797			vm_page_free(m);
1798			return (NULL);
1799		}
1800
1801		/* Ignore device objects; the pager sets "memattr" for them. */
1802		if (object->memattr != VM_MEMATTR_DEFAULT &&
1803		    (object->flags & OBJ_FICTITIOUS) == 0)
1804			pmap_page_set_memattr(m, object->memattr);
1805	} else
1806		m->pindex = pindex;
1807
1808	/*
1809	 * The following call to vdrop() must come after the above call
1810	 * to vm_page_insert() in case both affect the same object and
1811	 * vnode.  Otherwise, the affected vnode's hold count could
1812	 * temporarily become zero.
1813	 */
1814	if (vp != NULL)
1815		vdrop(vp);
1816
1817	/*
1818	 * Don't wakeup too often - wakeup the pageout daemon when
1819	 * we would be nearly out of memory.
1820	 */
1821	if (vm_paging_needed())
1822		pagedaemon_wakeup();
1823
1824	return (m);
1825}
1826
1827static void
1828vm_page_alloc_contig_vdrop(struct spglist *lst)
1829{
1830
1831	while (!SLIST_EMPTY(lst)) {
1832		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1833		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1834	}
1835}
1836
1837/*
1838 *	vm_page_alloc_contig:
1839 *
1840 *	Allocate a contiguous set of physical pages of the given size "npages"
1841 *	from the free lists.  All of the physical pages must be at or above
1842 *	the given physical address "low" and below the given physical address
1843 *	"high".  The given value "alignment" determines the alignment of the
1844 *	first physical page in the set.  If the given value "boundary" is
1845 *	non-zero, then the set of physical pages cannot cross any physical
1846 *	address boundary that is a multiple of that value.  Both "alignment"
1847 *	and "boundary" must be a power of two.
1848 *
1849 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1850 *	then the memory attribute setting for the physical pages is configured
1851 *	to the object's memory attribute setting.  Otherwise, the memory
1852 *	attribute setting for the physical pages is configured to "memattr",
1853 *	overriding the object's memory attribute setting.  However, if the
1854 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1855 *	memory attribute setting for the physical pages cannot be configured
1856 *	to VM_MEMATTR_DEFAULT.
1857 *
1858 *	The caller must always specify an allocation class.
1859 *
1860 *	allocation classes:
1861 *	VM_ALLOC_NORMAL		normal process request
1862 *	VM_ALLOC_SYSTEM		system *really* needs a page
1863 *	VM_ALLOC_INTERRUPT	interrupt time request
1864 *
1865 *	optional allocation flags:
1866 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1867 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1868 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1869 *				should not be exclusive busy
1870 *	VM_ALLOC_SBUSY		shared busy the allocated page
1871 *	VM_ALLOC_WIRED		wire the allocated page
1872 *	VM_ALLOC_ZERO		prefer a zeroed page
1873 *
1874 *	This routine may not sleep.
1875 */
1876vm_page_t
1877vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1878    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1879    vm_paddr_t boundary, vm_memattr_t memattr)
1880{
1881	struct vnode *drop;
1882	struct spglist deferred_vdrop_list;
1883	vm_page_t m, m_tmp, m_ret;
1884	u_int flags;
1885	int req_class;
1886
1887	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1888	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1889	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1890	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1891	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1892	    req));
1893	if (object != NULL) {
1894		VM_OBJECT_ASSERT_WLOCKED(object);
1895		KASSERT(object->type == OBJT_PHYS,
1896		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1897		    object));
1898	}
1899	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1900	req_class = req & VM_ALLOC_CLASS_MASK;
1901
1902	/*
1903	 * The page daemon is allowed to dig deeper into the free page list.
1904	 */
1905	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1906		req_class = VM_ALLOC_SYSTEM;
1907
1908	SLIST_INIT(&deferred_vdrop_list);
1909	mtx_lock(&vm_page_queue_free_mtx);
1910	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1911	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1912	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1913	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1914	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1915#if VM_NRESERVLEVEL > 0
1916retry:
1917		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1918		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1919		    low, high, alignment, boundary)) == NULL)
1920#endif
1921			m_ret = vm_phys_alloc_contig(npages, low, high,
1922			    alignment, boundary);
1923	} else {
1924		mtx_unlock(&vm_page_queue_free_mtx);
1925		atomic_add_int(&vm_pageout_deficit, npages);
1926		pagedaemon_wakeup();
1927		return (NULL);
1928	}
1929	if (m_ret != NULL)
1930		for (m = m_ret; m < &m_ret[npages]; m++) {
1931			drop = vm_page_alloc_init(m);
1932			if (drop != NULL) {
1933				/*
1934				 * Enqueue the vnode for deferred vdrop().
1935				 */
1936				m->plinks.s.pv = drop;
1937				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1938				    plinks.s.ss);
1939			}
1940		}
1941	else {
1942#if VM_NRESERVLEVEL > 0
1943		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1944		    boundary))
1945			goto retry;
1946#endif
1947	}
1948	mtx_unlock(&vm_page_queue_free_mtx);
1949	if (m_ret == NULL)
1950		return (NULL);
1951
1952	/*
1953	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1954	 */
1955	flags = 0;
1956	if ((req & VM_ALLOC_ZERO) != 0)
1957		flags = PG_ZERO;
1958	if ((req & VM_ALLOC_NODUMP) != 0)
1959		flags |= PG_NODUMP;
1960	if ((req & VM_ALLOC_WIRED) != 0)
1961		atomic_add_int(&vm_cnt.v_wire_count, npages);
1962	if (object != NULL) {
1963		if (object->memattr != VM_MEMATTR_DEFAULT &&
1964		    memattr == VM_MEMATTR_DEFAULT)
1965			memattr = object->memattr;
1966	}
1967	for (m = m_ret; m < &m_ret[npages]; m++) {
1968		m->aflags = 0;
1969		m->flags = (m->flags | PG_NODUMP) & flags;
1970		m->busy_lock = VPB_UNBUSIED;
1971		if (object != NULL) {
1972			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1973				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1974			if ((req & VM_ALLOC_SBUSY) != 0)
1975				m->busy_lock = VPB_SHARERS_WORD(1);
1976		}
1977		if ((req & VM_ALLOC_WIRED) != 0)
1978			m->wire_count = 1;
1979		/* Unmanaged pages don't use "act_count". */
1980		m->oflags = VPO_UNMANAGED;
1981		if (object != NULL) {
1982			if (vm_page_insert(m, object, pindex)) {
1983				vm_page_alloc_contig_vdrop(
1984				    &deferred_vdrop_list);
1985				if (vm_paging_needed())
1986					pagedaemon_wakeup();
1987				if ((req & VM_ALLOC_WIRED) != 0)
1988					atomic_subtract_int(&vm_cnt.v_wire_count,
1989					    npages);
1990				for (m_tmp = m, m = m_ret;
1991				    m < &m_ret[npages]; m++) {
1992					if ((req & VM_ALLOC_WIRED) != 0)
1993						m->wire_count = 0;
1994					if (m >= m_tmp) {
1995						m->object = NULL;
1996						m->oflags |= VPO_UNMANAGED;
1997					}
1998					m->busy_lock = VPB_UNBUSIED;
1999					vm_page_free(m);
2000				}
2001				return (NULL);
2002			}
2003		} else
2004			m->pindex = pindex;
2005		if (memattr != VM_MEMATTR_DEFAULT)
2006			pmap_page_set_memattr(m, memattr);
2007		pindex++;
2008	}
2009	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
2010	if (vm_paging_needed())
2011		pagedaemon_wakeup();
2012	return (m_ret);
2013}
2014
2015/*
2016 * Initialize a page that has been freshly dequeued from a freelist.
2017 * The caller has to drop the vnode returned, if it is not NULL.
2018 *
2019 * This function may only be used to initialize unmanaged pages.
2020 *
2021 * To be called with vm_page_queue_free_mtx held.
2022 */
2023static struct vnode *
2024vm_page_alloc_init(vm_page_t m)
2025{
2026	struct vnode *drop;
2027	vm_object_t m_object;
2028
2029	KASSERT(m->queue == PQ_NONE,
2030	    ("vm_page_alloc_init: page %p has unexpected queue %d",
2031	    m, m->queue));
2032	KASSERT(m->wire_count == 0,
2033	    ("vm_page_alloc_init: page %p is wired", m));
2034	KASSERT(m->hold_count == 0,
2035	    ("vm_page_alloc_init: page %p is held", m));
2036	KASSERT(!vm_page_busied(m),
2037	    ("vm_page_alloc_init: page %p is busy", m));
2038	KASSERT(m->dirty == 0,
2039	    ("vm_page_alloc_init: page %p is dirty", m));
2040	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2041	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2042	    m, pmap_page_get_memattr(m)));
2043	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2044	drop = NULL;
2045	if ((m->flags & PG_CACHED) != 0) {
2046		KASSERT((m->flags & PG_ZERO) == 0,
2047		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2048		m->valid = 0;
2049		m_object = m->object;
2050		vm_page_cache_remove(m);
2051		if (m_object->type == OBJT_VNODE &&
2052		    vm_object_cache_is_empty(m_object))
2053			drop = m_object->handle;
2054	} else {
2055		KASSERT(m->valid == 0,
2056		    ("vm_page_alloc_init: free page %p is valid", m));
2057		vm_phys_freecnt_adj(m, -1);
2058		if ((m->flags & PG_ZERO) != 0)
2059			vm_page_zero_count--;
2060	}
2061	return (drop);
2062}
2063
2064/*
2065 * 	vm_page_alloc_freelist:
2066 *
2067 *	Allocate a physical page from the specified free page list.
2068 *
2069 *	The caller must always specify an allocation class.
2070 *
2071 *	allocation classes:
2072 *	VM_ALLOC_NORMAL		normal process request
2073 *	VM_ALLOC_SYSTEM		system *really* needs a page
2074 *	VM_ALLOC_INTERRUPT	interrupt time request
2075 *
2076 *	optional allocation flags:
2077 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2078 *				intends to allocate
2079 *	VM_ALLOC_WIRED		wire the allocated page
2080 *	VM_ALLOC_ZERO		prefer a zeroed page
2081 *
2082 *	This routine may not sleep.
2083 */
2084vm_page_t
2085vm_page_alloc_freelist(int flind, int req)
2086{
2087	struct vnode *drop;
2088	vm_page_t m;
2089	u_int flags;
2090	int req_class;
2091
2092	req_class = req & VM_ALLOC_CLASS_MASK;
2093
2094	/*
2095	 * The page daemon is allowed to dig deeper into the free page list.
2096	 */
2097	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2098		req_class = VM_ALLOC_SYSTEM;
2099
2100	/*
2101	 * Do not allocate reserved pages unless the req has asked for it.
2102	 */
2103	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2104	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2105	    (req_class == VM_ALLOC_SYSTEM &&
2106	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2107	    (req_class == VM_ALLOC_INTERRUPT &&
2108	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2109		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2110	else {
2111		mtx_unlock(&vm_page_queue_free_mtx);
2112		atomic_add_int(&vm_pageout_deficit,
2113		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2114		pagedaemon_wakeup();
2115		return (NULL);
2116	}
2117	if (m == NULL) {
2118		mtx_unlock(&vm_page_queue_free_mtx);
2119		return (NULL);
2120	}
2121	drop = vm_page_alloc_init(m);
2122	mtx_unlock(&vm_page_queue_free_mtx);
2123
2124	/*
2125	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2126	 */
2127	m->aflags = 0;
2128	flags = 0;
2129	if ((req & VM_ALLOC_ZERO) != 0)
2130		flags = PG_ZERO;
2131	m->flags &= flags;
2132	if ((req & VM_ALLOC_WIRED) != 0) {
2133		/*
2134		 * The page lock is not required for wiring a page that does
2135		 * not belong to an object.
2136		 */
2137		atomic_add_int(&vm_cnt.v_wire_count, 1);
2138		m->wire_count = 1;
2139	}
2140	/* Unmanaged pages don't use "act_count". */
2141	m->oflags = VPO_UNMANAGED;
2142	if (drop != NULL)
2143		vdrop(drop);
2144	if (vm_paging_needed())
2145		pagedaemon_wakeup();
2146	return (m);
2147}
2148
2149#define	VPSC_ANY	0	/* No restrictions. */
2150#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2151#define	VPSC_NOSUPER	2	/* Skip superpages. */
2152
2153/*
2154 *	vm_page_scan_contig:
2155 *
2156 *	Scan vm_page_array[] between the specified entries "m_start" and
2157 *	"m_end" for a run of contiguous physical pages that satisfy the
2158 *	specified conditions, and return the lowest page in the run.  The
2159 *	specified "alignment" determines the alignment of the lowest physical
2160 *	page in the run.  If the specified "boundary" is non-zero, then the
2161 *	run of physical pages cannot span a physical address that is a
2162 *	multiple of "boundary".
2163 *
2164 *	"m_end" is never dereferenced, so it need not point to a vm_page
2165 *	structure within vm_page_array[].
2166 *
2167 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2168 *	span a hole (or discontiguity) in the physical address space.  Both
2169 *	"alignment" and "boundary" must be a power of two.
2170 */
2171vm_page_t
2172vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2173    u_long alignment, vm_paddr_t boundary, int options)
2174{
2175	struct mtx *m_mtx, *new_mtx;
2176	vm_object_t object;
2177	vm_paddr_t pa;
2178	vm_page_t m, m_run;
2179#if VM_NRESERVLEVEL > 0
2180	int level;
2181#endif
2182	int m_inc, order, run_ext, run_len;
2183
2184	KASSERT(npages > 0, ("npages is 0"));
2185	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2186	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2187	m_run = NULL;
2188	run_len = 0;
2189	m_mtx = NULL;
2190	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2191		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2192		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2193
2194		/*
2195		 * If the current page would be the start of a run, check its
2196		 * physical address against the end, alignment, and boundary
2197		 * conditions.  If it doesn't satisfy these conditions, either
2198		 * terminate the scan or advance to the next page that
2199		 * satisfies the failed condition.
2200		 */
2201		if (run_len == 0) {
2202			KASSERT(m_run == NULL, ("m_run != NULL"));
2203			if (m + npages > m_end)
2204				break;
2205			pa = VM_PAGE_TO_PHYS(m);
2206			if ((pa & (alignment - 1)) != 0) {
2207				m_inc = atop(roundup2(pa, alignment) - pa);
2208				continue;
2209			}
2210			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2211			    boundary) != 0) {
2212				m_inc = atop(roundup2(pa, boundary) - pa);
2213				continue;
2214			}
2215		} else
2216			KASSERT(m_run != NULL, ("m_run == NULL"));
2217
2218		/*
2219		 * Avoid releasing and reacquiring the same page lock.
2220		 */
2221		new_mtx = vm_page_lockptr(m);
2222		if (m_mtx != new_mtx) {
2223			if (m_mtx != NULL)
2224				mtx_unlock(m_mtx);
2225			m_mtx = new_mtx;
2226			mtx_lock(m_mtx);
2227		}
2228		m_inc = 1;
2229retry:
2230		if (m->wire_count != 0 || m->hold_count != 0)
2231			run_ext = 0;
2232#if VM_NRESERVLEVEL > 0
2233		else if ((level = vm_reserv_level(m)) >= 0 &&
2234		    (options & VPSC_NORESERV) != 0) {
2235			run_ext = 0;
2236			/* Advance to the end of the reservation. */
2237			pa = VM_PAGE_TO_PHYS(m);
2238			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2239			    pa);
2240		}
2241#endif
2242		else if ((object = m->object) != NULL) {
2243			/*
2244			 * The page is considered eligible for relocation if
2245			 * and only if it could be laundered or reclaimed by
2246			 * the page daemon.
2247			 */
2248			if (!VM_OBJECT_TRYRLOCK(object)) {
2249				mtx_unlock(m_mtx);
2250				VM_OBJECT_RLOCK(object);
2251				mtx_lock(m_mtx);
2252				if (m->object != object) {
2253					/*
2254					 * The page may have been freed.
2255					 */
2256					VM_OBJECT_RUNLOCK(object);
2257					goto retry;
2258				} else if (m->wire_count != 0 ||
2259				    m->hold_count != 0) {
2260					run_ext = 0;
2261					goto unlock;
2262				}
2263			}
2264			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2265			    ("page %p is PG_UNHOLDFREE", m));
2266			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2267			if (object->type != OBJT_DEFAULT &&
2268			    object->type != OBJT_SWAP &&
2269			    object->type != OBJT_VNODE)
2270				run_ext = 0;
2271			else if ((m->flags & PG_CACHED) != 0 ||
2272			    m != vm_page_lookup(object, m->pindex)) {
2273				/*
2274				 * The page is cached or recently converted
2275				 * from cached to free.
2276				 */
2277#if VM_NRESERVLEVEL > 0
2278				if (level >= 0) {
2279					/*
2280					 * The page is reserved.  Extend the
2281					 * current run by one page.
2282					 */
2283					run_ext = 1;
2284				} else
2285#endif
2286				if ((order = m->order) < VM_NFREEORDER) {
2287					/*
2288					 * The page is enqueued in the
2289					 * physical memory allocator's cache/
2290					 * free page queues.  Moreover, it is
2291					 * the first page in a power-of-two-
2292					 * sized run of contiguous cache/free
2293					 * pages.  Add these pages to the end
2294					 * of the current run, and jump
2295					 * ahead.
2296					 */
2297					run_ext = 1 << order;
2298					m_inc = 1 << order;
2299				} else
2300					run_ext = 0;
2301#if VM_NRESERVLEVEL > 0
2302			} else if ((options & VPSC_NOSUPER) != 0 &&
2303			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2304				run_ext = 0;
2305				/* Advance to the end of the superpage. */
2306				pa = VM_PAGE_TO_PHYS(m);
2307				m_inc = atop(roundup2(pa + 1,
2308				    vm_reserv_size(level)) - pa);
2309#endif
2310			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2311			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2312				/*
2313				 * The page is allocated but eligible for
2314				 * relocation.  Extend the current run by one
2315				 * page.
2316				 */
2317				KASSERT(pmap_page_get_memattr(m) ==
2318				    VM_MEMATTR_DEFAULT,
2319				    ("page %p has an unexpected memattr", m));
2320				KASSERT((m->oflags & (VPO_SWAPINPROG |
2321				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2322				    ("page %p has unexpected oflags", m));
2323				/* Don't care: VPO_NOSYNC. */
2324				run_ext = 1;
2325			} else
2326				run_ext = 0;
2327unlock:
2328			VM_OBJECT_RUNLOCK(object);
2329#if VM_NRESERVLEVEL > 0
2330		} else if (level >= 0) {
2331			/*
2332			 * The page is reserved but not yet allocated.  In
2333			 * other words, it is still cached or free.  Extend
2334			 * the current run by one page.
2335			 */
2336			run_ext = 1;
2337#endif
2338		} else if ((order = m->order) < VM_NFREEORDER) {
2339			/*
2340			 * The page is enqueued in the physical memory
2341			 * allocator's cache/free page queues.  Moreover, it
2342			 * is the first page in a power-of-two-sized run of
2343			 * contiguous cache/free pages.  Add these pages to
2344			 * the end of the current run, and jump ahead.
2345			 */
2346			run_ext = 1 << order;
2347			m_inc = 1 << order;
2348		} else {
2349			/*
2350			 * Skip the page for one of the following reasons: (1)
2351			 * It is enqueued in the physical memory allocator's
2352			 * cache/free page queues.  However, it is not the
2353			 * first page in a run of contiguous cache/free pages.
2354			 * (This case rarely occurs because the scan is
2355			 * performed in ascending order.) (2) It is not
2356			 * reserved, and it is transitioning from free to
2357			 * allocated.  (Conversely, the transition from
2358			 * allocated to free for managed pages is blocked by
2359			 * the page lock.) (3) It is allocated but not
2360			 * contained by an object and not wired, e.g.,
2361			 * allocated by Xen's balloon driver.
2362			 */
2363			run_ext = 0;
2364		}
2365
2366		/*
2367		 * Extend or reset the current run of pages.
2368		 */
2369		if (run_ext > 0) {
2370			if (run_len == 0)
2371				m_run = m;
2372			run_len += run_ext;
2373		} else {
2374			if (run_len > 0) {
2375				m_run = NULL;
2376				run_len = 0;
2377			}
2378		}
2379	}
2380	if (m_mtx != NULL)
2381		mtx_unlock(m_mtx);
2382	if (run_len >= npages)
2383		return (m_run);
2384	return (NULL);
2385}
2386
2387/*
2388 *	vm_page_reclaim_run:
2389 *
2390 *	Try to relocate each of the allocated virtual pages within the
2391 *	specified run of physical pages to a new physical address.  Free the
2392 *	physical pages underlying the relocated virtual pages.  A virtual page
2393 *	is relocatable if and only if it could be laundered or reclaimed by
2394 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2395 *	physical address above "high".
2396 *
2397 *	Returns 0 if every physical page within the run was already free or
2398 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2399 *	value indicating why the last attempt to relocate a virtual page was
2400 *	unsuccessful.
2401 *
2402 *	"req_class" must be an allocation class.
2403 */
2404static int
2405vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2406    vm_paddr_t high)
2407{
2408	struct mtx *m_mtx, *new_mtx;
2409	struct spglist free;
2410	vm_object_t object;
2411	vm_paddr_t pa;
2412	vm_page_t m, m_end, m_new;
2413	int error, order, req;
2414
2415	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2416	    ("req_class is not an allocation class"));
2417	SLIST_INIT(&free);
2418	error = 0;
2419	m = m_run;
2420	m_end = m_run + npages;
2421	m_mtx = NULL;
2422	for (; error == 0 && m < m_end; m++) {
2423		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2424		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2425
2426		/*
2427		 * Avoid releasing and reacquiring the same page lock.
2428		 */
2429		new_mtx = vm_page_lockptr(m);
2430		if (m_mtx != new_mtx) {
2431			if (m_mtx != NULL)
2432				mtx_unlock(m_mtx);
2433			m_mtx = new_mtx;
2434			mtx_lock(m_mtx);
2435		}
2436retry:
2437		if (m->wire_count != 0 || m->hold_count != 0)
2438			error = EBUSY;
2439		else if ((object = m->object) != NULL) {
2440			/*
2441			 * The page is relocated if and only if it could be
2442			 * laundered or reclaimed by the page daemon.
2443			 */
2444			if (!VM_OBJECT_TRYWLOCK(object)) {
2445				mtx_unlock(m_mtx);
2446				VM_OBJECT_WLOCK(object);
2447				mtx_lock(m_mtx);
2448				if (m->object != object) {
2449					/*
2450					 * The page may have been freed.
2451					 */
2452					VM_OBJECT_WUNLOCK(object);
2453					goto retry;
2454				} else if (m->wire_count != 0 ||
2455				    m->hold_count != 0) {
2456					error = EBUSY;
2457					goto unlock;
2458				}
2459			}
2460			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2461			    ("page %p is PG_UNHOLDFREE", m));
2462			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2463			if (object->type != OBJT_DEFAULT &&
2464			    object->type != OBJT_SWAP &&
2465			    object->type != OBJT_VNODE)
2466				error = EINVAL;
2467			else if ((m->flags & PG_CACHED) != 0 ||
2468			    m != vm_page_lookup(object, m->pindex)) {
2469				/*
2470				 * The page is cached or recently converted
2471				 * from cached to free.
2472				 */
2473				VM_OBJECT_WUNLOCK(object);
2474				goto cached;
2475			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2476				error = EINVAL;
2477			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2478				KASSERT(pmap_page_get_memattr(m) ==
2479				    VM_MEMATTR_DEFAULT,
2480				    ("page %p has an unexpected memattr", m));
2481				KASSERT((m->oflags & (VPO_SWAPINPROG |
2482				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2483				    ("page %p has unexpected oflags", m));
2484				/* Don't care: VPO_NOSYNC. */
2485				if (m->valid != 0) {
2486					/*
2487					 * First, try to allocate a new page
2488					 * that is above "high".  Failing
2489					 * that, try to allocate a new page
2490					 * that is below "m_run".  Allocate
2491					 * the new page between the end of
2492					 * "m_run" and "high" only as a last
2493					 * resort.
2494					 */
2495					req = req_class | VM_ALLOC_NOOBJ;
2496					if ((m->flags & PG_NODUMP) != 0)
2497						req |= VM_ALLOC_NODUMP;
2498					if (trunc_page(high) !=
2499					    ~(vm_paddr_t)PAGE_MASK) {
2500						m_new = vm_page_alloc_contig(
2501						    NULL, 0, req, 1,
2502						    round_page(high),
2503						    ~(vm_paddr_t)0,
2504						    PAGE_SIZE, 0,
2505						    VM_MEMATTR_DEFAULT);
2506					} else
2507						m_new = NULL;
2508					if (m_new == NULL) {
2509						pa = VM_PAGE_TO_PHYS(m_run);
2510						m_new = vm_page_alloc_contig(
2511						    NULL, 0, req, 1,
2512						    0, pa - 1, PAGE_SIZE, 0,
2513						    VM_MEMATTR_DEFAULT);
2514					}
2515					if (m_new == NULL) {
2516						pa += ptoa(npages);
2517						m_new = vm_page_alloc_contig(
2518						    NULL, 0, req, 1,
2519						    pa, high, PAGE_SIZE, 0,
2520						    VM_MEMATTR_DEFAULT);
2521					}
2522					if (m_new == NULL) {
2523						error = ENOMEM;
2524						goto unlock;
2525					}
2526					KASSERT(m_new->wire_count == 0,
2527					    ("page %p is wired", m));
2528
2529					/*
2530					 * Replace "m" with the new page.  For
2531					 * vm_page_replace(), "m" must be busy
2532					 * and dequeued.  Finally, change "m"
2533					 * as if vm_page_free() was called.
2534					 */
2535					if (object->ref_count != 0)
2536						pmap_remove_all(m);
2537					m_new->aflags = m->aflags;
2538					KASSERT(m_new->oflags == VPO_UNMANAGED,
2539					    ("page %p is managed", m));
2540					m_new->oflags = m->oflags & VPO_NOSYNC;
2541					pmap_copy_page(m, m_new);
2542					m_new->valid = m->valid;
2543					m_new->dirty = m->dirty;
2544					m->flags &= ~PG_ZERO;
2545					vm_page_xbusy(m);
2546					vm_page_remque(m);
2547					vm_page_replace_checked(m_new, object,
2548					    m->pindex, m);
2549					m->valid = 0;
2550					vm_page_undirty(m);
2551
2552					/*
2553					 * The new page must be deactivated
2554					 * before the object is unlocked.
2555					 */
2556					new_mtx = vm_page_lockptr(m_new);
2557					if (m_mtx != new_mtx) {
2558						mtx_unlock(m_mtx);
2559						m_mtx = new_mtx;
2560						mtx_lock(m_mtx);
2561					}
2562					vm_page_deactivate(m_new);
2563				} else {
2564					m->flags &= ~PG_ZERO;
2565					vm_page_remque(m);
2566					vm_page_remove(m);
2567					KASSERT(m->dirty == 0,
2568					    ("page %p is dirty", m));
2569				}
2570				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2571			} else
2572				error = EBUSY;
2573unlock:
2574			VM_OBJECT_WUNLOCK(object);
2575		} else {
2576cached:
2577			mtx_lock(&vm_page_queue_free_mtx);
2578			order = m->order;
2579			if (order < VM_NFREEORDER) {
2580				/*
2581				 * The page is enqueued in the physical memory
2582				 * allocator's cache/free page queues.
2583				 * Moreover, it is the first page in a power-
2584				 * of-two-sized run of contiguous cache/free
2585				 * pages.  Jump ahead to the last page within
2586				 * that run, and continue from there.
2587				 */
2588				m += (1 << order) - 1;
2589			}
2590#if VM_NRESERVLEVEL > 0
2591			else if (vm_reserv_is_page_free(m))
2592				order = 0;
2593#endif
2594			mtx_unlock(&vm_page_queue_free_mtx);
2595			if (order == VM_NFREEORDER)
2596				error = EINVAL;
2597		}
2598	}
2599	if (m_mtx != NULL)
2600		mtx_unlock(m_mtx);
2601	if ((m = SLIST_FIRST(&free)) != NULL) {
2602		mtx_lock(&vm_page_queue_free_mtx);
2603		do {
2604			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2605			vm_phys_freecnt_adj(m, 1);
2606#if VM_NRESERVLEVEL > 0
2607			if (!vm_reserv_free_page(m))
2608#else
2609			if (true)
2610#endif
2611				vm_phys_free_pages(m, 0);
2612		} while ((m = SLIST_FIRST(&free)) != NULL);
2613		vm_page_zero_idle_wakeup();
2614		vm_page_free_wakeup();
2615		mtx_unlock(&vm_page_queue_free_mtx);
2616	}
2617	return (error);
2618}
2619
2620#define	NRUNS	16
2621
2622CTASSERT(powerof2(NRUNS));
2623
2624#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2625
2626#define	MIN_RECLAIM	8
2627
2628/*
2629 *	vm_page_reclaim_contig:
2630 *
2631 *	Reclaim allocated, contiguous physical memory satisfying the specified
2632 *	conditions by relocating the virtual pages using that physical memory.
2633 *	Returns true if reclamation is successful and false otherwise.  Since
2634 *	relocation requires the allocation of physical pages, reclamation may
2635 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2636 *	callers are expected to perform VM_WAIT before retrying a failed
2637 *	allocation operation, e.g., vm_page_alloc_contig().
2638 *
2639 *	The caller must always specify an allocation class through "req".
2640 *
2641 *	allocation classes:
2642 *	VM_ALLOC_NORMAL		normal process request
2643 *	VM_ALLOC_SYSTEM		system *really* needs a page
2644 *	VM_ALLOC_INTERRUPT	interrupt time request
2645 *
2646 *	The optional allocation flags are ignored.
2647 *
2648 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2649 *	must be a power of two.
2650 */
2651bool
2652vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2653    u_long alignment, vm_paddr_t boundary)
2654{
2655	vm_paddr_t curr_low;
2656	vm_page_t m_run, m_runs[NRUNS];
2657	u_long count, reclaimed;
2658	int error, i, options, req_class;
2659
2660	KASSERT(npages > 0, ("npages is 0"));
2661	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2662	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2663	req_class = req & VM_ALLOC_CLASS_MASK;
2664
2665	/*
2666	 * The page daemon is allowed to dig deeper into the free page list.
2667	 */
2668	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2669		req_class = VM_ALLOC_SYSTEM;
2670
2671	/*
2672	 * Return if the number of cached and free pages cannot satisfy the
2673	 * requested allocation.
2674	 */
2675	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2676	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2677	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2678	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2679		return (false);
2680
2681	/*
2682	 * Scan up to three times, relaxing the restrictions ("options") on
2683	 * the reclamation of reservations and superpages each time.
2684	 */
2685	for (options = VPSC_NORESERV;;) {
2686		/*
2687		 * Find the highest runs that satisfy the given constraints
2688		 * and restrictions, and record them in "m_runs".
2689		 */
2690		curr_low = low;
2691		count = 0;
2692		for (;;) {
2693			m_run = vm_phys_scan_contig(npages, curr_low, high,
2694			    alignment, boundary, options);
2695			if (m_run == NULL)
2696				break;
2697			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2698			m_runs[RUN_INDEX(count)] = m_run;
2699			count++;
2700		}
2701
2702		/*
2703		 * Reclaim the highest runs in LIFO (descending) order until
2704		 * the number of reclaimed pages, "reclaimed", is at least
2705		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2706		 * reclamation is idempotent, and runs will (likely) recur
2707		 * from one scan to the next as restrictions are relaxed.
2708		 */
2709		reclaimed = 0;
2710		for (i = 0; count > 0 && i < NRUNS; i++) {
2711			count--;
2712			m_run = m_runs[RUN_INDEX(count)];
2713			error = vm_page_reclaim_run(req_class, npages, m_run,
2714			    high);
2715			if (error == 0) {
2716				reclaimed += npages;
2717				if (reclaimed >= MIN_RECLAIM)
2718					return (true);
2719			}
2720		}
2721
2722		/*
2723		 * Either relax the restrictions on the next scan or return if
2724		 * the last scan had no restrictions.
2725		 */
2726		if (options == VPSC_NORESERV)
2727			options = VPSC_NOSUPER;
2728		else if (options == VPSC_NOSUPER)
2729			options = VPSC_ANY;
2730		else if (options == VPSC_ANY)
2731			return (reclaimed != 0);
2732	}
2733}
2734
2735/*
2736 *	vm_wait:	(also see VM_WAIT macro)
2737 *
2738 *	Sleep until free pages are available for allocation.
2739 *	- Called in various places before memory allocations.
2740 */
2741void
2742vm_wait(void)
2743{
2744
2745	mtx_lock(&vm_page_queue_free_mtx);
2746	if (curproc == pageproc) {
2747		vm_pageout_pages_needed = 1;
2748		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2749		    PDROP | PSWP, "VMWait", 0);
2750	} else {
2751		if (__predict_false(pageproc == NULL))
2752			panic("vm_wait in early boot");
2753		if (!vm_pageout_wanted) {
2754			vm_pageout_wanted = true;
2755			wakeup(&vm_pageout_wanted);
2756		}
2757		vm_pages_needed = true;
2758		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2759		    "vmwait", 0);
2760	}
2761}
2762
2763/*
2764 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2765 *
2766 *	Sleep until free pages are available for allocation.
2767 *	- Called only in vm_fault so that processes page faulting
2768 *	  can be easily tracked.
2769 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2770 *	  processes will be able to grab memory first.  Do not change
2771 *	  this balance without careful testing first.
2772 */
2773void
2774vm_waitpfault(void)
2775{
2776
2777	mtx_lock(&vm_page_queue_free_mtx);
2778	if (!vm_pageout_wanted) {
2779		vm_pageout_wanted = true;
2780		wakeup(&vm_pageout_wanted);
2781	}
2782	vm_pages_needed = true;
2783	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2784	    "pfault", 0);
2785}
2786
2787struct vm_pagequeue *
2788vm_page_pagequeue(vm_page_t m)
2789{
2790
2791	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2792}
2793
2794/*
2795 *	vm_page_dequeue:
2796 *
2797 *	Remove the given page from its current page queue.
2798 *
2799 *	The page must be locked.
2800 */
2801void
2802vm_page_dequeue(vm_page_t m)
2803{
2804	struct vm_pagequeue *pq;
2805
2806	vm_page_assert_locked(m);
2807	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2808	    m));
2809	pq = vm_page_pagequeue(m);
2810	vm_pagequeue_lock(pq);
2811	m->queue = PQ_NONE;
2812	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2813	vm_pagequeue_cnt_dec(pq);
2814	vm_pagequeue_unlock(pq);
2815}
2816
2817/*
2818 *	vm_page_dequeue_locked:
2819 *
2820 *	Remove the given page from its current page queue.
2821 *
2822 *	The page and page queue must be locked.
2823 */
2824void
2825vm_page_dequeue_locked(vm_page_t m)
2826{
2827	struct vm_pagequeue *pq;
2828
2829	vm_page_lock_assert(m, MA_OWNED);
2830	pq = vm_page_pagequeue(m);
2831	vm_pagequeue_assert_locked(pq);
2832	m->queue = PQ_NONE;
2833	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2834	vm_pagequeue_cnt_dec(pq);
2835}
2836
2837/*
2838 *	vm_page_enqueue:
2839 *
2840 *	Add the given page to the specified page queue.
2841 *
2842 *	The page must be locked.
2843 */
2844static void
2845vm_page_enqueue(uint8_t queue, vm_page_t m)
2846{
2847	struct vm_pagequeue *pq;
2848
2849	vm_page_lock_assert(m, MA_OWNED);
2850	KASSERT(queue < PQ_COUNT,
2851	    ("vm_page_enqueue: invalid queue %u request for page %p",
2852	    queue, m));
2853	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2854	vm_pagequeue_lock(pq);
2855	m->queue = queue;
2856	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2857	vm_pagequeue_cnt_inc(pq);
2858	vm_pagequeue_unlock(pq);
2859}
2860
2861/*
2862 *	vm_page_requeue:
2863 *
2864 *	Move the given page to the tail of its current page queue.
2865 *
2866 *	The page must be locked.
2867 */
2868void
2869vm_page_requeue(vm_page_t m)
2870{
2871	struct vm_pagequeue *pq;
2872
2873	vm_page_lock_assert(m, MA_OWNED);
2874	KASSERT(m->queue != PQ_NONE,
2875	    ("vm_page_requeue: page %p is not queued", m));
2876	pq = vm_page_pagequeue(m);
2877	vm_pagequeue_lock(pq);
2878	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2879	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2880	vm_pagequeue_unlock(pq);
2881}
2882
2883/*
2884 *	vm_page_requeue_locked:
2885 *
2886 *	Move the given page to the tail of its current page queue.
2887 *
2888 *	The page queue must be locked.
2889 */
2890void
2891vm_page_requeue_locked(vm_page_t m)
2892{
2893	struct vm_pagequeue *pq;
2894
2895	KASSERT(m->queue != PQ_NONE,
2896	    ("vm_page_requeue_locked: page %p is not queued", m));
2897	pq = vm_page_pagequeue(m);
2898	vm_pagequeue_assert_locked(pq);
2899	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2900	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2901}
2902
2903/*
2904 *	vm_page_activate:
2905 *
2906 *	Put the specified page on the active list (if appropriate).
2907 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2908 *	mess with it.
2909 *
2910 *	The page must be locked.
2911 */
2912void
2913vm_page_activate(vm_page_t m)
2914{
2915	int queue;
2916
2917	vm_page_lock_assert(m, MA_OWNED);
2918	if ((queue = m->queue) != PQ_ACTIVE) {
2919		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2920			if (m->act_count < ACT_INIT)
2921				m->act_count = ACT_INIT;
2922			if (queue != PQ_NONE)
2923				vm_page_dequeue(m);
2924			vm_page_enqueue(PQ_ACTIVE, m);
2925		} else
2926			KASSERT(queue == PQ_NONE,
2927			    ("vm_page_activate: wired page %p is queued", m));
2928	} else {
2929		if (m->act_count < ACT_INIT)
2930			m->act_count = ACT_INIT;
2931	}
2932}
2933
2934/*
2935 *	vm_page_free_wakeup:
2936 *
2937 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2938 *	routine is called when a page has been added to the cache or free
2939 *	queues.
2940 *
2941 *	The page queues must be locked.
2942 */
2943static inline void
2944vm_page_free_wakeup(void)
2945{
2946
2947	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2948	/*
2949	 * if pageout daemon needs pages, then tell it that there are
2950	 * some free.
2951	 */
2952	if (vm_pageout_pages_needed &&
2953	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2954		wakeup(&vm_pageout_pages_needed);
2955		vm_pageout_pages_needed = 0;
2956	}
2957	/*
2958	 * wakeup processes that are waiting on memory if we hit a
2959	 * high water mark. And wakeup scheduler process if we have
2960	 * lots of memory. this process will swapin processes.
2961	 */
2962	if (vm_pages_needed && !vm_page_count_min()) {
2963		vm_pages_needed = false;
2964		wakeup(&vm_cnt.v_free_count);
2965	}
2966}
2967
2968/*
2969 *	Turn a cached page into a free page, by changing its attributes.
2970 *	Keep the statistics up-to-date.
2971 *
2972 *	The free page queue must be locked.
2973 */
2974static void
2975vm_page_cache_turn_free(vm_page_t m)
2976{
2977
2978	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2979
2980	m->object = NULL;
2981	m->valid = 0;
2982	KASSERT((m->flags & PG_CACHED) != 0,
2983	    ("vm_page_cache_turn_free: page %p is not cached", m));
2984	m->flags &= ~PG_CACHED;
2985	vm_cnt.v_cache_count--;
2986	vm_phys_freecnt_adj(m, 1);
2987}
2988
2989/*
2990 *	vm_page_free_toq:
2991 *
2992 *	Returns the given page to the free list,
2993 *	disassociating it with any VM object.
2994 *
2995 *	The object must be locked.  The page must be locked if it is managed.
2996 */
2997void
2998vm_page_free_toq(vm_page_t m)
2999{
3000
3001	if ((m->oflags & VPO_UNMANAGED) == 0) {
3002		vm_page_lock_assert(m, MA_OWNED);
3003		KASSERT(!pmap_page_is_mapped(m),
3004		    ("vm_page_free_toq: freeing mapped page %p", m));
3005	} else
3006		KASSERT(m->queue == PQ_NONE,
3007		    ("vm_page_free_toq: unmanaged page %p is queued", m));
3008	PCPU_INC(cnt.v_tfree);
3009
3010	if (vm_page_sbusied(m))
3011		panic("vm_page_free: freeing busy page %p", m);
3012
3013	/*
3014	 * Unqueue, then remove page.  Note that we cannot destroy
3015	 * the page here because we do not want to call the pager's
3016	 * callback routine until after we've put the page on the
3017	 * appropriate free queue.
3018	 */
3019	vm_page_remque(m);
3020	vm_page_remove(m);
3021
3022	/*
3023	 * If fictitious remove object association and
3024	 * return, otherwise delay object association removal.
3025	 */
3026	if ((m->flags & PG_FICTITIOUS) != 0) {
3027		return;
3028	}
3029
3030	m->valid = 0;
3031	vm_page_undirty(m);
3032
3033	if (m->wire_count != 0)
3034		panic("vm_page_free: freeing wired page %p", m);
3035	if (m->hold_count != 0) {
3036		m->flags &= ~PG_ZERO;
3037		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3038		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
3039		m->flags |= PG_UNHOLDFREE;
3040	} else {
3041		/*
3042		 * Restore the default memory attribute to the page.
3043		 */
3044		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3045			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3046
3047		/*
3048		 * Insert the page into the physical memory allocator's
3049		 * cache/free page queues.
3050		 */
3051		mtx_lock(&vm_page_queue_free_mtx);
3052		vm_phys_freecnt_adj(m, 1);
3053#if VM_NRESERVLEVEL > 0
3054		if (!vm_reserv_free_page(m))
3055#else
3056		if (TRUE)
3057#endif
3058			vm_phys_free_pages(m, 0);
3059		if ((m->flags & PG_ZERO) != 0)
3060			++vm_page_zero_count;
3061		else
3062			vm_page_zero_idle_wakeup();
3063		vm_page_free_wakeup();
3064		mtx_unlock(&vm_page_queue_free_mtx);
3065	}
3066}
3067
3068/*
3069 *	vm_page_wire:
3070 *
3071 *	Mark this page as wired down by yet
3072 *	another map, removing it from paging queues
3073 *	as necessary.
3074 *
3075 *	If the page is fictitious, then its wire count must remain one.
3076 *
3077 *	The page must be locked.
3078 */
3079void
3080vm_page_wire(vm_page_t m)
3081{
3082
3083	/*
3084	 * Only bump the wire statistics if the page is not already wired,
3085	 * and only unqueue the page if it is on some queue (if it is unmanaged
3086	 * it is already off the queues).
3087	 */
3088	vm_page_lock_assert(m, MA_OWNED);
3089	if ((m->flags & PG_FICTITIOUS) != 0) {
3090		KASSERT(m->wire_count == 1,
3091		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3092		    m));
3093		return;
3094	}
3095	if (m->wire_count == 0) {
3096		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3097		    m->queue == PQ_NONE,
3098		    ("vm_page_wire: unmanaged page %p is queued", m));
3099		vm_page_remque(m);
3100		atomic_add_int(&vm_cnt.v_wire_count, 1);
3101	}
3102	m->wire_count++;
3103	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3104}
3105
3106/*
3107 * vm_page_unwire:
3108 *
3109 * Release one wiring of the specified page, potentially allowing it to be
3110 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3111 * FALSE otherwise.
3112 *
3113 * Only managed pages belonging to an object can be paged out.  If the number
3114 * of wirings transitions to zero and the page is eligible for page out, then
3115 * the page is added to the specified paging queue (unless PQ_NONE is
3116 * specified).
3117 *
3118 * If a page is fictitious, then its wire count must always be one.
3119 *
3120 * A managed page must be locked.
3121 */
3122boolean_t
3123vm_page_unwire(vm_page_t m, uint8_t queue)
3124{
3125
3126	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3127	    ("vm_page_unwire: invalid queue %u request for page %p",
3128	    queue, m));
3129	if ((m->oflags & VPO_UNMANAGED) == 0)
3130		vm_page_assert_locked(m);
3131	if ((m->flags & PG_FICTITIOUS) != 0) {
3132		KASSERT(m->wire_count == 1,
3133	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3134		return (FALSE);
3135	}
3136	if (m->wire_count > 0) {
3137		m->wire_count--;
3138		if (m->wire_count == 0) {
3139			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3140			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3141			    m->object != NULL && queue != PQ_NONE) {
3142				if (queue == PQ_INACTIVE)
3143					m->flags &= ~PG_WINATCFLS;
3144				vm_page_enqueue(queue, m);
3145			}
3146			return (TRUE);
3147		} else
3148			return (FALSE);
3149	} else
3150		panic("vm_page_unwire: page %p's wire count is zero", m);
3151}
3152
3153/*
3154 * Move the specified page to the inactive queue.
3155 *
3156 * Many pages placed on the inactive queue should actually go
3157 * into the cache, but it is difficult to figure out which.  What
3158 * we do instead, if the inactive target is well met, is to put
3159 * clean pages at the head of the inactive queue instead of the tail.
3160 * This will cause them to be moved to the cache more quickly and
3161 * if not actively re-referenced, reclaimed more quickly.  If we just
3162 * stick these pages at the end of the inactive queue, heavy filesystem
3163 * meta-data accesses can cause an unnecessary paging load on memory bound
3164 * processes.  This optimization causes one-time-use metadata to be
3165 * reused more quickly.
3166 *
3167 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3168 * to TRUE if we want this page to be 'as if it were placed in the cache',
3169 * except without unmapping it from the process address space.  In
3170 * practice this is implemented by inserting the page at the head of the
3171 * queue, using a marker page to guide FIFO insertion ordering.
3172 *
3173 * The page must be locked.
3174 */
3175static inline void
3176_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3177{
3178	struct vm_pagequeue *pq;
3179	int queue;
3180
3181	vm_page_assert_locked(m);
3182
3183	/*
3184	 * Ignore if the page is already inactive, unless it is unlikely to be
3185	 * reactivated.
3186	 */
3187	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3188		return;
3189	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3190		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3191		/* Avoid multiple acquisitions of the inactive queue lock. */
3192		if (queue == PQ_INACTIVE) {
3193			vm_pagequeue_lock(pq);
3194			vm_page_dequeue_locked(m);
3195		} else {
3196			if (queue != PQ_NONE)
3197				vm_page_dequeue(m);
3198			m->flags &= ~PG_WINATCFLS;
3199			vm_pagequeue_lock(pq);
3200		}
3201		m->queue = PQ_INACTIVE;
3202		if (noreuse)
3203			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3204			    m, plinks.q);
3205		else
3206			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3207		vm_pagequeue_cnt_inc(pq);
3208		vm_pagequeue_unlock(pq);
3209	}
3210}
3211
3212/*
3213 * Move the specified page to the inactive queue.
3214 *
3215 * The page must be locked.
3216 */
3217void
3218vm_page_deactivate(vm_page_t m)
3219{
3220
3221	_vm_page_deactivate(m, FALSE);
3222}
3223
3224/*
3225 * Move the specified page to the inactive queue with the expectation
3226 * that it is unlikely to be reused.
3227 *
3228 * The page must be locked.
3229 */
3230void
3231vm_page_deactivate_noreuse(vm_page_t m)
3232{
3233
3234	_vm_page_deactivate(m, TRUE);
3235}
3236
3237/*
3238 * vm_page_try_to_cache:
3239 *
3240 * Returns 0 on failure, 1 on success
3241 */
3242int
3243vm_page_try_to_cache(vm_page_t m)
3244{
3245
3246	vm_page_lock_assert(m, MA_OWNED);
3247	VM_OBJECT_ASSERT_WLOCKED(m->object);
3248	if (m->dirty || m->hold_count || m->wire_count ||
3249	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3250		return (0);
3251	pmap_remove_all(m);
3252	if (m->dirty)
3253		return (0);
3254	vm_page_cache(m);
3255	return (1);
3256}
3257
3258/*
3259 * vm_page_try_to_free()
3260 *
3261 *	Attempt to free the page.  If we cannot free it, we do nothing.
3262 *	1 is returned on success, 0 on failure.
3263 */
3264int
3265vm_page_try_to_free(vm_page_t m)
3266{
3267
3268	vm_page_lock_assert(m, MA_OWNED);
3269	if (m->object != NULL)
3270		VM_OBJECT_ASSERT_WLOCKED(m->object);
3271	if (m->dirty || m->hold_count || m->wire_count ||
3272	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3273		return (0);
3274	pmap_remove_all(m);
3275	if (m->dirty)
3276		return (0);
3277	vm_page_free(m);
3278	return (1);
3279}
3280
3281/*
3282 * vm_page_cache
3283 *
3284 * Put the specified page onto the page cache queue (if appropriate).
3285 *
3286 * The object and page must be locked.
3287 */
3288void
3289vm_page_cache(vm_page_t m)
3290{
3291	vm_object_t object;
3292	boolean_t cache_was_empty;
3293
3294	vm_page_lock_assert(m, MA_OWNED);
3295	object = m->object;
3296	VM_OBJECT_ASSERT_WLOCKED(object);
3297	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3298	    m->hold_count || m->wire_count)
3299		panic("vm_page_cache: attempting to cache busy page");
3300	KASSERT(!pmap_page_is_mapped(m),
3301	    ("vm_page_cache: page %p is mapped", m));
3302	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3303	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3304	    (object->type == OBJT_SWAP &&
3305	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3306		/*
3307		 * Hypothesis: A cache-eligible page belonging to a
3308		 * default object or swap object but without a backing
3309		 * store must be zero filled.
3310		 */
3311		vm_page_free(m);
3312		return;
3313	}
3314	KASSERT((m->flags & PG_CACHED) == 0,
3315	    ("vm_page_cache: page %p is already cached", m));
3316
3317	/*
3318	 * Remove the page from the paging queues.
3319	 */
3320	vm_page_remque(m);
3321
3322	/*
3323	 * Remove the page from the object's collection of resident
3324	 * pages.
3325	 */
3326	vm_radix_remove(&object->rtree, m->pindex);
3327	TAILQ_REMOVE(&object->memq, m, listq);
3328	object->resident_page_count--;
3329
3330	/*
3331	 * Restore the default memory attribute to the page.
3332	 */
3333	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3334		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3335
3336	/*
3337	 * Insert the page into the object's collection of cached pages
3338	 * and the physical memory allocator's cache/free page queues.
3339	 */
3340	m->flags &= ~PG_ZERO;
3341	mtx_lock(&vm_page_queue_free_mtx);
3342	cache_was_empty = vm_radix_is_empty(&object->cache);
3343	if (vm_radix_insert(&object->cache, m)) {
3344		mtx_unlock(&vm_page_queue_free_mtx);
3345		if (object->type == OBJT_VNODE &&
3346		    object->resident_page_count == 0)
3347			vdrop(object->handle);
3348		m->object = NULL;
3349		vm_page_free(m);
3350		return;
3351	}
3352
3353	/*
3354	 * The above call to vm_radix_insert() could reclaim the one pre-
3355	 * existing cached page from this object, resulting in a call to
3356	 * vdrop().
3357	 */
3358	if (!cache_was_empty)
3359		cache_was_empty = vm_radix_is_singleton(&object->cache);
3360
3361	m->flags |= PG_CACHED;
3362	vm_cnt.v_cache_count++;
3363	PCPU_INC(cnt.v_tcached);
3364#if VM_NRESERVLEVEL > 0
3365	if (!vm_reserv_free_page(m)) {
3366#else
3367	if (TRUE) {
3368#endif
3369		vm_phys_free_pages(m, 0);
3370	}
3371	vm_page_free_wakeup();
3372	mtx_unlock(&vm_page_queue_free_mtx);
3373
3374	/*
3375	 * Increment the vnode's hold count if this is the object's only
3376	 * cached page.  Decrement the vnode's hold count if this was
3377	 * the object's only resident page.
3378	 */
3379	if (object->type == OBJT_VNODE) {
3380		if (cache_was_empty && object->resident_page_count != 0)
3381			vhold(object->handle);
3382		else if (!cache_was_empty && object->resident_page_count == 0)
3383			vdrop(object->handle);
3384	}
3385}
3386
3387/*
3388 * vm_page_advise
3389 *
3390 * 	Deactivate or do nothing, as appropriate.
3391 *
3392 *	The object and page must be locked.
3393 */
3394void
3395vm_page_advise(vm_page_t m, int advice)
3396{
3397
3398	vm_page_assert_locked(m);
3399	VM_OBJECT_ASSERT_WLOCKED(m->object);
3400	if (advice == MADV_FREE)
3401		/*
3402		 * Mark the page clean.  This will allow the page to be freed
3403		 * up by the system.  However, such pages are often reused
3404		 * quickly by malloc() so we do not do anything that would
3405		 * cause a page fault if we can help it.
3406		 *
3407		 * Specifically, we do not try to actually free the page now
3408		 * nor do we try to put it in the cache (which would cause a
3409		 * page fault on reuse).
3410		 *
3411		 * But we do make the page as freeable as we can without
3412		 * actually taking the step of unmapping it.
3413		 */
3414		vm_page_undirty(m);
3415	else if (advice != MADV_DONTNEED)
3416		return;
3417
3418	/*
3419	 * Clear any references to the page.  Otherwise, the page daemon will
3420	 * immediately reactivate the page.
3421	 */
3422	vm_page_aflag_clear(m, PGA_REFERENCED);
3423
3424	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3425		vm_page_dirty(m);
3426
3427	/*
3428	 * Place clean pages near the head of the inactive queue rather than
3429	 * the tail, thus defeating the queue's LRU operation and ensuring that
3430	 * the page will be reused quickly.  Dirty pages are given a chance to
3431	 * cycle once through the inactive queue before becoming eligible for
3432	 * laundering.
3433	 */
3434	_vm_page_deactivate(m, m->dirty == 0);
3435}
3436
3437/*
3438 * Grab a page, waiting until we are waken up due to the page
3439 * changing state.  We keep on waiting, if the page continues
3440 * to be in the object.  If the page doesn't exist, first allocate it
3441 * and then conditionally zero it.
3442 *
3443 * This routine may sleep.
3444 *
3445 * The object must be locked on entry.  The lock will, however, be released
3446 * and reacquired if the routine sleeps.
3447 */
3448vm_page_t
3449vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3450{
3451	vm_page_t m;
3452	int sleep;
3453
3454	VM_OBJECT_ASSERT_WLOCKED(object);
3455	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3456	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3457	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3458retrylookup:
3459	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3460		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3461		    vm_page_xbusied(m) : vm_page_busied(m);
3462		if (sleep) {
3463			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3464				return (NULL);
3465			/*
3466			 * Reference the page before unlocking and
3467			 * sleeping so that the page daemon is less
3468			 * likely to reclaim it.
3469			 */
3470			vm_page_aflag_set(m, PGA_REFERENCED);
3471			vm_page_lock(m);
3472			VM_OBJECT_WUNLOCK(object);
3473			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3474			    VM_ALLOC_IGN_SBUSY) != 0);
3475			VM_OBJECT_WLOCK(object);
3476			goto retrylookup;
3477		} else {
3478			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3479				vm_page_lock(m);
3480				vm_page_wire(m);
3481				vm_page_unlock(m);
3482			}
3483			if ((allocflags &
3484			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3485				vm_page_xbusy(m);
3486			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3487				vm_page_sbusy(m);
3488			return (m);
3489		}
3490	}
3491	m = vm_page_alloc(object, pindex, allocflags);
3492	if (m == NULL) {
3493		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3494			return (NULL);
3495		VM_OBJECT_WUNLOCK(object);
3496		VM_WAIT;
3497		VM_OBJECT_WLOCK(object);
3498		goto retrylookup;
3499	} else if (m->valid != 0)
3500		return (m);
3501	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3502		pmap_zero_page(m);
3503	return (m);
3504}
3505
3506/*
3507 * Mapping function for valid or dirty bits in a page.
3508 *
3509 * Inputs are required to range within a page.
3510 */
3511vm_page_bits_t
3512vm_page_bits(int base, int size)
3513{
3514	int first_bit;
3515	int last_bit;
3516
3517	KASSERT(
3518	    base + size <= PAGE_SIZE,
3519	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3520	);
3521
3522	if (size == 0)		/* handle degenerate case */
3523		return (0);
3524
3525	first_bit = base >> DEV_BSHIFT;
3526	last_bit = (base + size - 1) >> DEV_BSHIFT;
3527
3528	return (((vm_page_bits_t)2 << last_bit) -
3529	    ((vm_page_bits_t)1 << first_bit));
3530}
3531
3532/*
3533 *	vm_page_set_valid_range:
3534 *
3535 *	Sets portions of a page valid.  The arguments are expected
3536 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3537 *	of any partial chunks touched by the range.  The invalid portion of
3538 *	such chunks will be zeroed.
3539 *
3540 *	(base + size) must be less then or equal to PAGE_SIZE.
3541 */
3542void
3543vm_page_set_valid_range(vm_page_t m, int base, int size)
3544{
3545	int endoff, frag;
3546
3547	VM_OBJECT_ASSERT_WLOCKED(m->object);
3548	if (size == 0)	/* handle degenerate case */
3549		return;
3550
3551	/*
3552	 * If the base is not DEV_BSIZE aligned and the valid
3553	 * bit is clear, we have to zero out a portion of the
3554	 * first block.
3555	 */
3556	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3557	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3558		pmap_zero_page_area(m, frag, base - frag);
3559
3560	/*
3561	 * If the ending offset is not DEV_BSIZE aligned and the
3562	 * valid bit is clear, we have to zero out a portion of
3563	 * the last block.
3564	 */
3565	endoff = base + size;
3566	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3567	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3568		pmap_zero_page_area(m, endoff,
3569		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3570
3571	/*
3572	 * Assert that no previously invalid block that is now being validated
3573	 * is already dirty.
3574	 */
3575	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3576	    ("vm_page_set_valid_range: page %p is dirty", m));
3577
3578	/*
3579	 * Set valid bits inclusive of any overlap.
3580	 */
3581	m->valid |= vm_page_bits(base, size);
3582}
3583
3584/*
3585 * Clear the given bits from the specified page's dirty field.
3586 */
3587static __inline void
3588vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3589{
3590	uintptr_t addr;
3591#if PAGE_SIZE < 16384
3592	int shift;
3593#endif
3594
3595	/*
3596	 * If the object is locked and the page is neither exclusive busy nor
3597	 * write mapped, then the page's dirty field cannot possibly be
3598	 * set by a concurrent pmap operation.
3599	 */
3600	VM_OBJECT_ASSERT_WLOCKED(m->object);
3601	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3602		m->dirty &= ~pagebits;
3603	else {
3604		/*
3605		 * The pmap layer can call vm_page_dirty() without
3606		 * holding a distinguished lock.  The combination of
3607		 * the object's lock and an atomic operation suffice
3608		 * to guarantee consistency of the page dirty field.
3609		 *
3610		 * For PAGE_SIZE == 32768 case, compiler already
3611		 * properly aligns the dirty field, so no forcible
3612		 * alignment is needed. Only require existence of
3613		 * atomic_clear_64 when page size is 32768.
3614		 */
3615		addr = (uintptr_t)&m->dirty;
3616#if PAGE_SIZE == 32768
3617		atomic_clear_64((uint64_t *)addr, pagebits);
3618#elif PAGE_SIZE == 16384
3619		atomic_clear_32((uint32_t *)addr, pagebits);
3620#else		/* PAGE_SIZE <= 8192 */
3621		/*
3622		 * Use a trick to perform a 32-bit atomic on the
3623		 * containing aligned word, to not depend on the existence
3624		 * of atomic_clear_{8, 16}.
3625		 */
3626		shift = addr & (sizeof(uint32_t) - 1);
3627#if BYTE_ORDER == BIG_ENDIAN
3628		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3629#else
3630		shift *= NBBY;
3631#endif
3632		addr &= ~(sizeof(uint32_t) - 1);
3633		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3634#endif		/* PAGE_SIZE */
3635	}
3636}
3637
3638/*
3639 *	vm_page_set_validclean:
3640 *
3641 *	Sets portions of a page valid and clean.  The arguments are expected
3642 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3643 *	of any partial chunks touched by the range.  The invalid portion of
3644 *	such chunks will be zero'd.
3645 *
3646 *	(base + size) must be less then or equal to PAGE_SIZE.
3647 */
3648void
3649vm_page_set_validclean(vm_page_t m, int base, int size)
3650{
3651	vm_page_bits_t oldvalid, pagebits;
3652	int endoff, frag;
3653
3654	VM_OBJECT_ASSERT_WLOCKED(m->object);
3655	if (size == 0)	/* handle degenerate case */
3656		return;
3657
3658	/*
3659	 * If the base is not DEV_BSIZE aligned and the valid
3660	 * bit is clear, we have to zero out a portion of the
3661	 * first block.
3662	 */
3663	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3664	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3665		pmap_zero_page_area(m, frag, base - frag);
3666
3667	/*
3668	 * If the ending offset is not DEV_BSIZE aligned and the
3669	 * valid bit is clear, we have to zero out a portion of
3670	 * the last block.
3671	 */
3672	endoff = base + size;
3673	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3674	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3675		pmap_zero_page_area(m, endoff,
3676		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3677
3678	/*
3679	 * Set valid, clear dirty bits.  If validating the entire
3680	 * page we can safely clear the pmap modify bit.  We also
3681	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3682	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3683	 * be set again.
3684	 *
3685	 * We set valid bits inclusive of any overlap, but we can only
3686	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3687	 * the range.
3688	 */
3689	oldvalid = m->valid;
3690	pagebits = vm_page_bits(base, size);
3691	m->valid |= pagebits;
3692#if 0	/* NOT YET */
3693	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3694		frag = DEV_BSIZE - frag;
3695		base += frag;
3696		size -= frag;
3697		if (size < 0)
3698			size = 0;
3699	}
3700	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3701#endif
3702	if (base == 0 && size == PAGE_SIZE) {
3703		/*
3704		 * The page can only be modified within the pmap if it is
3705		 * mapped, and it can only be mapped if it was previously
3706		 * fully valid.
3707		 */
3708		if (oldvalid == VM_PAGE_BITS_ALL)
3709			/*
3710			 * Perform the pmap_clear_modify() first.  Otherwise,
3711			 * a concurrent pmap operation, such as
3712			 * pmap_protect(), could clear a modification in the
3713			 * pmap and set the dirty field on the page before
3714			 * pmap_clear_modify() had begun and after the dirty
3715			 * field was cleared here.
3716			 */
3717			pmap_clear_modify(m);
3718		m->dirty = 0;
3719		m->oflags &= ~VPO_NOSYNC;
3720	} else if (oldvalid != VM_PAGE_BITS_ALL)
3721		m->dirty &= ~pagebits;
3722	else
3723		vm_page_clear_dirty_mask(m, pagebits);
3724}
3725
3726void
3727vm_page_clear_dirty(vm_page_t m, int base, int size)
3728{
3729
3730	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3731}
3732
3733/*
3734 *	vm_page_set_invalid:
3735 *
3736 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3737 *	valid and dirty bits for the effected areas are cleared.
3738 */
3739void
3740vm_page_set_invalid(vm_page_t m, int base, int size)
3741{
3742	vm_page_bits_t bits;
3743	vm_object_t object;
3744
3745	object = m->object;
3746	VM_OBJECT_ASSERT_WLOCKED(object);
3747	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3748	    size >= object->un_pager.vnp.vnp_size)
3749		bits = VM_PAGE_BITS_ALL;
3750	else
3751		bits = vm_page_bits(base, size);
3752	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3753	    bits != 0)
3754		pmap_remove_all(m);
3755	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3756	    !pmap_page_is_mapped(m),
3757	    ("vm_page_set_invalid: page %p is mapped", m));
3758	m->valid &= ~bits;
3759	m->dirty &= ~bits;
3760}
3761
3762/*
3763 * vm_page_zero_invalid()
3764 *
3765 *	The kernel assumes that the invalid portions of a page contain
3766 *	garbage, but such pages can be mapped into memory by user code.
3767 *	When this occurs, we must zero out the non-valid portions of the
3768 *	page so user code sees what it expects.
3769 *
3770 *	Pages are most often semi-valid when the end of a file is mapped
3771 *	into memory and the file's size is not page aligned.
3772 */
3773void
3774vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3775{
3776	int b;
3777	int i;
3778
3779	VM_OBJECT_ASSERT_WLOCKED(m->object);
3780	/*
3781	 * Scan the valid bits looking for invalid sections that
3782	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3783	 * valid bit may be set ) have already been zeroed by
3784	 * vm_page_set_validclean().
3785	 */
3786	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3787		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3788		    (m->valid & ((vm_page_bits_t)1 << i))) {
3789			if (i > b) {
3790				pmap_zero_page_area(m,
3791				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3792			}
3793			b = i + 1;
3794		}
3795	}
3796
3797	/*
3798	 * setvalid is TRUE when we can safely set the zero'd areas
3799	 * as being valid.  We can do this if there are no cache consistancy
3800	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3801	 */
3802	if (setvalid)
3803		m->valid = VM_PAGE_BITS_ALL;
3804}
3805
3806/*
3807 *	vm_page_is_valid:
3808 *
3809 *	Is (partial) page valid?  Note that the case where size == 0
3810 *	will return FALSE in the degenerate case where the page is
3811 *	entirely invalid, and TRUE otherwise.
3812 */
3813int
3814vm_page_is_valid(vm_page_t m, int base, int size)
3815{
3816	vm_page_bits_t bits;
3817
3818	VM_OBJECT_ASSERT_LOCKED(m->object);
3819	bits = vm_page_bits(base, size);
3820	return (m->valid != 0 && (m->valid & bits) == bits);
3821}
3822
3823/*
3824 *	vm_page_ps_is_valid:
3825 *
3826 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3827 */
3828boolean_t
3829vm_page_ps_is_valid(vm_page_t m)
3830{
3831	int i, npages;
3832
3833	VM_OBJECT_ASSERT_LOCKED(m->object);
3834	npages = atop(pagesizes[m->psind]);
3835
3836	/*
3837	 * The physically contiguous pages that make up a superpage, i.e., a
3838	 * page with a page size index ("psind") greater than zero, will
3839	 * occupy adjacent entries in vm_page_array[].
3840	 */
3841	for (i = 0; i < npages; i++) {
3842		if (m[i].valid != VM_PAGE_BITS_ALL)
3843			return (FALSE);
3844	}
3845	return (TRUE);
3846}
3847
3848/*
3849 * Set the page's dirty bits if the page is modified.
3850 */
3851void
3852vm_page_test_dirty(vm_page_t m)
3853{
3854
3855	VM_OBJECT_ASSERT_WLOCKED(m->object);
3856	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3857		vm_page_dirty(m);
3858}
3859
3860void
3861vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3862{
3863
3864	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3865}
3866
3867void
3868vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3869{
3870
3871	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3872}
3873
3874int
3875vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3876{
3877
3878	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3879}
3880
3881#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3882void
3883vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3884{
3885
3886	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3887}
3888
3889void
3890vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3891{
3892
3893	mtx_assert_(vm_page_lockptr(m), a, file, line);
3894}
3895#endif
3896
3897#ifdef INVARIANTS
3898void
3899vm_page_object_lock_assert(vm_page_t m)
3900{
3901
3902	/*
3903	 * Certain of the page's fields may only be modified by the
3904	 * holder of the containing object's lock or the exclusive busy.
3905	 * holder.  Unfortunately, the holder of the write busy is
3906	 * not recorded, and thus cannot be checked here.
3907	 */
3908	if (m->object != NULL && !vm_page_xbusied(m))
3909		VM_OBJECT_ASSERT_WLOCKED(m->object);
3910}
3911
3912void
3913vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3914{
3915
3916	if ((bits & PGA_WRITEABLE) == 0)
3917		return;
3918
3919	/*
3920	 * The PGA_WRITEABLE flag can only be set if the page is
3921	 * managed, is exclusively busied or the object is locked.
3922	 * Currently, this flag is only set by pmap_enter().
3923	 */
3924	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3925	    ("PGA_WRITEABLE on unmanaged page"));
3926	if (!vm_page_xbusied(m))
3927		VM_OBJECT_ASSERT_LOCKED(m->object);
3928}
3929#endif
3930
3931#include "opt_ddb.h"
3932#ifdef DDB
3933#include <sys/kernel.h>
3934
3935#include <ddb/ddb.h>
3936
3937DB_SHOW_COMMAND(page, vm_page_print_page_info)
3938{
3939	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3940	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3941	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3942	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3943	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3944	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3945	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3946	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3947	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3948}
3949
3950DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3951{
3952	int dom;
3953
3954	db_printf("pq_free %d pq_cache %d\n",
3955	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3956	for (dom = 0; dom < vm_ndomains; dom++) {
3957		db_printf("dom %d page_cnt %d free %d pq_act %d pq_inact %d\n",
3958		    dom,
3959		    vm_dom[dom].vmd_page_count,
3960		    vm_dom[dom].vmd_free_count,
3961		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3962		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt);
3963	}
3964}
3965
3966DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3967{
3968	vm_page_t m;
3969	boolean_t phys;
3970
3971	if (!have_addr) {
3972		db_printf("show pginfo addr\n");
3973		return;
3974	}
3975
3976	phys = strchr(modif, 'p') != NULL;
3977	if (phys)
3978		m = PHYS_TO_VM_PAGE(addr);
3979	else
3980		m = (vm_page_t)addr;
3981	db_printf(
3982    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3983    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3984	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3985	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3986	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3987}
3988#endif /* DDB */
3989