1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34 */
35
36/*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 *			GENERAL RULES ON VM_PAGE MANIPULATION
65 *
66 *	- A page queue lock is required when adding or removing a page from a
67 *	  page queue regardless of other locks or the busy state of a page.
68 *
69 *		* In general, no thread besides the page daemon can acquire or
70 *		  hold more than one page queue lock at a time.
71 *
72 *		* The page daemon can acquire and hold any pair of page queue
73 *		  locks in any order.
74 *
75 *	- The object lock is required when inserting or removing
76 *	  pages from an object (vm_page_insert() or vm_page_remove()).
77 *
78 */
79
80/*
81 *	Resident memory management module.
82 */
83
84#include <sys/cdefs.h>
85__FBSDID("$FreeBSD: stable/11/sys/vm/vm_page.c 342797 2019-01-06 00:38:28Z kib $");
86
87#include "opt_vm.h"
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/lock.h>
92#include <sys/kernel.h>
93#include <sys/limits.h>
94#include <sys/linker.h>
95#include <sys/malloc.h>
96#include <sys/mman.h>
97#include <sys/msgbuf.h>
98#include <sys/mutex.h>
99#include <sys/proc.h>
100#include <sys/rwlock.h>
101#include <sys/sbuf.h>
102#include <sys/smp.h>
103#include <sys/sysctl.h>
104#include <sys/vmmeter.h>
105#include <sys/vnode.h>
106
107#include <vm/vm.h>
108#include <vm/pmap.h>
109#include <vm/vm_param.h>
110#include <vm/vm_kern.h>
111#include <vm/vm_object.h>
112#include <vm/vm_page.h>
113#include <vm/vm_pageout.h>
114#include <vm/vm_pager.h>
115#include <vm/vm_phys.h>
116#include <vm/vm_radix.h>
117#include <vm/vm_reserv.h>
118#include <vm/vm_extern.h>
119#include <vm/uma.h>
120#include <vm/uma_int.h>
121
122#include <machine/md_var.h>
123
124/*
125 *	Associated with page of user-allocatable memory is a
126 *	page structure.
127 */
128
129struct vm_domain vm_dom[MAXMEMDOM];
130struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
131
132struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
133
134vm_page_t vm_page_array;
135long vm_page_array_size;
136long first_page;
137int vm_page_zero_count;
138
139static int boot_pages = UMA_BOOT_PAGES;
140SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
141    &boot_pages, 0,
142    "number of pages allocated for bootstrapping the VM system");
143
144static int pa_tryrelock_restart;
145SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
147
148static TAILQ_HEAD(, vm_page) blacklist_head;
149static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
150SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
151    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
152
153/* Is the page daemon waiting for free pages? */
154static int vm_pageout_pages_needed;
155
156static uma_zone_t fakepg_zone;
157
158static void vm_page_alloc_check(vm_page_t m);
159static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161static void vm_page_free_phys(vm_page_t m);
162static void vm_page_free_wakeup(void);
163static void vm_page_init_fakepg(void *dummy);
164static int vm_page_insert_after(vm_page_t m, vm_object_t object,
165    vm_pindex_t pindex, vm_page_t mpred);
166static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
167    vm_page_t mpred);
168static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
169    vm_paddr_t high);
170static int vm_page_alloc_fail(vm_object_t object, int req);
171
172SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
173
174static void
175vm_page_init_fakepg(void *dummy)
176{
177
178	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
179	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
180}
181
182/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
183#if PAGE_SIZE == 32768
184#ifdef CTASSERT
185CTASSERT(sizeof(u_long) >= 8);
186#endif
187#endif
188
189/*
190 * Try to acquire a physical address lock while a pmap is locked.  If we
191 * fail to trylock we unlock and lock the pmap directly and cache the
192 * locked pa in *locked.  The caller should then restart their loop in case
193 * the virtual to physical mapping has changed.
194 */
195int
196vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
197{
198	vm_paddr_t lockpa;
199
200	lockpa = *locked;
201	*locked = pa;
202	if (lockpa) {
203		PA_LOCK_ASSERT(lockpa, MA_OWNED);
204		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
205			return (0);
206		PA_UNLOCK(lockpa);
207	}
208	if (PA_TRYLOCK(pa))
209		return (0);
210	PMAP_UNLOCK(pmap);
211	atomic_add_int(&pa_tryrelock_restart, 1);
212	PA_LOCK(pa);
213	PMAP_LOCK(pmap);
214	return (EAGAIN);
215}
216
217/*
218 *	vm_set_page_size:
219 *
220 *	Sets the page size, perhaps based upon the memory
221 *	size.  Must be called before any use of page-size
222 *	dependent functions.
223 */
224void
225vm_set_page_size(void)
226{
227	if (vm_cnt.v_page_size == 0)
228		vm_cnt.v_page_size = PAGE_SIZE;
229	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
230		panic("vm_set_page_size: page size not a power of two");
231}
232
233/*
234 *	vm_page_blacklist_next:
235 *
236 *	Find the next entry in the provided string of blacklist
237 *	addresses.  Entries are separated by space, comma, or newline.
238 *	If an invalid integer is encountered then the rest of the
239 *	string is skipped.  Updates the list pointer to the next
240 *	character, or NULL if the string is exhausted or invalid.
241 */
242static vm_paddr_t
243vm_page_blacklist_next(char **list, char *end)
244{
245	vm_paddr_t bad;
246	char *cp, *pos;
247
248	if (list == NULL || *list == NULL)
249		return (0);
250	if (**list =='\0') {
251		*list = NULL;
252		return (0);
253	}
254
255	/*
256	 * If there's no end pointer then the buffer is coming from
257	 * the kenv and we know it's null-terminated.
258	 */
259	if (end == NULL)
260		end = *list + strlen(*list);
261
262	/* Ensure that strtoq() won't walk off the end */
263	if (*end != '\0') {
264		if (*end == '\n' || *end == ' ' || *end  == ',')
265			*end = '\0';
266		else {
267			printf("Blacklist not terminated, skipping\n");
268			*list = NULL;
269			return (0);
270		}
271	}
272
273	for (pos = *list; *pos != '\0'; pos = cp) {
274		bad = strtoq(pos, &cp, 0);
275		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
276			if (bad == 0) {
277				if (++cp < end)
278					continue;
279				else
280					break;
281			}
282		} else
283			break;
284		if (*cp == '\0' || ++cp >= end)
285			*list = NULL;
286		else
287			*list = cp;
288		return (trunc_page(bad));
289	}
290	printf("Garbage in RAM blacklist, skipping\n");
291	*list = NULL;
292	return (0);
293}
294
295bool
296vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
297{
298	vm_page_t m;
299	int ret;
300
301	m = vm_phys_paddr_to_vm_page(pa);
302	if (m == NULL)
303		return (true); /* page does not exist, no failure */
304
305	mtx_lock(&vm_page_queue_free_mtx);
306	ret = vm_phys_unfree_page(m);
307	if (ret != 0)
308		vm_phys_freecnt_adj(m, -1);
309	mtx_unlock(&vm_page_queue_free_mtx);
310	if (ret != 0) {
311		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
312		if (verbose)
313			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
314	}
315	return (ret);
316}
317
318/*
319 *	vm_page_blacklist_check:
320 *
321 *	Iterate through the provided string of blacklist addresses, pulling
322 *	each entry out of the physical allocator free list and putting it
323 *	onto a list for reporting via the vm.page_blacklist sysctl.
324 */
325static void
326vm_page_blacklist_check(char *list, char *end)
327{
328	vm_paddr_t pa;
329	char *next;
330
331	next = list;
332	while (next != NULL) {
333		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
334			continue;
335		vm_page_blacklist_add(pa, bootverbose);
336	}
337}
338
339/*
340 *	vm_page_blacklist_load:
341 *
342 *	Search for a special module named "ram_blacklist".  It'll be a
343 *	plain text file provided by the user via the loader directive
344 *	of the same name.
345 */
346static void
347vm_page_blacklist_load(char **list, char **end)
348{
349	void *mod;
350	u_char *ptr;
351	u_int len;
352
353	mod = NULL;
354	ptr = NULL;
355
356	mod = preload_search_by_type("ram_blacklist");
357	if (mod != NULL) {
358		ptr = preload_fetch_addr(mod);
359		len = preload_fetch_size(mod);
360        }
361	*list = ptr;
362	if (ptr != NULL)
363		*end = ptr + len;
364	else
365		*end = NULL;
366	return;
367}
368
369static int
370sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
371{
372	vm_page_t m;
373	struct sbuf sbuf;
374	int error, first;
375
376	first = 1;
377	error = sysctl_wire_old_buffer(req, 0);
378	if (error != 0)
379		return (error);
380	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
381	TAILQ_FOREACH(m, &blacklist_head, listq) {
382		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
383		    (uintmax_t)m->phys_addr);
384		first = 0;
385	}
386	error = sbuf_finish(&sbuf);
387	sbuf_delete(&sbuf);
388	return (error);
389}
390
391static void
392vm_page_domain_init(struct vm_domain *vmd)
393{
394	struct vm_pagequeue *pq;
395	int i;
396
397	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
398	    "vm inactive pagequeue";
399	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
400	    &vm_cnt.v_inactive_count;
401	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
402	    "vm active pagequeue";
403	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
404	    &vm_cnt.v_active_count;
405	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
406	    "vm laundry pagequeue";
407	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
408	    &vm_cnt.v_laundry_count;
409	vmd->vmd_page_count = 0;
410	vmd->vmd_free_count = 0;
411	vmd->vmd_segs = 0;
412	vmd->vmd_oom = FALSE;
413	for (i = 0; i < PQ_COUNT; i++) {
414		pq = &vmd->vmd_pagequeues[i];
415		TAILQ_INIT(&pq->pq_pl);
416		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
417		    MTX_DEF | MTX_DUPOK);
418	}
419}
420
421/*
422 * Initialize a physical page in preparation for adding it to the free
423 * lists.
424 */
425static void
426vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
427{
428
429	m->object = NULL;
430	m->wire_count = 0;
431	m->busy_lock = VPB_UNBUSIED;
432	m->hold_count = 0;
433	m->flags = 0;
434	m->phys_addr = pa;
435	m->queue = PQ_NONE;
436	m->psind = 0;
437	m->segind = segind;
438	m->order = VM_NFREEORDER;
439	m->pool = VM_FREEPOOL_DEFAULT;
440	m->valid = m->dirty = 0;
441	pmap_page_init(m);
442}
443
444/*
445 *	vm_page_startup:
446 *
447 *	Initializes the resident memory module.  Allocates physical memory for
448 *	bootstrapping UMA and some data structures that are used to manage
449 *	physical pages.  Initializes these structures, and populates the free
450 *	page queues.
451 */
452vm_offset_t
453vm_page_startup(vm_offset_t vaddr)
454{
455	struct vm_domain *vmd;
456	struct vm_phys_seg *seg;
457	vm_page_t m;
458	char *list, *listend;
459	vm_offset_t mapped;
460	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
461	vm_paddr_t biggestsize, last_pa, pa;
462	u_long pagecount;
463	int biggestone, i, pages_per_zone, segind;
464
465	biggestsize = 0;
466	biggestone = 0;
467	vaddr = round_page(vaddr);
468
469	for (i = 0; phys_avail[i + 1]; i += 2) {
470		phys_avail[i] = round_page(phys_avail[i]);
471		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
472	}
473	for (i = 0; phys_avail[i + 1]; i += 2) {
474		size = phys_avail[i + 1] - phys_avail[i];
475		if (size > biggestsize) {
476			biggestone = i;
477			biggestsize = size;
478		}
479	}
480
481	end = phys_avail[biggestone+1];
482
483	/*
484	 * Initialize the page and queue locks.
485	 */
486	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
487	for (i = 0; i < PA_LOCK_COUNT; i++)
488		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
489	for (i = 0; i < vm_ndomains; i++)
490		vm_page_domain_init(&vm_dom[i]);
491
492	/*
493	 * Almost all of the pages needed for bootstrapping UMA are used
494	 * for zone structures, so if the number of CPUs results in those
495	 * structures taking more than one page each, we set aside more pages
496	 * in proportion to the zone structure size.
497	 */
498	pages_per_zone = howmany(sizeof(struct uma_zone) +
499	    sizeof(struct uma_cache) * (mp_maxid + 1) +
500	    roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
501	if (pages_per_zone > 1) {
502		/* Reserve more pages so that we don't run out. */
503		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
504	}
505
506	/*
507	 * Allocate memory for use when boot strapping the kernel memory
508	 * allocator.
509	 *
510	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
511	 * manually fetch the value.
512	 */
513	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
514	new_end = end - (boot_pages * UMA_SLAB_SIZE);
515	new_end = trunc_page(new_end);
516	mapped = pmap_map(&vaddr, new_end, end,
517	    VM_PROT_READ | VM_PROT_WRITE);
518	bzero((void *)mapped, end - new_end);
519	uma_startup((void *)mapped, boot_pages);
520
521#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
522    defined(__i386__) || defined(__mips__)
523	/*
524	 * Allocate a bitmap to indicate that a random physical page
525	 * needs to be included in a minidump.
526	 *
527	 * The amd64 port needs this to indicate which direct map pages
528	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
529	 *
530	 * However, i386 still needs this workspace internally within the
531	 * minidump code.  In theory, they are not needed on i386, but are
532	 * included should the sf_buf code decide to use them.
533	 */
534	last_pa = 0;
535	for (i = 0; dump_avail[i + 1] != 0; i += 2)
536		if (dump_avail[i + 1] > last_pa)
537			last_pa = dump_avail[i + 1];
538	page_range = last_pa / PAGE_SIZE;
539	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
540	new_end -= vm_page_dump_size;
541	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
542	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
543	bzero((void *)vm_page_dump, vm_page_dump_size);
544#else
545	(void)last_pa;
546#endif
547#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
548	/*
549	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
550	 * When pmap_map() uses the direct map, they are not automatically
551	 * included.
552	 */
553	for (pa = new_end; pa < end; pa += PAGE_SIZE)
554		dump_add_page(pa);
555#endif
556	phys_avail[biggestone + 1] = new_end;
557#ifdef __amd64__
558	/*
559	 * Request that the physical pages underlying the message buffer be
560	 * included in a crash dump.  Since the message buffer is accessed
561	 * through the direct map, they are not automatically included.
562	 */
563	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
564	last_pa = pa + round_page(msgbufsize);
565	while (pa < last_pa) {
566		dump_add_page(pa);
567		pa += PAGE_SIZE;
568	}
569#endif
570	/*
571	 * Compute the number of pages of memory that will be available for
572	 * use, taking into account the overhead of a page structure per page.
573	 * In other words, solve
574	 *	"available physical memory" - round_page(page_range *
575	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
576	 * for page_range.
577	 */
578	low_avail = phys_avail[0];
579	high_avail = phys_avail[1];
580	for (i = 0; i < vm_phys_nsegs; i++) {
581		if (vm_phys_segs[i].start < low_avail)
582			low_avail = vm_phys_segs[i].start;
583		if (vm_phys_segs[i].end > high_avail)
584			high_avail = vm_phys_segs[i].end;
585	}
586	/* Skip the first chunk.  It is already accounted for. */
587	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
588		if (phys_avail[i] < low_avail)
589			low_avail = phys_avail[i];
590		if (phys_avail[i + 1] > high_avail)
591			high_avail = phys_avail[i + 1];
592	}
593	first_page = low_avail / PAGE_SIZE;
594#ifdef VM_PHYSSEG_SPARSE
595	size = 0;
596	for (i = 0; i < vm_phys_nsegs; i++)
597		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
598	for (i = 0; phys_avail[i + 1] != 0; i += 2)
599		size += phys_avail[i + 1] - phys_avail[i];
600#elif defined(VM_PHYSSEG_DENSE)
601	size = high_avail - low_avail;
602#else
603#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
604#endif
605
606#ifdef VM_PHYSSEG_DENSE
607	/*
608	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
609	 * the overhead of a page structure per page only if vm_page_array is
610	 * allocated from the last physical memory chunk.  Otherwise, we must
611	 * allocate page structures representing the physical memory
612	 * underlying vm_page_array, even though they will not be used.
613	 */
614	if (new_end != high_avail)
615		page_range = size / PAGE_SIZE;
616	else
617#endif
618	{
619		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
620
621		/*
622		 * If the partial bytes remaining are large enough for
623		 * a page (PAGE_SIZE) without a corresponding
624		 * 'struct vm_page', then new_end will contain an
625		 * extra page after subtracting the length of the VM
626		 * page array.  Compensate by subtracting an extra
627		 * page from new_end.
628		 */
629		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
630			if (new_end == high_avail)
631				high_avail -= PAGE_SIZE;
632			new_end -= PAGE_SIZE;
633		}
634	}
635	end = new_end;
636
637	/*
638	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
639	 * However, because this page is allocated from KVM, out-of-bounds
640	 * accesses using the direct map will not be trapped.
641	 */
642	vaddr += PAGE_SIZE;
643
644	/*
645	 * Allocate physical memory for the page structures, and map it.
646	 */
647	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
648	mapped = pmap_map(&vaddr, new_end, end,
649	    VM_PROT_READ | VM_PROT_WRITE);
650	vm_page_array = (vm_page_t)mapped;
651	vm_page_array_size = page_range;
652
653#if VM_NRESERVLEVEL > 0
654	/*
655	 * Allocate physical memory for the reservation management system's
656	 * data structures, and map it.
657	 */
658	if (high_avail == end)
659		high_avail = new_end;
660	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
661#endif
662#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
663	/*
664	 * Include vm_page_array and vm_reserv_array in a crash dump.
665	 */
666	for (pa = new_end; pa < end; pa += PAGE_SIZE)
667		dump_add_page(pa);
668#endif
669	phys_avail[biggestone + 1] = new_end;
670
671	/*
672	 * Add physical memory segments corresponding to the available
673	 * physical pages.
674	 */
675	for (i = 0; phys_avail[i + 1] != 0; i += 2)
676		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
677
678	/*
679	 * Initialize the physical memory allocator.
680	 */
681	vm_phys_init();
682
683	/*
684	 * Initialize the page structures and add every available page to the
685	 * physical memory allocator's free lists.
686	 */
687	vm_cnt.v_page_count = 0;
688	vm_cnt.v_free_count = 0;
689	for (segind = 0; segind < vm_phys_nsegs; segind++) {
690		seg = &vm_phys_segs[segind];
691		for (m = seg->first_page, pa = seg->start; pa < seg->end;
692		    m++, pa += PAGE_SIZE)
693			vm_page_init_page(m, pa, segind);
694
695		/*
696		 * Add the segment to the free lists only if it is covered by
697		 * one of the ranges in phys_avail.  Because we've added the
698		 * ranges to the vm_phys_segs array, we can assume that each
699		 * segment is either entirely contained in one of the ranges,
700		 * or doesn't overlap any of them.
701		 */
702		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
703			if (seg->start < phys_avail[i] ||
704			    seg->end > phys_avail[i + 1])
705				continue;
706
707			m = seg->first_page;
708			pagecount = (u_long)atop(seg->end - seg->start);
709
710			mtx_lock(&vm_page_queue_free_mtx);
711			vm_phys_free_contig(m, pagecount);
712			vm_phys_freecnt_adj(m, (int)pagecount);
713			mtx_unlock(&vm_page_queue_free_mtx);
714			vm_cnt.v_page_count += (u_int)pagecount;
715
716			vmd = &vm_dom[seg->domain];
717			vmd->vmd_page_count += (u_int)pagecount;
718			vmd->vmd_segs |= 1UL << m->segind;
719			break;
720		}
721	}
722
723	/*
724	 * Remove blacklisted pages from the physical memory allocator.
725	 */
726	TAILQ_INIT(&blacklist_head);
727	vm_page_blacklist_load(&list, &listend);
728	vm_page_blacklist_check(list, listend);
729
730	list = kern_getenv("vm.blacklist");
731	vm_page_blacklist_check(list, NULL);
732
733	freeenv(list);
734#if VM_NRESERVLEVEL > 0
735	/*
736	 * Initialize the reservation management system.
737	 */
738	vm_reserv_init();
739#endif
740	return (vaddr);
741}
742
743void
744vm_page_reference(vm_page_t m)
745{
746
747	vm_page_aflag_set(m, PGA_REFERENCED);
748}
749
750/*
751 *	vm_page_busy_downgrade:
752 *
753 *	Downgrade an exclusive busy page into a single shared busy page.
754 */
755void
756vm_page_busy_downgrade(vm_page_t m)
757{
758	u_int x;
759	bool locked;
760
761	vm_page_assert_xbusied(m);
762	locked = mtx_owned(vm_page_lockptr(m));
763
764	for (;;) {
765		x = m->busy_lock;
766		x &= VPB_BIT_WAITERS;
767		if (x != 0 && !locked)
768			vm_page_lock(m);
769		if (atomic_cmpset_rel_int(&m->busy_lock,
770		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
771			break;
772		if (x != 0 && !locked)
773			vm_page_unlock(m);
774	}
775	if (x != 0) {
776		wakeup(m);
777		if (!locked)
778			vm_page_unlock(m);
779	}
780}
781
782/*
783 *	vm_page_sbusied:
784 *
785 *	Return a positive value if the page is shared busied, 0 otherwise.
786 */
787int
788vm_page_sbusied(vm_page_t m)
789{
790	u_int x;
791
792	x = m->busy_lock;
793	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
794}
795
796/*
797 *	vm_page_sunbusy:
798 *
799 *	Shared unbusy a page.
800 */
801void
802vm_page_sunbusy(vm_page_t m)
803{
804	u_int x;
805
806	vm_page_lock_assert(m, MA_NOTOWNED);
807	vm_page_assert_sbusied(m);
808
809	for (;;) {
810		x = m->busy_lock;
811		if (VPB_SHARERS(x) > 1) {
812			if (atomic_cmpset_int(&m->busy_lock, x,
813			    x - VPB_ONE_SHARER))
814				break;
815			continue;
816		}
817		if ((x & VPB_BIT_WAITERS) == 0) {
818			KASSERT(x == VPB_SHARERS_WORD(1),
819			    ("vm_page_sunbusy: invalid lock state"));
820			if (atomic_cmpset_int(&m->busy_lock,
821			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
822				break;
823			continue;
824		}
825		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
826		    ("vm_page_sunbusy: invalid lock state for waiters"));
827
828		vm_page_lock(m);
829		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
830			vm_page_unlock(m);
831			continue;
832		}
833		wakeup(m);
834		vm_page_unlock(m);
835		break;
836	}
837}
838
839/*
840 *	vm_page_busy_sleep:
841 *
842 *	Sleep and release the page lock, using the page pointer as wchan.
843 *	This is used to implement the hard-path of busying mechanism.
844 *
845 *	The given page must be locked.
846 *
847 *	If nonshared is true, sleep only if the page is xbusy.
848 */
849void
850vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
851{
852	u_int x;
853
854	vm_page_assert_locked(m);
855
856	x = m->busy_lock;
857	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
858	    ((x & VPB_BIT_WAITERS) == 0 &&
859	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
860		vm_page_unlock(m);
861		return;
862	}
863	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
864}
865
866/*
867 *	vm_page_trysbusy:
868 *
869 *	Try to shared busy a page.
870 *	If the operation succeeds 1 is returned otherwise 0.
871 *	The operation never sleeps.
872 */
873int
874vm_page_trysbusy(vm_page_t m)
875{
876	u_int x;
877
878	for (;;) {
879		x = m->busy_lock;
880		if ((x & VPB_BIT_SHARED) == 0)
881			return (0);
882		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
883			return (1);
884	}
885}
886
887static void
888vm_page_xunbusy_locked(vm_page_t m)
889{
890
891	vm_page_assert_xbusied(m);
892	vm_page_assert_locked(m);
893
894	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
895	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
896	wakeup(m);
897}
898
899void
900vm_page_xunbusy_maybelocked(vm_page_t m)
901{
902	bool lockacq;
903
904	vm_page_assert_xbusied(m);
905
906	/*
907	 * Fast path for unbusy.  If it succeeds, we know that there
908	 * are no waiters, so we do not need a wakeup.
909	 */
910	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
911	    VPB_UNBUSIED))
912		return;
913
914	lockacq = !mtx_owned(vm_page_lockptr(m));
915	if (lockacq)
916		vm_page_lock(m);
917	vm_page_xunbusy_locked(m);
918	if (lockacq)
919		vm_page_unlock(m);
920}
921
922/*
923 *	vm_page_xunbusy_hard:
924 *
925 *	Called after the first try the exclusive unbusy of a page failed.
926 *	It is assumed that the waiters bit is on.
927 */
928void
929vm_page_xunbusy_hard(vm_page_t m)
930{
931
932	vm_page_assert_xbusied(m);
933
934	vm_page_lock(m);
935	vm_page_xunbusy_locked(m);
936	vm_page_unlock(m);
937}
938
939/*
940 *	vm_page_flash:
941 *
942 *	Wakeup anyone waiting for the page.
943 *	The ownership bits do not change.
944 *
945 *	The given page must be locked.
946 */
947void
948vm_page_flash(vm_page_t m)
949{
950	u_int x;
951
952	vm_page_lock_assert(m, MA_OWNED);
953
954	for (;;) {
955		x = m->busy_lock;
956		if ((x & VPB_BIT_WAITERS) == 0)
957			return;
958		if (atomic_cmpset_int(&m->busy_lock, x,
959		    x & (~VPB_BIT_WAITERS)))
960			break;
961	}
962	wakeup(m);
963}
964
965/*
966 * Avoid releasing and reacquiring the same page lock.
967 */
968void
969vm_page_change_lock(vm_page_t m, struct mtx **mtx)
970{
971	struct mtx *mtx1;
972
973	mtx1 = vm_page_lockptr(m);
974	if (*mtx == mtx1)
975		return;
976	if (*mtx != NULL)
977		mtx_unlock(*mtx);
978	*mtx = mtx1;
979	mtx_lock(mtx1);
980}
981
982/*
983 * Keep page from being freed by the page daemon
984 * much of the same effect as wiring, except much lower
985 * overhead and should be used only for *very* temporary
986 * holding ("wiring").
987 */
988void
989vm_page_hold(vm_page_t mem)
990{
991
992	vm_page_lock_assert(mem, MA_OWNED);
993        mem->hold_count++;
994}
995
996void
997vm_page_unhold(vm_page_t mem)
998{
999
1000	vm_page_lock_assert(mem, MA_OWNED);
1001	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1002	--mem->hold_count;
1003	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1004		vm_page_free_toq(mem);
1005}
1006
1007/*
1008 *	vm_page_unhold_pages:
1009 *
1010 *	Unhold each of the pages that is referenced by the given array.
1011 */
1012void
1013vm_page_unhold_pages(vm_page_t *ma, int count)
1014{
1015	struct mtx *mtx;
1016
1017	mtx = NULL;
1018	for (; count != 0; count--) {
1019		vm_page_change_lock(*ma, &mtx);
1020		vm_page_unhold(*ma);
1021		ma++;
1022	}
1023	if (mtx != NULL)
1024		mtx_unlock(mtx);
1025}
1026
1027vm_page_t
1028PHYS_TO_VM_PAGE(vm_paddr_t pa)
1029{
1030	vm_page_t m;
1031
1032#ifdef VM_PHYSSEG_SPARSE
1033	m = vm_phys_paddr_to_vm_page(pa);
1034	if (m == NULL)
1035		m = vm_phys_fictitious_to_vm_page(pa);
1036	return (m);
1037#elif defined(VM_PHYSSEG_DENSE)
1038	long pi;
1039
1040	pi = atop(pa);
1041	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1042		m = &vm_page_array[pi - first_page];
1043		return (m);
1044	}
1045	return (vm_phys_fictitious_to_vm_page(pa));
1046#else
1047#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1048#endif
1049}
1050
1051/*
1052 *	vm_page_getfake:
1053 *
1054 *	Create a fictitious page with the specified physical address and
1055 *	memory attribute.  The memory attribute is the only the machine-
1056 *	dependent aspect of a fictitious page that must be initialized.
1057 */
1058vm_page_t
1059vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1060{
1061	vm_page_t m;
1062
1063	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1064	vm_page_initfake(m, paddr, memattr);
1065	return (m);
1066}
1067
1068void
1069vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1070{
1071
1072	if ((m->flags & PG_FICTITIOUS) != 0) {
1073		/*
1074		 * The page's memattr might have changed since the
1075		 * previous initialization.  Update the pmap to the
1076		 * new memattr.
1077		 */
1078		goto memattr;
1079	}
1080	m->phys_addr = paddr;
1081	m->queue = PQ_NONE;
1082	/* Fictitious pages don't use "segind". */
1083	m->flags = PG_FICTITIOUS;
1084	/* Fictitious pages don't use "order" or "pool". */
1085	m->oflags = VPO_UNMANAGED;
1086	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1087	m->wire_count = 1;
1088	pmap_page_init(m);
1089memattr:
1090	pmap_page_set_memattr(m, memattr);
1091}
1092
1093/*
1094 *	vm_page_putfake:
1095 *
1096 *	Release a fictitious page.
1097 */
1098void
1099vm_page_putfake(vm_page_t m)
1100{
1101
1102	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1103	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1104	    ("vm_page_putfake: bad page %p", m));
1105	uma_zfree(fakepg_zone, m);
1106}
1107
1108/*
1109 *	vm_page_updatefake:
1110 *
1111 *	Update the given fictitious page to the specified physical address and
1112 *	memory attribute.
1113 */
1114void
1115vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1116{
1117
1118	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1119	    ("vm_page_updatefake: bad page %p", m));
1120	m->phys_addr = paddr;
1121	pmap_page_set_memattr(m, memattr);
1122}
1123
1124/*
1125 *	vm_page_free:
1126 *
1127 *	Free a page.
1128 */
1129void
1130vm_page_free(vm_page_t m)
1131{
1132
1133	m->flags &= ~PG_ZERO;
1134	vm_page_free_toq(m);
1135}
1136
1137/*
1138 *	vm_page_free_zero:
1139 *
1140 *	Free a page to the zerod-pages queue
1141 */
1142void
1143vm_page_free_zero(vm_page_t m)
1144{
1145
1146	m->flags |= PG_ZERO;
1147	vm_page_free_toq(m);
1148}
1149
1150/*
1151 * Unbusy and handle the page queueing for a page from a getpages request that
1152 * was optionally read ahead or behind.
1153 */
1154void
1155vm_page_readahead_finish(vm_page_t m)
1156{
1157
1158	/* We shouldn't put invalid pages on queues. */
1159	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1160
1161	/*
1162	 * Since the page is not the actually needed one, whether it should
1163	 * be activated or deactivated is not obvious.  Empirical results
1164	 * have shown that deactivating the page is usually the best choice,
1165	 * unless the page is wanted by another thread.
1166	 */
1167	vm_page_lock(m);
1168	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1169		vm_page_activate(m);
1170	else
1171		vm_page_deactivate(m);
1172	vm_page_unlock(m);
1173	vm_page_xunbusy(m);
1174}
1175
1176/*
1177 *	vm_page_sleep_if_busy:
1178 *
1179 *	Sleep and release the page queues lock if the page is busied.
1180 *	Returns TRUE if the thread slept.
1181 *
1182 *	The given page must be unlocked and object containing it must
1183 *	be locked.
1184 */
1185int
1186vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1187{
1188	vm_object_t obj;
1189
1190	vm_page_lock_assert(m, MA_NOTOWNED);
1191	VM_OBJECT_ASSERT_WLOCKED(m->object);
1192
1193	if (vm_page_busied(m)) {
1194		/*
1195		 * The page-specific object must be cached because page
1196		 * identity can change during the sleep, causing the
1197		 * re-lock of a different object.
1198		 * It is assumed that a reference to the object is already
1199		 * held by the callers.
1200		 */
1201		obj = m->object;
1202		vm_page_lock(m);
1203		VM_OBJECT_WUNLOCK(obj);
1204		vm_page_busy_sleep(m, msg, false);
1205		VM_OBJECT_WLOCK(obj);
1206		return (TRUE);
1207	}
1208	return (FALSE);
1209}
1210
1211/*
1212 *	vm_page_dirty_KBI:		[ internal use only ]
1213 *
1214 *	Set all bits in the page's dirty field.
1215 *
1216 *	The object containing the specified page must be locked if the
1217 *	call is made from the machine-independent layer.
1218 *
1219 *	See vm_page_clear_dirty_mask().
1220 *
1221 *	This function should only be called by vm_page_dirty().
1222 */
1223void
1224vm_page_dirty_KBI(vm_page_t m)
1225{
1226
1227	/* Refer to this operation by its public name. */
1228	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1229	    ("vm_page_dirty: page is invalid!"));
1230	m->dirty = VM_PAGE_BITS_ALL;
1231}
1232
1233/*
1234 *	vm_page_insert:		[ internal use only ]
1235 *
1236 *	Inserts the given mem entry into the object and object list.
1237 *
1238 *	The object must be locked.
1239 */
1240int
1241vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1242{
1243	vm_page_t mpred;
1244
1245	VM_OBJECT_ASSERT_WLOCKED(object);
1246	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1247	return (vm_page_insert_after(m, object, pindex, mpred));
1248}
1249
1250/*
1251 *	vm_page_insert_after:
1252 *
1253 *	Inserts the page "m" into the specified object at offset "pindex".
1254 *
1255 *	The page "mpred" must immediately precede the offset "pindex" within
1256 *	the specified object.
1257 *
1258 *	The object must be locked.
1259 */
1260static int
1261vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1262    vm_page_t mpred)
1263{
1264	vm_page_t msucc;
1265
1266	VM_OBJECT_ASSERT_WLOCKED(object);
1267	KASSERT(m->object == NULL,
1268	    ("vm_page_insert_after: page already inserted"));
1269	if (mpred != NULL) {
1270		KASSERT(mpred->object == object,
1271		    ("vm_page_insert_after: object doesn't contain mpred"));
1272		KASSERT(mpred->pindex < pindex,
1273		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1274		msucc = TAILQ_NEXT(mpred, listq);
1275	} else
1276		msucc = TAILQ_FIRST(&object->memq);
1277	if (msucc != NULL)
1278		KASSERT(msucc->pindex > pindex,
1279		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1280
1281	/*
1282	 * Record the object/offset pair in this page
1283	 */
1284	m->object = object;
1285	m->pindex = pindex;
1286
1287	/*
1288	 * Now link into the object's ordered list of backed pages.
1289	 */
1290	if (vm_radix_insert(&object->rtree, m)) {
1291		m->object = NULL;
1292		m->pindex = 0;
1293		return (1);
1294	}
1295	vm_page_insert_radixdone(m, object, mpred);
1296	return (0);
1297}
1298
1299/*
1300 *	vm_page_insert_radixdone:
1301 *
1302 *	Complete page "m" insertion into the specified object after the
1303 *	radix trie hooking.
1304 *
1305 *	The page "mpred" must precede the offset "m->pindex" within the
1306 *	specified object.
1307 *
1308 *	The object must be locked.
1309 */
1310static void
1311vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1312{
1313
1314	VM_OBJECT_ASSERT_WLOCKED(object);
1315	KASSERT(object != NULL && m->object == object,
1316	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1317	if (mpred != NULL) {
1318		KASSERT(mpred->object == object,
1319		    ("vm_page_insert_after: object doesn't contain mpred"));
1320		KASSERT(mpred->pindex < m->pindex,
1321		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1322	}
1323
1324	if (mpred != NULL)
1325		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1326	else
1327		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1328
1329	/*
1330	 * Show that the object has one more resident page.
1331	 */
1332	object->resident_page_count++;
1333
1334	/*
1335	 * Hold the vnode until the last page is released.
1336	 */
1337	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1338		vhold(object->handle);
1339
1340	/*
1341	 * Since we are inserting a new and possibly dirty page,
1342	 * update the object's OBJ_MIGHTBEDIRTY flag.
1343	 */
1344	if (pmap_page_is_write_mapped(m))
1345		vm_object_set_writeable_dirty(object);
1346}
1347
1348/*
1349 *	vm_page_remove:
1350 *
1351 *	Removes the specified page from its containing object, but does not
1352 *	invalidate any backing storage.
1353 *
1354 *	The object must be locked.  The page must be locked if it is managed.
1355 */
1356void
1357vm_page_remove(vm_page_t m)
1358{
1359	vm_object_t object;
1360	vm_page_t mrem;
1361
1362	if ((m->oflags & VPO_UNMANAGED) == 0)
1363		vm_page_assert_locked(m);
1364	if ((object = m->object) == NULL)
1365		return;
1366	VM_OBJECT_ASSERT_WLOCKED(object);
1367	if (vm_page_xbusied(m))
1368		vm_page_xunbusy_maybelocked(m);
1369	mrem = vm_radix_remove(&object->rtree, m->pindex);
1370	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1371
1372	/*
1373	 * Now remove from the object's list of backed pages.
1374	 */
1375	TAILQ_REMOVE(&object->memq, m, listq);
1376
1377	/*
1378	 * And show that the object has one fewer resident page.
1379	 */
1380	object->resident_page_count--;
1381
1382	/*
1383	 * The vnode may now be recycled.
1384	 */
1385	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1386		vdrop(object->handle);
1387
1388	m->object = NULL;
1389}
1390
1391/*
1392 *	vm_page_lookup:
1393 *
1394 *	Returns the page associated with the object/offset
1395 *	pair specified; if none is found, NULL is returned.
1396 *
1397 *	The object must be locked.
1398 */
1399vm_page_t
1400vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1401{
1402
1403	VM_OBJECT_ASSERT_LOCKED(object);
1404	return (vm_radix_lookup(&object->rtree, pindex));
1405}
1406
1407/*
1408 *	vm_page_find_least:
1409 *
1410 *	Returns the page associated with the object with least pindex
1411 *	greater than or equal to the parameter pindex, or NULL.
1412 *
1413 *	The object must be locked.
1414 */
1415vm_page_t
1416vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1417{
1418	vm_page_t m;
1419
1420	VM_OBJECT_ASSERT_LOCKED(object);
1421	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1422		m = vm_radix_lookup_ge(&object->rtree, pindex);
1423	return (m);
1424}
1425
1426/*
1427 * Returns the given page's successor (by pindex) within the object if it is
1428 * resident; if none is found, NULL is returned.
1429 *
1430 * The object must be locked.
1431 */
1432vm_page_t
1433vm_page_next(vm_page_t m)
1434{
1435	vm_page_t next;
1436
1437	VM_OBJECT_ASSERT_LOCKED(m->object);
1438	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1439		MPASS(next->object == m->object);
1440		if (next->pindex != m->pindex + 1)
1441			next = NULL;
1442	}
1443	return (next);
1444}
1445
1446/*
1447 * Returns the given page's predecessor (by pindex) within the object if it is
1448 * resident; if none is found, NULL is returned.
1449 *
1450 * The object must be locked.
1451 */
1452vm_page_t
1453vm_page_prev(vm_page_t m)
1454{
1455	vm_page_t prev;
1456
1457	VM_OBJECT_ASSERT_LOCKED(m->object);
1458	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1459		MPASS(prev->object == m->object);
1460		if (prev->pindex != m->pindex - 1)
1461			prev = NULL;
1462	}
1463	return (prev);
1464}
1465
1466/*
1467 * Uses the page mnew as a replacement for an existing page at index
1468 * pindex which must be already present in the object.
1469 *
1470 * The existing page must not be on a paging queue.
1471 */
1472vm_page_t
1473vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1474{
1475	vm_page_t mold;
1476
1477	VM_OBJECT_ASSERT_WLOCKED(object);
1478	KASSERT(mnew->object == NULL,
1479	    ("vm_page_replace: page %p already in object", mnew));
1480	KASSERT(mnew->queue == PQ_NONE,
1481	    ("vm_page_replace: new page %p is on a paging queue", mnew));
1482
1483	/*
1484	 * This function mostly follows vm_page_insert() and
1485	 * vm_page_remove() without the radix, object count and vnode
1486	 * dance.  Double check such functions for more comments.
1487	 */
1488
1489	mnew->object = object;
1490	mnew->pindex = pindex;
1491	mold = vm_radix_replace(&object->rtree, mnew);
1492	KASSERT(mold->queue == PQ_NONE,
1493	    ("vm_page_replace: old page %p is on a paging queue", mold));
1494
1495	/* Keep the resident page list in sorted order. */
1496	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1497	TAILQ_REMOVE(&object->memq, mold, listq);
1498
1499	mold->object = NULL;
1500	vm_page_xunbusy_maybelocked(mold);
1501
1502	/*
1503	 * The object's resident_page_count does not change because we have
1504	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1505	 */
1506	if (pmap_page_is_write_mapped(mnew))
1507		vm_object_set_writeable_dirty(object);
1508	return (mold);
1509}
1510
1511/*
1512 *	vm_page_rename:
1513 *
1514 *	Move the given memory entry from its
1515 *	current object to the specified target object/offset.
1516 *
1517 *	Note: swap associated with the page must be invalidated by the move.  We
1518 *	      have to do this for several reasons:  (1) we aren't freeing the
1519 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1520 *	      moving the page from object A to B, and will then later move
1521 *	      the backing store from A to B and we can't have a conflict.
1522 *
1523 *	Note: we *always* dirty the page.  It is necessary both for the
1524 *	      fact that we moved it, and because we may be invalidating
1525 *	      swap.
1526 *
1527 *	The objects must be locked.
1528 */
1529int
1530vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1531{
1532	vm_page_t mpred;
1533	vm_pindex_t opidx;
1534
1535	VM_OBJECT_ASSERT_WLOCKED(new_object);
1536
1537	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1538	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1539	    ("vm_page_rename: pindex already renamed"));
1540
1541	/*
1542	 * Create a custom version of vm_page_insert() which does not depend
1543	 * by m_prev and can cheat on the implementation aspects of the
1544	 * function.
1545	 */
1546	opidx = m->pindex;
1547	m->pindex = new_pindex;
1548	if (vm_radix_insert(&new_object->rtree, m)) {
1549		m->pindex = opidx;
1550		return (1);
1551	}
1552
1553	/*
1554	 * The operation cannot fail anymore.  The removal must happen before
1555	 * the listq iterator is tainted.
1556	 */
1557	m->pindex = opidx;
1558	vm_page_lock(m);
1559	vm_page_remove(m);
1560
1561	/* Return back to the new pindex to complete vm_page_insert(). */
1562	m->pindex = new_pindex;
1563	m->object = new_object;
1564	vm_page_unlock(m);
1565	vm_page_insert_radixdone(m, new_object, mpred);
1566	vm_page_dirty(m);
1567	return (0);
1568}
1569
1570/*
1571 *	vm_page_alloc:
1572 *
1573 *	Allocate and return a page that is associated with the specified
1574 *	object and offset pair.  By default, this page is exclusive busied.
1575 *
1576 *	The caller must always specify an allocation class.
1577 *
1578 *	allocation classes:
1579 *	VM_ALLOC_NORMAL		normal process request
1580 *	VM_ALLOC_SYSTEM		system *really* needs a page
1581 *	VM_ALLOC_INTERRUPT	interrupt time request
1582 *
1583 *	optional allocation flags:
1584 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1585 *				intends to allocate
1586 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1587 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1588 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1589 *				should not be exclusive busy
1590 *	VM_ALLOC_SBUSY		shared busy the allocated page
1591 *	VM_ALLOC_WIRED		wire the allocated page
1592 *	VM_ALLOC_ZERO		prefer a zeroed page
1593 *
1594 *	This routine may not sleep.
1595 */
1596vm_page_t
1597vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1598{
1599
1600	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1601	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1602}
1603
1604/*
1605 * Allocate a page in the specified object with the given page index.  To
1606 * optimize insertion of the page into the object, the caller must also specifiy
1607 * the resident page in the object with largest index smaller than the given
1608 * page index, or NULL if no such page exists.
1609 */
1610vm_page_t
1611vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1612    vm_page_t mpred)
1613{
1614	vm_page_t m;
1615	int flags, req_class;
1616	u_int free_count;
1617
1618	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1619	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1620	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1621	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1622	    ("inconsistent object(%p)/req(%x)", object, req));
1623	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1624	    ("Can't sleep and retry object insertion."));
1625	KASSERT(mpred == NULL || mpred->pindex < pindex,
1626	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1627	    (uintmax_t)pindex));
1628	if (object != NULL)
1629		VM_OBJECT_ASSERT_WLOCKED(object);
1630
1631	if (__predict_false((req & VM_ALLOC_IFCACHED) != 0))
1632		return (NULL);
1633
1634	req_class = req & VM_ALLOC_CLASS_MASK;
1635
1636	/*
1637	 * The page daemon is allowed to dig deeper into the free page list.
1638	 */
1639	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1640		req_class = VM_ALLOC_SYSTEM;
1641
1642	/*
1643	 * Allocate a page if the number of free pages exceeds the minimum
1644	 * for the request class.
1645	 */
1646again:
1647	mtx_lock(&vm_page_queue_free_mtx);
1648	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1649	    (req_class == VM_ALLOC_SYSTEM &&
1650	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1651	    (req_class == VM_ALLOC_INTERRUPT &&
1652	    vm_cnt.v_free_count > 0)) {
1653		/*
1654		 * Can we allocate the page from a reservation?
1655		 */
1656#if VM_NRESERVLEVEL > 0
1657		if (object == NULL || (object->flags & (OBJ_COLORED |
1658		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1659		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1660#endif
1661		{
1662			/*
1663			 * If not, allocate it from the free page queues.
1664			 */
1665			m = vm_phys_alloc_pages(object != NULL ?
1666			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1667#if VM_NRESERVLEVEL > 0
1668			if (m == NULL && vm_reserv_reclaim_inactive()) {
1669				m = vm_phys_alloc_pages(object != NULL ?
1670				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1671				    0);
1672			}
1673#endif
1674		}
1675	} else {
1676		/*
1677		 * Not allocatable, give up.
1678		 */
1679		if (vm_page_alloc_fail(object, req))
1680			goto again;
1681		return (NULL);
1682	}
1683
1684	/*
1685	 *  At this point we had better have found a good page.
1686	 */
1687	KASSERT(m != NULL, ("missing page"));
1688	free_count = vm_phys_freecnt_adj(m, -1);
1689	if ((m->flags & PG_ZERO) != 0)
1690		vm_page_zero_count--;
1691	mtx_unlock(&vm_page_queue_free_mtx);
1692	vm_page_alloc_check(m);
1693
1694	/*
1695	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1696	 */
1697	flags = 0;
1698	if ((req & VM_ALLOC_ZERO) != 0)
1699		flags = PG_ZERO;
1700	flags &= m->flags;
1701	if ((req & VM_ALLOC_NODUMP) != 0)
1702		flags |= PG_NODUMP;
1703	m->flags = flags;
1704	m->aflags = 0;
1705	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1706	    VPO_UNMANAGED : 0;
1707	m->busy_lock = VPB_UNBUSIED;
1708	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1709		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1710	if ((req & VM_ALLOC_SBUSY) != 0)
1711		m->busy_lock = VPB_SHARERS_WORD(1);
1712	if (req & VM_ALLOC_WIRED) {
1713		/*
1714		 * The page lock is not required for wiring a page until that
1715		 * page is inserted into the object.
1716		 */
1717		atomic_add_int(&vm_cnt.v_wire_count, 1);
1718		m->wire_count = 1;
1719	}
1720	m->act_count = 0;
1721
1722	if (object != NULL) {
1723		if (vm_page_insert_after(m, object, pindex, mpred)) {
1724			pagedaemon_wakeup();
1725			if (req & VM_ALLOC_WIRED) {
1726				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1727				m->wire_count = 0;
1728			}
1729			KASSERT(m->object == NULL, ("page %p has object", m));
1730			m->oflags = VPO_UNMANAGED;
1731			m->busy_lock = VPB_UNBUSIED;
1732			/* Don't change PG_ZERO. */
1733			vm_page_free_toq(m);
1734			if (req & VM_ALLOC_WAITFAIL) {
1735				VM_OBJECT_WUNLOCK(object);
1736				vm_radix_wait();
1737				VM_OBJECT_WLOCK(object);
1738			}
1739			return (NULL);
1740		}
1741
1742		/* Ignore device objects; the pager sets "memattr" for them. */
1743		if (object->memattr != VM_MEMATTR_DEFAULT &&
1744		    (object->flags & OBJ_FICTITIOUS) == 0)
1745			pmap_page_set_memattr(m, object->memattr);
1746	} else
1747		m->pindex = pindex;
1748
1749	/*
1750	 * Don't wakeup too often - wakeup the pageout daemon when
1751	 * we would be nearly out of memory.
1752	 */
1753	if (vm_paging_needed(free_count))
1754		pagedaemon_wakeup();
1755
1756	return (m);
1757}
1758
1759/*
1760 *	vm_page_alloc_contig:
1761 *
1762 *	Allocate a contiguous set of physical pages of the given size "npages"
1763 *	from the free lists.  All of the physical pages must be at or above
1764 *	the given physical address "low" and below the given physical address
1765 *	"high".  The given value "alignment" determines the alignment of the
1766 *	first physical page in the set.  If the given value "boundary" is
1767 *	non-zero, then the set of physical pages cannot cross any physical
1768 *	address boundary that is a multiple of that value.  Both "alignment"
1769 *	and "boundary" must be a power of two.
1770 *
1771 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1772 *	then the memory attribute setting for the physical pages is configured
1773 *	to the object's memory attribute setting.  Otherwise, the memory
1774 *	attribute setting for the physical pages is configured to "memattr",
1775 *	overriding the object's memory attribute setting.  However, if the
1776 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1777 *	memory attribute setting for the physical pages cannot be configured
1778 *	to VM_MEMATTR_DEFAULT.
1779 *
1780 *	The specified object may not contain fictitious pages.
1781 *
1782 *	The caller must always specify an allocation class.
1783 *
1784 *	allocation classes:
1785 *	VM_ALLOC_NORMAL		normal process request
1786 *	VM_ALLOC_SYSTEM		system *really* needs a page
1787 *	VM_ALLOC_INTERRUPT	interrupt time request
1788 *
1789 *	optional allocation flags:
1790 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1791 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1792 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1793 *				should not be exclusive busy
1794 *	VM_ALLOC_SBUSY		shared busy the allocated page
1795 *	VM_ALLOC_WIRED		wire the allocated page
1796 *	VM_ALLOC_ZERO		prefer a zeroed page
1797 *
1798 *	This routine may not sleep.
1799 */
1800vm_page_t
1801vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1802    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1803    vm_paddr_t boundary, vm_memattr_t memattr)
1804{
1805	vm_page_t m, m_ret, mpred;
1806	u_int busy_lock, flags, oflags;
1807	int req_class;
1808
1809	mpred = NULL;	/* XXX: pacify gcc */
1810	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1811	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1812	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1813	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1814	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1815	    req));
1816	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1817	    ("Can't sleep and retry object insertion."));
1818	if (object != NULL) {
1819		VM_OBJECT_ASSERT_WLOCKED(object);
1820		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1821		    ("vm_page_alloc_contig: object %p has fictitious pages",
1822		    object));
1823	}
1824	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1825	req_class = req & VM_ALLOC_CLASS_MASK;
1826
1827	/*
1828	 * The page daemon is allowed to dig deeper into the free page list.
1829	 */
1830	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1831		req_class = VM_ALLOC_SYSTEM;
1832
1833	if (object != NULL) {
1834		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1835		KASSERT(mpred == NULL || mpred->pindex != pindex,
1836		    ("vm_page_alloc_contig: pindex already allocated"));
1837	}
1838
1839	/*
1840	 * Can we allocate the pages without the number of free pages falling
1841	 * below the lower bound for the allocation class?
1842	 */
1843again:
1844	mtx_lock(&vm_page_queue_free_mtx);
1845	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1846	    (req_class == VM_ALLOC_SYSTEM &&
1847	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1848	    (req_class == VM_ALLOC_INTERRUPT &&
1849	    vm_cnt.v_free_count >= npages)) {
1850		/*
1851		 * Can we allocate the pages from a reservation?
1852		 */
1853#if VM_NRESERVLEVEL > 0
1854retry:
1855		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1856		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1857		    low, high, alignment, boundary, mpred)) == NULL)
1858#endif
1859			/*
1860			 * If not, allocate them from the free page queues.
1861			 */
1862			m_ret = vm_phys_alloc_contig(npages, low, high,
1863			    alignment, boundary);
1864	} else {
1865		if (vm_page_alloc_fail(object, req))
1866			goto again;
1867		return (NULL);
1868	}
1869	if (m_ret != NULL) {
1870		vm_phys_freecnt_adj(m_ret, -npages);
1871		for (m = m_ret; m < &m_ret[npages]; m++)
1872			if ((m->flags & PG_ZERO) != 0)
1873				vm_page_zero_count--;
1874	} else {
1875#if VM_NRESERVLEVEL > 0
1876		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1877		    boundary))
1878			goto retry;
1879#endif
1880	}
1881	mtx_unlock(&vm_page_queue_free_mtx);
1882	if (m_ret == NULL)
1883		return (NULL);
1884	for (m = m_ret; m < &m_ret[npages]; m++)
1885		vm_page_alloc_check(m);
1886
1887	/*
1888	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1889	 */
1890	flags = 0;
1891	if ((req & VM_ALLOC_ZERO) != 0)
1892		flags = PG_ZERO;
1893	if ((req & VM_ALLOC_NODUMP) != 0)
1894		flags |= PG_NODUMP;
1895	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1896	    VPO_UNMANAGED : 0;
1897	busy_lock = VPB_UNBUSIED;
1898	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1899		busy_lock = VPB_SINGLE_EXCLUSIVER;
1900	if ((req & VM_ALLOC_SBUSY) != 0)
1901		busy_lock = VPB_SHARERS_WORD(1);
1902	if ((req & VM_ALLOC_WIRED) != 0)
1903		atomic_add_int(&vm_cnt.v_wire_count, npages);
1904	if (object != NULL) {
1905		if (object->memattr != VM_MEMATTR_DEFAULT &&
1906		    memattr == VM_MEMATTR_DEFAULT)
1907			memattr = object->memattr;
1908	}
1909	for (m = m_ret; m < &m_ret[npages]; m++) {
1910		m->aflags = 0;
1911		m->flags = (m->flags | PG_NODUMP) & flags;
1912		m->busy_lock = busy_lock;
1913		if ((req & VM_ALLOC_WIRED) != 0)
1914			m->wire_count = 1;
1915		m->act_count = 0;
1916		m->oflags = oflags;
1917		if (object != NULL) {
1918			if (vm_page_insert_after(m, object, pindex, mpred)) {
1919				pagedaemon_wakeup();
1920				if ((req & VM_ALLOC_WIRED) != 0)
1921					atomic_subtract_int(
1922					    &vm_cnt.v_wire_count, npages);
1923				KASSERT(m->object == NULL,
1924				    ("page %p has object", m));
1925				mpred = m;
1926				for (m = m_ret; m < &m_ret[npages]; m++) {
1927					if (m <= mpred &&
1928					    (req & VM_ALLOC_WIRED) != 0)
1929						m->wire_count = 0;
1930					m->oflags = VPO_UNMANAGED;
1931					m->busy_lock = VPB_UNBUSIED;
1932					/* Don't change PG_ZERO. */
1933					vm_page_free_toq(m);
1934				}
1935				if (req & VM_ALLOC_WAITFAIL) {
1936					VM_OBJECT_WUNLOCK(object);
1937					vm_radix_wait();
1938					VM_OBJECT_WLOCK(object);
1939				}
1940				return (NULL);
1941			}
1942			mpred = m;
1943		} else
1944			m->pindex = pindex;
1945		if (memattr != VM_MEMATTR_DEFAULT)
1946			pmap_page_set_memattr(m, memattr);
1947		pindex++;
1948	}
1949	if (vm_paging_needed(vm_cnt.v_free_count))
1950		pagedaemon_wakeup();
1951	return (m_ret);
1952}
1953
1954/*
1955 * Check a page that has been freshly dequeued from a freelist.
1956 */
1957static void
1958vm_page_alloc_check(vm_page_t m)
1959{
1960
1961	KASSERT(m->object == NULL, ("page %p has object", m));
1962	KASSERT(m->queue == PQ_NONE,
1963	    ("page %p has unexpected queue %d", m, m->queue));
1964	KASSERT(m->wire_count == 0, ("page %p is wired", m));
1965	KASSERT(m->hold_count == 0, ("page %p is held", m));
1966	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1967	KASSERT(m->dirty == 0, ("page %p is dirty", m));
1968	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1969	    ("page %p has unexpected memattr %d",
1970	    m, pmap_page_get_memattr(m)));
1971	KASSERT(m->valid == 0, ("free page %p is valid", m));
1972}
1973
1974/*
1975 * 	vm_page_alloc_freelist:
1976 *
1977 *	Allocate a physical page from the specified free page list.
1978 *
1979 *	The caller must always specify an allocation class.
1980 *
1981 *	allocation classes:
1982 *	VM_ALLOC_NORMAL		normal process request
1983 *	VM_ALLOC_SYSTEM		system *really* needs a page
1984 *	VM_ALLOC_INTERRUPT	interrupt time request
1985 *
1986 *	optional allocation flags:
1987 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1988 *				intends to allocate
1989 *	VM_ALLOC_WIRED		wire the allocated page
1990 *	VM_ALLOC_ZERO		prefer a zeroed page
1991 *
1992 *	This routine may not sleep.
1993 */
1994vm_page_t
1995vm_page_alloc_freelist(int flind, int req)
1996{
1997	vm_page_t m;
1998	u_int flags, free_count;
1999	int req_class;
2000
2001	req_class = req & VM_ALLOC_CLASS_MASK;
2002
2003	/*
2004	 * The page daemon is allowed to dig deeper into the free page list.
2005	 */
2006	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2007		req_class = VM_ALLOC_SYSTEM;
2008
2009	/*
2010	 * Do not allocate reserved pages unless the req has asked for it.
2011	 */
2012again:
2013	mtx_lock(&vm_page_queue_free_mtx);
2014	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
2015	    (req_class == VM_ALLOC_SYSTEM &&
2016	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
2017	    (req_class == VM_ALLOC_INTERRUPT &&
2018	    vm_cnt.v_free_count > 0)) {
2019		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2020	} else {
2021		if (vm_page_alloc_fail(NULL, req))
2022			goto again;
2023		return (NULL);
2024	}
2025	if (m == NULL) {
2026		mtx_unlock(&vm_page_queue_free_mtx);
2027		return (NULL);
2028	}
2029	free_count = vm_phys_freecnt_adj(m, -1);
2030	if ((m->flags & PG_ZERO) != 0)
2031		vm_page_zero_count--;
2032	mtx_unlock(&vm_page_queue_free_mtx);
2033	vm_page_alloc_check(m);
2034
2035	/*
2036	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2037	 */
2038	m->aflags = 0;
2039	flags = 0;
2040	if ((req & VM_ALLOC_ZERO) != 0)
2041		flags = PG_ZERO;
2042	m->flags &= flags;
2043	if ((req & VM_ALLOC_WIRED) != 0) {
2044		/*
2045		 * The page lock is not required for wiring a page that does
2046		 * not belong to an object.
2047		 */
2048		atomic_add_int(&vm_cnt.v_wire_count, 1);
2049		m->wire_count = 1;
2050	}
2051	/* Unmanaged pages don't use "act_count". */
2052	m->oflags = VPO_UNMANAGED;
2053	if (vm_paging_needed(free_count))
2054		pagedaemon_wakeup();
2055	return (m);
2056}
2057
2058#define	VPSC_ANY	0	/* No restrictions. */
2059#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2060#define	VPSC_NOSUPER	2	/* Skip superpages. */
2061
2062/*
2063 *	vm_page_scan_contig:
2064 *
2065 *	Scan vm_page_array[] between the specified entries "m_start" and
2066 *	"m_end" for a run of contiguous physical pages that satisfy the
2067 *	specified conditions, and return the lowest page in the run.  The
2068 *	specified "alignment" determines the alignment of the lowest physical
2069 *	page in the run.  If the specified "boundary" is non-zero, then the
2070 *	run of physical pages cannot span a physical address that is a
2071 *	multiple of "boundary".
2072 *
2073 *	"m_end" is never dereferenced, so it need not point to a vm_page
2074 *	structure within vm_page_array[].
2075 *
2076 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2077 *	span a hole (or discontiguity) in the physical address space.  Both
2078 *	"alignment" and "boundary" must be a power of two.
2079 */
2080vm_page_t
2081vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2082    u_long alignment, vm_paddr_t boundary, int options)
2083{
2084	struct mtx *m_mtx;
2085	vm_object_t object;
2086	vm_paddr_t pa;
2087	vm_page_t m, m_run;
2088#if VM_NRESERVLEVEL > 0
2089	int level;
2090#endif
2091	int m_inc, order, run_ext, run_len;
2092
2093	KASSERT(npages > 0, ("npages is 0"));
2094	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2095	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2096	m_run = NULL;
2097	run_len = 0;
2098	m_mtx = NULL;
2099	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2100		KASSERT((m->flags & PG_MARKER) == 0,
2101		    ("page %p is PG_MARKER", m));
2102		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2103		    ("fictitious page %p has invalid wire count", m));
2104
2105		/*
2106		 * If the current page would be the start of a run, check its
2107		 * physical address against the end, alignment, and boundary
2108		 * conditions.  If it doesn't satisfy these conditions, either
2109		 * terminate the scan or advance to the next page that
2110		 * satisfies the failed condition.
2111		 */
2112		if (run_len == 0) {
2113			KASSERT(m_run == NULL, ("m_run != NULL"));
2114			if (m + npages > m_end)
2115				break;
2116			pa = VM_PAGE_TO_PHYS(m);
2117			if ((pa & (alignment - 1)) != 0) {
2118				m_inc = atop(roundup2(pa, alignment) - pa);
2119				continue;
2120			}
2121			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2122			    boundary) != 0) {
2123				m_inc = atop(roundup2(pa, boundary) - pa);
2124				continue;
2125			}
2126		} else
2127			KASSERT(m_run != NULL, ("m_run == NULL"));
2128
2129		vm_page_change_lock(m, &m_mtx);
2130		m_inc = 1;
2131retry:
2132		if (m->wire_count != 0 || m->hold_count != 0)
2133			run_ext = 0;
2134#if VM_NRESERVLEVEL > 0
2135		else if ((level = vm_reserv_level(m)) >= 0 &&
2136		    (options & VPSC_NORESERV) != 0) {
2137			run_ext = 0;
2138			/* Advance to the end of the reservation. */
2139			pa = VM_PAGE_TO_PHYS(m);
2140			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2141			    pa);
2142		}
2143#endif
2144		else if ((object = m->object) != NULL) {
2145			/*
2146			 * The page is considered eligible for relocation if
2147			 * and only if it could be laundered or reclaimed by
2148			 * the page daemon.
2149			 */
2150			if (!VM_OBJECT_TRYRLOCK(object)) {
2151				mtx_unlock(m_mtx);
2152				VM_OBJECT_RLOCK(object);
2153				mtx_lock(m_mtx);
2154				if (m->object != object) {
2155					/*
2156					 * The page may have been freed.
2157					 */
2158					VM_OBJECT_RUNLOCK(object);
2159					goto retry;
2160				} else if (m->wire_count != 0 ||
2161				    m->hold_count != 0) {
2162					run_ext = 0;
2163					goto unlock;
2164				}
2165			}
2166			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2167			    ("page %p is PG_UNHOLDFREE", m));
2168			/* Don't care: PG_NODUMP, PG_ZERO. */
2169			if (object->type != OBJT_DEFAULT &&
2170			    object->type != OBJT_SWAP &&
2171			    object->type != OBJT_VNODE) {
2172				run_ext = 0;
2173#if VM_NRESERVLEVEL > 0
2174			} else if ((options & VPSC_NOSUPER) != 0 &&
2175			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2176				run_ext = 0;
2177				/* Advance to the end of the superpage. */
2178				pa = VM_PAGE_TO_PHYS(m);
2179				m_inc = atop(roundup2(pa + 1,
2180				    vm_reserv_size(level)) - pa);
2181#endif
2182			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2183			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2184				/*
2185				 * The page is allocated but eligible for
2186				 * relocation.  Extend the current run by one
2187				 * page.
2188				 */
2189				KASSERT(pmap_page_get_memattr(m) ==
2190				    VM_MEMATTR_DEFAULT,
2191				    ("page %p has an unexpected memattr", m));
2192				KASSERT((m->oflags & (VPO_SWAPINPROG |
2193				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2194				    ("page %p has unexpected oflags", m));
2195				/* Don't care: VPO_NOSYNC. */
2196				run_ext = 1;
2197			} else
2198				run_ext = 0;
2199unlock:
2200			VM_OBJECT_RUNLOCK(object);
2201#if VM_NRESERVLEVEL > 0
2202		} else if (level >= 0) {
2203			/*
2204			 * The page is reserved but not yet allocated.  In
2205			 * other words, it is still free.  Extend the current
2206			 * run by one page.
2207			 */
2208			run_ext = 1;
2209#endif
2210		} else if ((order = m->order) < VM_NFREEORDER) {
2211			/*
2212			 * The page is enqueued in the physical memory
2213			 * allocator's free page queues.  Moreover, it is the
2214			 * first page in a power-of-two-sized run of
2215			 * contiguous free pages.  Add these pages to the end
2216			 * of the current run, and jump ahead.
2217			 */
2218			run_ext = 1 << order;
2219			m_inc = 1 << order;
2220		} else {
2221			/*
2222			 * Skip the page for one of the following reasons: (1)
2223			 * It is enqueued in the physical memory allocator's
2224			 * free page queues.  However, it is not the first
2225			 * page in a run of contiguous free pages.  (This case
2226			 * rarely occurs because the scan is performed in
2227			 * ascending order.) (2) It is not reserved, and it is
2228			 * transitioning from free to allocated.  (Conversely,
2229			 * the transition from allocated to free for managed
2230			 * pages is blocked by the page lock.) (3) It is
2231			 * allocated but not contained by an object and not
2232			 * wired, e.g., allocated by Xen's balloon driver.
2233			 */
2234			run_ext = 0;
2235		}
2236
2237		/*
2238		 * Extend or reset the current run of pages.
2239		 */
2240		if (run_ext > 0) {
2241			if (run_len == 0)
2242				m_run = m;
2243			run_len += run_ext;
2244		} else {
2245			if (run_len > 0) {
2246				m_run = NULL;
2247				run_len = 0;
2248			}
2249		}
2250	}
2251	if (m_mtx != NULL)
2252		mtx_unlock(m_mtx);
2253	if (run_len >= npages)
2254		return (m_run);
2255	return (NULL);
2256}
2257
2258/*
2259 *	vm_page_reclaim_run:
2260 *
2261 *	Try to relocate each of the allocated virtual pages within the
2262 *	specified run of physical pages to a new physical address.  Free the
2263 *	physical pages underlying the relocated virtual pages.  A virtual page
2264 *	is relocatable if and only if it could be laundered or reclaimed by
2265 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2266 *	physical address above "high".
2267 *
2268 *	Returns 0 if every physical page within the run was already free or
2269 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2270 *	value indicating why the last attempt to relocate a virtual page was
2271 *	unsuccessful.
2272 *
2273 *	"req_class" must be an allocation class.
2274 */
2275static int
2276vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2277    vm_paddr_t high)
2278{
2279	struct mtx *m_mtx;
2280	struct spglist free;
2281	vm_object_t object;
2282	vm_paddr_t pa;
2283	vm_page_t m, m_end, m_new;
2284	int error, order, req;
2285
2286	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2287	    ("req_class is not an allocation class"));
2288	SLIST_INIT(&free);
2289	error = 0;
2290	m = m_run;
2291	m_end = m_run + npages;
2292	m_mtx = NULL;
2293	for (; error == 0 && m < m_end; m++) {
2294		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2295		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2296
2297		/*
2298		 * Avoid releasing and reacquiring the same page lock.
2299		 */
2300		vm_page_change_lock(m, &m_mtx);
2301retry:
2302		if (m->wire_count != 0 || m->hold_count != 0)
2303			error = EBUSY;
2304		else if ((object = m->object) != NULL) {
2305			/*
2306			 * The page is relocated if and only if it could be
2307			 * laundered or reclaimed by the page daemon.
2308			 */
2309			if (!VM_OBJECT_TRYWLOCK(object)) {
2310				mtx_unlock(m_mtx);
2311				VM_OBJECT_WLOCK(object);
2312				mtx_lock(m_mtx);
2313				if (m->object != object) {
2314					/*
2315					 * The page may have been freed.
2316					 */
2317					VM_OBJECT_WUNLOCK(object);
2318					goto retry;
2319				} else if (m->wire_count != 0 ||
2320				    m->hold_count != 0) {
2321					error = EBUSY;
2322					goto unlock;
2323				}
2324			}
2325			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2326			    ("page %p is PG_UNHOLDFREE", m));
2327			/* Don't care: PG_NODUMP, PG_ZERO. */
2328			if (object->type != OBJT_DEFAULT &&
2329			    object->type != OBJT_SWAP &&
2330			    object->type != OBJT_VNODE)
2331				error = EINVAL;
2332			else if (object->memattr != VM_MEMATTR_DEFAULT)
2333				error = EINVAL;
2334			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2335				KASSERT(pmap_page_get_memattr(m) ==
2336				    VM_MEMATTR_DEFAULT,
2337				    ("page %p has an unexpected memattr", m));
2338				KASSERT((m->oflags & (VPO_SWAPINPROG |
2339				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2340				    ("page %p has unexpected oflags", m));
2341				/* Don't care: VPO_NOSYNC. */
2342				if (m->valid != 0) {
2343					/*
2344					 * First, try to allocate a new page
2345					 * that is above "high".  Failing
2346					 * that, try to allocate a new page
2347					 * that is below "m_run".  Allocate
2348					 * the new page between the end of
2349					 * "m_run" and "high" only as a last
2350					 * resort.
2351					 */
2352					req = req_class | VM_ALLOC_NOOBJ;
2353					if ((m->flags & PG_NODUMP) != 0)
2354						req |= VM_ALLOC_NODUMP;
2355					if (trunc_page(high) !=
2356					    ~(vm_paddr_t)PAGE_MASK) {
2357						m_new = vm_page_alloc_contig(
2358						    NULL, 0, req, 1,
2359						    round_page(high),
2360						    ~(vm_paddr_t)0,
2361						    PAGE_SIZE, 0,
2362						    VM_MEMATTR_DEFAULT);
2363					} else
2364						m_new = NULL;
2365					if (m_new == NULL) {
2366						pa = VM_PAGE_TO_PHYS(m_run);
2367						m_new = vm_page_alloc_contig(
2368						    NULL, 0, req, 1,
2369						    0, pa - 1, PAGE_SIZE, 0,
2370						    VM_MEMATTR_DEFAULT);
2371					}
2372					if (m_new == NULL) {
2373						pa += ptoa(npages);
2374						m_new = vm_page_alloc_contig(
2375						    NULL, 0, req, 1,
2376						    pa, high, PAGE_SIZE, 0,
2377						    VM_MEMATTR_DEFAULT);
2378					}
2379					if (m_new == NULL) {
2380						error = ENOMEM;
2381						goto unlock;
2382					}
2383					KASSERT(m_new->wire_count == 0,
2384					    ("page %p is wired", m_new));
2385
2386					/*
2387					 * Replace "m" with the new page.  For
2388					 * vm_page_replace(), "m" must be busy
2389					 * and dequeued.  Finally, change "m"
2390					 * as if vm_page_free() was called.
2391					 */
2392					if (object->ref_count != 0)
2393						pmap_remove_all(m);
2394					m_new->aflags = m->aflags;
2395					KASSERT(m_new->oflags == VPO_UNMANAGED,
2396					    ("page %p is managed", m_new));
2397					m_new->oflags = m->oflags & VPO_NOSYNC;
2398					pmap_copy_page(m, m_new);
2399					m_new->valid = m->valid;
2400					m_new->dirty = m->dirty;
2401					m->flags &= ~PG_ZERO;
2402					vm_page_xbusy(m);
2403					vm_page_remque(m);
2404					vm_page_replace_checked(m_new, object,
2405					    m->pindex, m);
2406					m->valid = 0;
2407					vm_page_undirty(m);
2408
2409					/*
2410					 * The new page must be deactivated
2411					 * before the object is unlocked.
2412					 */
2413					vm_page_change_lock(m_new, &m_mtx);
2414					vm_page_deactivate(m_new);
2415				} else {
2416					m->flags &= ~PG_ZERO;
2417					vm_page_remque(m);
2418					vm_page_remove(m);
2419					KASSERT(m->dirty == 0,
2420					    ("page %p is dirty", m));
2421				}
2422				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2423			} else
2424				error = EBUSY;
2425unlock:
2426			VM_OBJECT_WUNLOCK(object);
2427		} else {
2428			mtx_lock(&vm_page_queue_free_mtx);
2429			order = m->order;
2430			if (order < VM_NFREEORDER) {
2431				/*
2432				 * The page is enqueued in the physical memory
2433				 * allocator's free page queues.  Moreover, it
2434				 * is the first page in a power-of-two-sized
2435				 * run of contiguous free pages.  Jump ahead
2436				 * to the last page within that run, and
2437				 * continue from there.
2438				 */
2439				m += (1 << order) - 1;
2440			}
2441#if VM_NRESERVLEVEL > 0
2442			else if (vm_reserv_is_page_free(m))
2443				order = 0;
2444#endif
2445			mtx_unlock(&vm_page_queue_free_mtx);
2446			if (order == VM_NFREEORDER)
2447				error = EINVAL;
2448		}
2449	}
2450	if (m_mtx != NULL)
2451		mtx_unlock(m_mtx);
2452	if ((m = SLIST_FIRST(&free)) != NULL) {
2453		mtx_lock(&vm_page_queue_free_mtx);
2454		do {
2455			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2456			vm_page_free_phys(m);
2457		} while ((m = SLIST_FIRST(&free)) != NULL);
2458		vm_page_zero_idle_wakeup();
2459		vm_page_free_wakeup();
2460		mtx_unlock(&vm_page_queue_free_mtx);
2461	}
2462	return (error);
2463}
2464
2465#define	NRUNS	16
2466
2467CTASSERT(powerof2(NRUNS));
2468
2469#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2470
2471#define	MIN_RECLAIM	8
2472
2473/*
2474 *	vm_page_reclaim_contig:
2475 *
2476 *	Reclaim allocated, contiguous physical memory satisfying the specified
2477 *	conditions by relocating the virtual pages using that physical memory.
2478 *	Returns true if reclamation is successful and false otherwise.  Since
2479 *	relocation requires the allocation of physical pages, reclamation may
2480 *	fail due to a shortage of free pages.  When reclamation fails, callers
2481 *	are expected to perform VM_WAIT before retrying a failed allocation
2482 *	operation, e.g., vm_page_alloc_contig().
2483 *
2484 *	The caller must always specify an allocation class through "req".
2485 *
2486 *	allocation classes:
2487 *	VM_ALLOC_NORMAL		normal process request
2488 *	VM_ALLOC_SYSTEM		system *really* needs a page
2489 *	VM_ALLOC_INTERRUPT	interrupt time request
2490 *
2491 *	The optional allocation flags are ignored.
2492 *
2493 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2494 *	must be a power of two.
2495 */
2496bool
2497vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2498    u_long alignment, vm_paddr_t boundary)
2499{
2500	vm_paddr_t curr_low;
2501	vm_page_t m_run, m_runs[NRUNS];
2502	u_long count, reclaimed;
2503	int error, i, options, req_class;
2504
2505	KASSERT(npages > 0, ("npages is 0"));
2506	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2507	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2508	req_class = req & VM_ALLOC_CLASS_MASK;
2509
2510	/*
2511	 * The page daemon is allowed to dig deeper into the free page list.
2512	 */
2513	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2514		req_class = VM_ALLOC_SYSTEM;
2515
2516	/*
2517	 * Return if the number of free pages cannot satisfy the requested
2518	 * allocation.
2519	 */
2520	count = vm_cnt.v_free_count;
2521	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2522	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2523	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2524		return (false);
2525
2526	/*
2527	 * Scan up to three times, relaxing the restrictions ("options") on
2528	 * the reclamation of reservations and superpages each time.
2529	 */
2530	for (options = VPSC_NORESERV;;) {
2531		/*
2532		 * Find the highest runs that satisfy the given constraints
2533		 * and restrictions, and record them in "m_runs".
2534		 */
2535		curr_low = low;
2536		count = 0;
2537		for (;;) {
2538			m_run = vm_phys_scan_contig(npages, curr_low, high,
2539			    alignment, boundary, options);
2540			if (m_run == NULL)
2541				break;
2542			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2543			m_runs[RUN_INDEX(count)] = m_run;
2544			count++;
2545		}
2546
2547		/*
2548		 * Reclaim the highest runs in LIFO (descending) order until
2549		 * the number of reclaimed pages, "reclaimed", is at least
2550		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2551		 * reclamation is idempotent, and runs will (likely) recur
2552		 * from one scan to the next as restrictions are relaxed.
2553		 */
2554		reclaimed = 0;
2555		for (i = 0; count > 0 && i < NRUNS; i++) {
2556			count--;
2557			m_run = m_runs[RUN_INDEX(count)];
2558			error = vm_page_reclaim_run(req_class, npages, m_run,
2559			    high);
2560			if (error == 0) {
2561				reclaimed += npages;
2562				if (reclaimed >= MIN_RECLAIM)
2563					return (true);
2564			}
2565		}
2566
2567		/*
2568		 * Either relax the restrictions on the next scan or return if
2569		 * the last scan had no restrictions.
2570		 */
2571		if (options == VPSC_NORESERV)
2572			options = VPSC_NOSUPER;
2573		else if (options == VPSC_NOSUPER)
2574			options = VPSC_ANY;
2575		else if (options == VPSC_ANY)
2576			return (reclaimed != 0);
2577	}
2578}
2579
2580/*
2581 *	vm_wait:	(also see VM_WAIT macro)
2582 *
2583 *	Sleep until free pages are available for allocation.
2584 *	- Called in various places before memory allocations.
2585 */
2586static void
2587_vm_wait(void)
2588{
2589
2590	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2591	if (curproc == pageproc) {
2592		vm_pageout_pages_needed = 1;
2593		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2594		    PDROP | PSWP, "VMWait", 0);
2595	} else {
2596		if (pageproc == NULL)
2597			panic("vm_wait in early boot");
2598		pagedaemon_wait(PVM, "vmwait");
2599	}
2600}
2601
2602void
2603vm_wait(void)
2604{
2605
2606	mtx_lock(&vm_page_queue_free_mtx);
2607	_vm_wait();
2608}
2609
2610/*
2611 *	vm_page_alloc_fail:
2612 *
2613 *	Called when a page allocation function fails.  Informs the
2614 *	pagedaemon and performs the requested wait.  Requires the
2615 *	page_queue_free and object lock on entry.  Returns with the
2616 *	object lock held and free lock released.  Returns an error when
2617 *	retry is necessary.
2618 *
2619 */
2620static int
2621vm_page_alloc_fail(vm_object_t object, int req)
2622{
2623
2624	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2625
2626	atomic_add_int(&vm_pageout_deficit,
2627	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2628	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
2629		if (object != NULL)
2630			VM_OBJECT_WUNLOCK(object);
2631		_vm_wait();
2632		if (object != NULL)
2633			VM_OBJECT_WLOCK(object);
2634		if (req & VM_ALLOC_WAITOK)
2635			return (EAGAIN);
2636	} else {
2637		mtx_unlock(&vm_page_queue_free_mtx);
2638		pagedaemon_wakeup();
2639	}
2640	return (0);
2641}
2642
2643/*
2644 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2645 *
2646 *	Sleep until free pages are available for allocation.
2647 *	- Called only in vm_fault so that processes page faulting
2648 *	  can be easily tracked.
2649 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2650 *	  processes will be able to grab memory first.  Do not change
2651 *	  this balance without careful testing first.
2652 */
2653void
2654vm_waitpfault(void)
2655{
2656
2657	mtx_lock(&vm_page_queue_free_mtx);
2658	pagedaemon_wait(PUSER, "pfault");
2659}
2660
2661struct vm_pagequeue *
2662vm_page_pagequeue(vm_page_t m)
2663{
2664
2665	if (vm_page_in_laundry(m))
2666		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2667	else
2668		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2669}
2670
2671/*
2672 *	vm_page_dequeue:
2673 *
2674 *	Remove the given page from its current page queue.
2675 *
2676 *	The page must be locked.
2677 */
2678void
2679vm_page_dequeue(vm_page_t m)
2680{
2681	struct vm_pagequeue *pq;
2682
2683	vm_page_assert_locked(m);
2684	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2685	    m));
2686	pq = vm_page_pagequeue(m);
2687	vm_pagequeue_lock(pq);
2688	m->queue = PQ_NONE;
2689	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2690	vm_pagequeue_cnt_dec(pq);
2691	vm_pagequeue_unlock(pq);
2692}
2693
2694/*
2695 *	vm_page_dequeue_locked:
2696 *
2697 *	Remove the given page from its current page queue.
2698 *
2699 *	The page and page queue must be locked.
2700 */
2701void
2702vm_page_dequeue_locked(vm_page_t m)
2703{
2704	struct vm_pagequeue *pq;
2705
2706	vm_page_lock_assert(m, MA_OWNED);
2707	pq = vm_page_pagequeue(m);
2708	vm_pagequeue_assert_locked(pq);
2709	m->queue = PQ_NONE;
2710	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2711	vm_pagequeue_cnt_dec(pq);
2712}
2713
2714/*
2715 *	vm_page_enqueue:
2716 *
2717 *	Add the given page to the specified page queue.
2718 *
2719 *	The page must be locked.
2720 */
2721static void
2722vm_page_enqueue(uint8_t queue, vm_page_t m)
2723{
2724	struct vm_pagequeue *pq;
2725
2726	vm_page_lock_assert(m, MA_OWNED);
2727	KASSERT(queue < PQ_COUNT,
2728	    ("vm_page_enqueue: invalid queue %u request for page %p",
2729	    queue, m));
2730	if (queue == PQ_LAUNDRY)
2731		pq = &vm_dom[0].vmd_pagequeues[queue];
2732	else
2733		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2734	vm_pagequeue_lock(pq);
2735	m->queue = queue;
2736	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2737	vm_pagequeue_cnt_inc(pq);
2738	vm_pagequeue_unlock(pq);
2739}
2740
2741/*
2742 *	vm_page_requeue:
2743 *
2744 *	Move the given page to the tail of its current page queue.
2745 *
2746 *	The page must be locked.
2747 */
2748void
2749vm_page_requeue(vm_page_t m)
2750{
2751	struct vm_pagequeue *pq;
2752
2753	vm_page_lock_assert(m, MA_OWNED);
2754	KASSERT(m->queue != PQ_NONE,
2755	    ("vm_page_requeue: page %p is not queued", m));
2756	pq = vm_page_pagequeue(m);
2757	vm_pagequeue_lock(pq);
2758	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2759	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2760	vm_pagequeue_unlock(pq);
2761}
2762
2763/*
2764 *	vm_page_requeue_locked:
2765 *
2766 *	Move the given page to the tail of its current page queue.
2767 *
2768 *	The page queue must be locked.
2769 */
2770void
2771vm_page_requeue_locked(vm_page_t m)
2772{
2773	struct vm_pagequeue *pq;
2774
2775	KASSERT(m->queue != PQ_NONE,
2776	    ("vm_page_requeue_locked: page %p is not queued", m));
2777	pq = vm_page_pagequeue(m);
2778	vm_pagequeue_assert_locked(pq);
2779	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2780	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2781}
2782
2783/*
2784 *	vm_page_activate:
2785 *
2786 *	Put the specified page on the active list (if appropriate).
2787 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2788 *	mess with it.
2789 *
2790 *	The page must be locked.
2791 */
2792void
2793vm_page_activate(vm_page_t m)
2794{
2795	int queue;
2796
2797	vm_page_lock_assert(m, MA_OWNED);
2798	if ((queue = m->queue) != PQ_ACTIVE) {
2799		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2800			if (m->act_count < ACT_INIT)
2801				m->act_count = ACT_INIT;
2802			if (queue != PQ_NONE)
2803				vm_page_dequeue(m);
2804			vm_page_enqueue(PQ_ACTIVE, m);
2805		} else
2806			KASSERT(queue == PQ_NONE,
2807			    ("vm_page_activate: wired page %p is queued", m));
2808	} else {
2809		if (m->act_count < ACT_INIT)
2810			m->act_count = ACT_INIT;
2811	}
2812}
2813
2814/*
2815 *	vm_page_free_wakeup:
2816 *
2817 *	Helper routine for vm_page_free_toq().  This routine is called
2818 *	when a page is added to the free queues.
2819 *
2820 *	The page queues must be locked.
2821 */
2822static void
2823vm_page_free_wakeup(void)
2824{
2825
2826	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2827	/*
2828	 * if pageout daemon needs pages, then tell it that there are
2829	 * some free.
2830	 */
2831	if (vm_pageout_pages_needed &&
2832	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2833		wakeup(&vm_pageout_pages_needed);
2834		vm_pageout_pages_needed = 0;
2835	}
2836	/*
2837	 * wakeup processes that are waiting on memory if we hit a
2838	 * high water mark. And wakeup scheduler process if we have
2839	 * lots of memory. this process will swapin processes.
2840	 */
2841	if (vm_pages_needed && !vm_page_count_min()) {
2842		vm_pages_needed = false;
2843		wakeup(&vm_cnt.v_free_count);
2844	}
2845}
2846
2847/*
2848 *	vm_page_free_prep:
2849 *
2850 *	Prepares the given page to be put on the free list,
2851 *	disassociating it from any VM object. The caller may return
2852 *	the page to the free list only if this function returns true.
2853 *
2854 *	The object must be locked.  The page must be locked if it is
2855 *	managed.  For a queued managed page, the pagequeue_locked
2856 *	argument specifies whether the page queue is already locked.
2857 */
2858bool
2859vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
2860{
2861
2862#if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
2863	if ((m->flags & PG_ZERO) != 0) {
2864		uint64_t *p;
2865		int i;
2866		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2867		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
2868			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
2869			    m, i, (uintmax_t)*p));
2870	}
2871#endif
2872	if ((m->oflags & VPO_UNMANAGED) == 0) {
2873		vm_page_lock_assert(m, MA_OWNED);
2874		KASSERT(!pmap_page_is_mapped(m),
2875		    ("vm_page_free_toq: freeing mapped page %p", m));
2876	} else
2877		KASSERT(m->queue == PQ_NONE,
2878		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2879	PCPU_INC(cnt.v_tfree);
2880
2881	if (vm_page_sbusied(m))
2882		panic("vm_page_free: freeing busy page %p", m);
2883
2884	/*
2885	 * Unqueue, then remove page.  Note that we cannot destroy
2886	 * the page here because we do not want to call the pager's
2887	 * callback routine until after we've put the page on the
2888	 * appropriate free queue.
2889	 */
2890	if (m->queue != PQ_NONE) {
2891		if (pagequeue_locked)
2892			vm_page_dequeue_locked(m);
2893		else
2894			vm_page_dequeue(m);
2895	}
2896	vm_page_remove(m);
2897
2898	/*
2899	 * If fictitious remove object association and
2900	 * return, otherwise delay object association removal.
2901	 */
2902	if ((m->flags & PG_FICTITIOUS) != 0)
2903		return (false);
2904
2905	m->valid = 0;
2906	vm_page_undirty(m);
2907
2908	if (m->wire_count != 0)
2909		panic("vm_page_free: freeing wired page %p", m);
2910	if (m->hold_count != 0) {
2911		m->flags &= ~PG_ZERO;
2912		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2913		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2914		m->flags |= PG_UNHOLDFREE;
2915		return (false);
2916	}
2917
2918	/*
2919	 * Restore the default memory attribute to the page.
2920	 */
2921	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2922		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2923
2924	return (true);
2925}
2926
2927/*
2928 * Insert the page into the physical memory allocator's free page
2929 * queues.  This is the last step to free a page.
2930 */
2931static void
2932vm_page_free_phys(vm_page_t m)
2933{
2934
2935	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2936
2937	vm_phys_freecnt_adj(m, 1);
2938#if VM_NRESERVLEVEL > 0
2939	if (!vm_reserv_free_page(m))
2940#endif
2941			vm_phys_free_pages(m, 0);
2942	if ((m->flags & PG_ZERO) != 0)
2943		++vm_page_zero_count;
2944	else
2945		vm_page_zero_idle_wakeup();
2946}
2947
2948void
2949vm_page_free_phys_pglist(struct pglist *tq)
2950{
2951	vm_page_t m;
2952
2953	if (TAILQ_EMPTY(tq))
2954		return;
2955	mtx_lock(&vm_page_queue_free_mtx);
2956	TAILQ_FOREACH(m, tq, listq)
2957		vm_page_free_phys(m);
2958	vm_page_free_wakeup();
2959	mtx_unlock(&vm_page_queue_free_mtx);
2960}
2961
2962/*
2963 *	vm_page_free_toq:
2964 *
2965 *	Returns the given page to the free list, disassociating it
2966 *	from any VM object.
2967 *
2968 *	The object must be locked.  The page must be locked if it is
2969 *	managed.
2970 */
2971void
2972vm_page_free_toq(vm_page_t m)
2973{
2974
2975	if (!vm_page_free_prep(m, false))
2976		return;
2977	mtx_lock(&vm_page_queue_free_mtx);
2978	vm_page_free_phys(m);
2979	vm_page_free_wakeup();
2980	mtx_unlock(&vm_page_queue_free_mtx);
2981}
2982
2983/*
2984 *	vm_page_wire:
2985 *
2986 *	Mark this page as wired down by yet
2987 *	another map, removing it from paging queues
2988 *	as necessary.
2989 *
2990 *	If the page is fictitious, then its wire count must remain one.
2991 *
2992 *	The page must be locked.
2993 */
2994void
2995vm_page_wire(vm_page_t m)
2996{
2997
2998	/*
2999	 * Only bump the wire statistics if the page is not already wired,
3000	 * and only unqueue the page if it is on some queue (if it is unmanaged
3001	 * it is already off the queues).
3002	 */
3003	vm_page_lock_assert(m, MA_OWNED);
3004	if ((m->flags & PG_FICTITIOUS) != 0) {
3005		KASSERT(m->wire_count == 1,
3006		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3007		    m));
3008		return;
3009	}
3010	if (m->wire_count == 0) {
3011		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3012		    m->queue == PQ_NONE,
3013		    ("vm_page_wire: unmanaged page %p is queued", m));
3014		vm_page_remque(m);
3015		atomic_add_int(&vm_cnt.v_wire_count, 1);
3016	}
3017	m->wire_count++;
3018	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3019}
3020
3021/*
3022 * vm_page_unwire:
3023 *
3024 * Release one wiring of the specified page, potentially allowing it to be
3025 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3026 * FALSE otherwise.
3027 *
3028 * Only managed pages belonging to an object can be paged out.  If the number
3029 * of wirings transitions to zero and the page is eligible for page out, then
3030 * the page is added to the specified paging queue (unless PQ_NONE is
3031 * specified).
3032 *
3033 * If a page is fictitious, then its wire count must always be one.
3034 *
3035 * A managed page must be locked.
3036 */
3037boolean_t
3038vm_page_unwire(vm_page_t m, uint8_t queue)
3039{
3040
3041	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3042	    ("vm_page_unwire: invalid queue %u request for page %p",
3043	    queue, m));
3044	if ((m->oflags & VPO_UNMANAGED) == 0)
3045		vm_page_assert_locked(m);
3046	if ((m->flags & PG_FICTITIOUS) != 0) {
3047		KASSERT(m->wire_count == 1,
3048	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3049		return (FALSE);
3050	}
3051	if (m->wire_count > 0) {
3052		m->wire_count--;
3053		if (m->wire_count == 0) {
3054			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3055			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3056			    m->object != NULL && queue != PQ_NONE)
3057				vm_page_enqueue(queue, m);
3058			return (TRUE);
3059		} else
3060			return (FALSE);
3061	} else
3062		panic("vm_page_unwire: page %p's wire count is zero", m);
3063}
3064
3065/*
3066 * Move the specified page to the inactive queue.
3067 *
3068 * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
3069 * queue.  However, setting "noreuse" to TRUE will accelerate the specified
3070 * page's reclamation, but it will not unmap the page from any address space.
3071 * This is implemented by inserting the page near the head of the inactive
3072 * queue, using a marker page to guide FIFO insertion ordering.
3073 *
3074 * The page must be locked.
3075 */
3076static inline void
3077_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3078{
3079	struct vm_pagequeue *pq;
3080	int queue;
3081
3082	vm_page_assert_locked(m);
3083
3084	/*
3085	 * Ignore if the page is already inactive, unless it is unlikely to be
3086	 * reactivated.
3087	 */
3088	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3089		return;
3090	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3091		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3092		/* Avoid multiple acquisitions of the inactive queue lock. */
3093		if (queue == PQ_INACTIVE) {
3094			vm_pagequeue_lock(pq);
3095			vm_page_dequeue_locked(m);
3096		} else {
3097			if (queue != PQ_NONE)
3098				vm_page_dequeue(m);
3099			vm_pagequeue_lock(pq);
3100		}
3101		m->queue = PQ_INACTIVE;
3102		if (noreuse)
3103			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3104			    m, plinks.q);
3105		else
3106			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3107		vm_pagequeue_cnt_inc(pq);
3108		vm_pagequeue_unlock(pq);
3109	}
3110}
3111
3112/*
3113 * Move the specified page to the inactive queue.
3114 *
3115 * The page must be locked.
3116 */
3117void
3118vm_page_deactivate(vm_page_t m)
3119{
3120
3121	_vm_page_deactivate(m, FALSE);
3122}
3123
3124/*
3125 * Move the specified page to the inactive queue with the expectation
3126 * that it is unlikely to be reused.
3127 *
3128 * The page must be locked.
3129 */
3130void
3131vm_page_deactivate_noreuse(vm_page_t m)
3132{
3133
3134	_vm_page_deactivate(m, TRUE);
3135}
3136
3137/*
3138 * vm_page_launder
3139 *
3140 * 	Put a page in the laundry.
3141 */
3142void
3143vm_page_launder(vm_page_t m)
3144{
3145	int queue;
3146
3147	vm_page_assert_locked(m);
3148	if ((queue = m->queue) != PQ_LAUNDRY) {
3149		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3150			if (queue != PQ_NONE)
3151				vm_page_dequeue(m);
3152			vm_page_enqueue(PQ_LAUNDRY, m);
3153		} else
3154			KASSERT(queue == PQ_NONE,
3155			    ("wired page %p is queued", m));
3156	}
3157}
3158
3159/*
3160 * vm_page_try_to_free()
3161 *
3162 *	Attempt to free the page.  If we cannot free it, we do nothing.
3163 *	true is returned on success, false on failure.
3164 */
3165bool
3166vm_page_try_to_free(vm_page_t m)
3167{
3168
3169	vm_page_assert_locked(m);
3170	if (m->object != NULL)
3171		VM_OBJECT_ASSERT_WLOCKED(m->object);
3172	if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
3173	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3174		return (false);
3175	if (m->object != NULL && m->object->ref_count != 0) {
3176		pmap_remove_all(m);
3177		if (m->dirty != 0)
3178			return (false);
3179	}
3180	vm_page_free(m);
3181	return (true);
3182}
3183
3184/*
3185 * vm_page_advise
3186 *
3187 * 	Apply the specified advice to the given page.
3188 *
3189 *	The object and page must be locked.
3190 */
3191void
3192vm_page_advise(vm_page_t m, int advice)
3193{
3194
3195	vm_page_assert_locked(m);
3196	VM_OBJECT_ASSERT_WLOCKED(m->object);
3197	if (advice == MADV_FREE)
3198		/*
3199		 * Mark the page clean.  This will allow the page to be freed
3200		 * without first paging it out.  MADV_FREE pages are often
3201		 * quickly reused by malloc(3), so we do not do anything that
3202		 * would result in a page fault on a later access.
3203		 */
3204		vm_page_undirty(m);
3205	else if (advice != MADV_DONTNEED) {
3206		if (advice == MADV_WILLNEED)
3207			vm_page_activate(m);
3208		return;
3209	}
3210
3211	/*
3212	 * Clear any references to the page.  Otherwise, the page daemon will
3213	 * immediately reactivate the page.
3214	 */
3215	vm_page_aflag_clear(m, PGA_REFERENCED);
3216
3217	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3218		vm_page_dirty(m);
3219
3220	/*
3221	 * Place clean pages near the head of the inactive queue rather than
3222	 * the tail, thus defeating the queue's LRU operation and ensuring that
3223	 * the page will be reused quickly.  Dirty pages not already in the
3224	 * laundry are moved there.
3225	 */
3226	if (m->dirty == 0)
3227		vm_page_deactivate_noreuse(m);
3228	else
3229		vm_page_launder(m);
3230}
3231
3232/*
3233 * Grab a page, waiting until we are waken up due to the page
3234 * changing state.  We keep on waiting, if the page continues
3235 * to be in the object.  If the page doesn't exist, first allocate it
3236 * and then conditionally zero it.
3237 *
3238 * This routine may sleep.
3239 *
3240 * The object must be locked on entry.  The lock will, however, be released
3241 * and reacquired if the routine sleeps.
3242 */
3243vm_page_t
3244vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3245{
3246	vm_page_t m;
3247	int sleep;
3248	int pflags;
3249
3250	VM_OBJECT_ASSERT_WLOCKED(object);
3251	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3252	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3253	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3254	pflags = allocflags &
3255	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3256	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3257		pflags |= VM_ALLOC_WAITFAIL;
3258retrylookup:
3259	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3260		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3261		    vm_page_xbusied(m) : vm_page_busied(m);
3262		if (sleep) {
3263			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3264				return (NULL);
3265			/*
3266			 * Reference the page before unlocking and
3267			 * sleeping so that the page daemon is less
3268			 * likely to reclaim it.
3269			 */
3270			vm_page_aflag_set(m, PGA_REFERENCED);
3271			vm_page_lock(m);
3272			VM_OBJECT_WUNLOCK(object);
3273			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3274			    VM_ALLOC_IGN_SBUSY) != 0);
3275			VM_OBJECT_WLOCK(object);
3276			goto retrylookup;
3277		} else {
3278			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3279				vm_page_lock(m);
3280				vm_page_wire(m);
3281				vm_page_unlock(m);
3282			}
3283			if ((allocflags &
3284			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3285				vm_page_xbusy(m);
3286			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3287				vm_page_sbusy(m);
3288			return (m);
3289		}
3290	}
3291	m = vm_page_alloc(object, pindex, pflags);
3292	if (m == NULL) {
3293		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3294			return (NULL);
3295		goto retrylookup;
3296	}
3297	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3298		pmap_zero_page(m);
3299	return (m);
3300}
3301
3302/*
3303 * Return the specified range of pages from the given object.  For each
3304 * page offset within the range, if a page already exists within the object
3305 * at that offset and it is busy, then wait for it to change state.  If,
3306 * instead, the page doesn't exist, then allocate it.
3307 *
3308 * The caller must always specify an allocation class.
3309 *
3310 * allocation classes:
3311 *	VM_ALLOC_NORMAL		normal process request
3312 *	VM_ALLOC_SYSTEM		system *really* needs the pages
3313 *
3314 * The caller must always specify that the pages are to be busied and/or
3315 * wired.
3316 *
3317 * optional allocation flags:
3318 *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3319 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3320 *	VM_ALLOC_NOWAIT		do not sleep
3321 *	VM_ALLOC_SBUSY		set page to sbusy state
3322 *	VM_ALLOC_WIRED		wire the pages
3323 *	VM_ALLOC_ZERO		zero and validate any invalid pages
3324 *
3325 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3326 * may return a partial prefix of the requested range.
3327 */
3328int
3329vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3330    vm_page_t *ma, int count)
3331{
3332	vm_page_t m, mpred;
3333	int pflags;
3334	int i;
3335	bool sleep;
3336
3337	VM_OBJECT_ASSERT_WLOCKED(object);
3338	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3339	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3340	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3341	    (allocflags & VM_ALLOC_WIRED) != 0,
3342	    ("vm_page_grab_pages: the pages must be busied or wired"));
3343	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3344	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3345	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3346	if (count == 0)
3347		return (0);
3348	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3349	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3350	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3351		pflags |= VM_ALLOC_WAITFAIL;
3352	i = 0;
3353retrylookup:
3354	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3355	if (m == NULL || m->pindex != pindex + i) {
3356		mpred = m;
3357		m = NULL;
3358	} else
3359		mpred = TAILQ_PREV(m, pglist, listq);
3360	for (; i < count; i++) {
3361		if (m != NULL) {
3362			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3363			    vm_page_xbusied(m) : vm_page_busied(m);
3364			if (sleep) {
3365				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3366					break;
3367				/*
3368				 * Reference the page before unlocking and
3369				 * sleeping so that the page daemon is less
3370				 * likely to reclaim it.
3371				 */
3372				vm_page_aflag_set(m, PGA_REFERENCED);
3373				vm_page_lock(m);
3374				VM_OBJECT_WUNLOCK(object);
3375				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3376				    VM_ALLOC_IGN_SBUSY) != 0);
3377				VM_OBJECT_WLOCK(object);
3378				goto retrylookup;
3379			}
3380			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3381				vm_page_lock(m);
3382				vm_page_wire(m);
3383				vm_page_unlock(m);
3384			}
3385			if ((allocflags & (VM_ALLOC_NOBUSY |
3386			    VM_ALLOC_SBUSY)) == 0)
3387				vm_page_xbusy(m);
3388			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3389				vm_page_sbusy(m);
3390		} else {
3391			m = vm_page_alloc_after(object, pindex + i,
3392			    pflags | VM_ALLOC_COUNT(count - i), mpred);
3393			if (m == NULL) {
3394				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3395					break;
3396				goto retrylookup;
3397			}
3398		}
3399		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3400			if ((m->flags & PG_ZERO) == 0)
3401				pmap_zero_page(m);
3402			m->valid = VM_PAGE_BITS_ALL;
3403		}
3404		ma[i] = mpred = m;
3405		m = vm_page_next(m);
3406	}
3407	return (i);
3408}
3409
3410/*
3411 * Mapping function for valid or dirty bits in a page.
3412 *
3413 * Inputs are required to range within a page.
3414 */
3415vm_page_bits_t
3416vm_page_bits(int base, int size)
3417{
3418	int first_bit;
3419	int last_bit;
3420
3421	KASSERT(
3422	    base + size <= PAGE_SIZE,
3423	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3424	);
3425
3426	if (size == 0)		/* handle degenerate case */
3427		return (0);
3428
3429	first_bit = base >> DEV_BSHIFT;
3430	last_bit = (base + size - 1) >> DEV_BSHIFT;
3431
3432	return (((vm_page_bits_t)2 << last_bit) -
3433	    ((vm_page_bits_t)1 << first_bit));
3434}
3435
3436/*
3437 *	vm_page_set_valid_range:
3438 *
3439 *	Sets portions of a page valid.  The arguments are expected
3440 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3441 *	of any partial chunks touched by the range.  The invalid portion of
3442 *	such chunks will be zeroed.
3443 *
3444 *	(base + size) must be less then or equal to PAGE_SIZE.
3445 */
3446void
3447vm_page_set_valid_range(vm_page_t m, int base, int size)
3448{
3449	int endoff, frag;
3450
3451	VM_OBJECT_ASSERT_WLOCKED(m->object);
3452	if (size == 0)	/* handle degenerate case */
3453		return;
3454
3455	/*
3456	 * If the base is not DEV_BSIZE aligned and the valid
3457	 * bit is clear, we have to zero out a portion of the
3458	 * first block.
3459	 */
3460	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3461	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3462		pmap_zero_page_area(m, frag, base - frag);
3463
3464	/*
3465	 * If the ending offset is not DEV_BSIZE aligned and the
3466	 * valid bit is clear, we have to zero out a portion of
3467	 * the last block.
3468	 */
3469	endoff = base + size;
3470	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3471	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3472		pmap_zero_page_area(m, endoff,
3473		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3474
3475	/*
3476	 * Assert that no previously invalid block that is now being validated
3477	 * is already dirty.
3478	 */
3479	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3480	    ("vm_page_set_valid_range: page %p is dirty", m));
3481
3482	/*
3483	 * Set valid bits inclusive of any overlap.
3484	 */
3485	m->valid |= vm_page_bits(base, size);
3486}
3487
3488/*
3489 * Clear the given bits from the specified page's dirty field.
3490 */
3491static __inline void
3492vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3493{
3494	uintptr_t addr;
3495#if PAGE_SIZE < 16384
3496	int shift;
3497#endif
3498
3499	/*
3500	 * If the object is locked and the page is neither exclusive busy nor
3501	 * write mapped, then the page's dirty field cannot possibly be
3502	 * set by a concurrent pmap operation.
3503	 */
3504	VM_OBJECT_ASSERT_WLOCKED(m->object);
3505	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3506		m->dirty &= ~pagebits;
3507	else {
3508		/*
3509		 * The pmap layer can call vm_page_dirty() without
3510		 * holding a distinguished lock.  The combination of
3511		 * the object's lock and an atomic operation suffice
3512		 * to guarantee consistency of the page dirty field.
3513		 *
3514		 * For PAGE_SIZE == 32768 case, compiler already
3515		 * properly aligns the dirty field, so no forcible
3516		 * alignment is needed. Only require existence of
3517		 * atomic_clear_64 when page size is 32768.
3518		 */
3519		addr = (uintptr_t)&m->dirty;
3520#if PAGE_SIZE == 32768
3521		atomic_clear_64((uint64_t *)addr, pagebits);
3522#elif PAGE_SIZE == 16384
3523		atomic_clear_32((uint32_t *)addr, pagebits);
3524#else		/* PAGE_SIZE <= 8192 */
3525		/*
3526		 * Use a trick to perform a 32-bit atomic on the
3527		 * containing aligned word, to not depend on the existence
3528		 * of atomic_clear_{8, 16}.
3529		 */
3530		shift = addr & (sizeof(uint32_t) - 1);
3531#if BYTE_ORDER == BIG_ENDIAN
3532		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3533#else
3534		shift *= NBBY;
3535#endif
3536		addr &= ~(sizeof(uint32_t) - 1);
3537		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3538#endif		/* PAGE_SIZE */
3539	}
3540}
3541
3542/*
3543 *	vm_page_set_validclean:
3544 *
3545 *	Sets portions of a page valid and clean.  The arguments are expected
3546 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3547 *	of any partial chunks touched by the range.  The invalid portion of
3548 *	such chunks will be zero'd.
3549 *
3550 *	(base + size) must be less then or equal to PAGE_SIZE.
3551 */
3552void
3553vm_page_set_validclean(vm_page_t m, int base, int size)
3554{
3555	vm_page_bits_t oldvalid, pagebits;
3556	int endoff, frag;
3557
3558	VM_OBJECT_ASSERT_WLOCKED(m->object);
3559	if (size == 0)	/* handle degenerate case */
3560		return;
3561
3562	/*
3563	 * If the base is not DEV_BSIZE aligned and the valid
3564	 * bit is clear, we have to zero out a portion of the
3565	 * first block.
3566	 */
3567	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3568	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3569		pmap_zero_page_area(m, frag, base - frag);
3570
3571	/*
3572	 * If the ending offset is not DEV_BSIZE aligned and the
3573	 * valid bit is clear, we have to zero out a portion of
3574	 * the last block.
3575	 */
3576	endoff = base + size;
3577	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3578	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3579		pmap_zero_page_area(m, endoff,
3580		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3581
3582	/*
3583	 * Set valid, clear dirty bits.  If validating the entire
3584	 * page we can safely clear the pmap modify bit.  We also
3585	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3586	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3587	 * be set again.
3588	 *
3589	 * We set valid bits inclusive of any overlap, but we can only
3590	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3591	 * the range.
3592	 */
3593	oldvalid = m->valid;
3594	pagebits = vm_page_bits(base, size);
3595	m->valid |= pagebits;
3596#if 0	/* NOT YET */
3597	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3598		frag = DEV_BSIZE - frag;
3599		base += frag;
3600		size -= frag;
3601		if (size < 0)
3602			size = 0;
3603	}
3604	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3605#endif
3606	if (base == 0 && size == PAGE_SIZE) {
3607		/*
3608		 * The page can only be modified within the pmap if it is
3609		 * mapped, and it can only be mapped if it was previously
3610		 * fully valid.
3611		 */
3612		if (oldvalid == VM_PAGE_BITS_ALL)
3613			/*
3614			 * Perform the pmap_clear_modify() first.  Otherwise,
3615			 * a concurrent pmap operation, such as
3616			 * pmap_protect(), could clear a modification in the
3617			 * pmap and set the dirty field on the page before
3618			 * pmap_clear_modify() had begun and after the dirty
3619			 * field was cleared here.
3620			 */
3621			pmap_clear_modify(m);
3622		m->dirty = 0;
3623		m->oflags &= ~VPO_NOSYNC;
3624	} else if (oldvalid != VM_PAGE_BITS_ALL)
3625		m->dirty &= ~pagebits;
3626	else
3627		vm_page_clear_dirty_mask(m, pagebits);
3628}
3629
3630void
3631vm_page_clear_dirty(vm_page_t m, int base, int size)
3632{
3633
3634	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3635}
3636
3637/*
3638 *	vm_page_set_invalid:
3639 *
3640 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3641 *	valid and dirty bits for the effected areas are cleared.
3642 */
3643void
3644vm_page_set_invalid(vm_page_t m, int base, int size)
3645{
3646	vm_page_bits_t bits;
3647	vm_object_t object;
3648
3649	object = m->object;
3650	VM_OBJECT_ASSERT_WLOCKED(object);
3651	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3652	    size >= object->un_pager.vnp.vnp_size)
3653		bits = VM_PAGE_BITS_ALL;
3654	else
3655		bits = vm_page_bits(base, size);
3656	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3657	    bits != 0)
3658		pmap_remove_all(m);
3659	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3660	    !pmap_page_is_mapped(m),
3661	    ("vm_page_set_invalid: page %p is mapped", m));
3662	m->valid &= ~bits;
3663	m->dirty &= ~bits;
3664}
3665
3666/*
3667 * vm_page_zero_invalid()
3668 *
3669 *	The kernel assumes that the invalid portions of a page contain
3670 *	garbage, but such pages can be mapped into memory by user code.
3671 *	When this occurs, we must zero out the non-valid portions of the
3672 *	page so user code sees what it expects.
3673 *
3674 *	Pages are most often semi-valid when the end of a file is mapped
3675 *	into memory and the file's size is not page aligned.
3676 */
3677void
3678vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3679{
3680	int b;
3681	int i;
3682
3683	VM_OBJECT_ASSERT_WLOCKED(m->object);
3684	/*
3685	 * Scan the valid bits looking for invalid sections that
3686	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3687	 * valid bit may be set ) have already been zeroed by
3688	 * vm_page_set_validclean().
3689	 */
3690	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3691		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3692		    (m->valid & ((vm_page_bits_t)1 << i))) {
3693			if (i > b) {
3694				pmap_zero_page_area(m,
3695				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3696			}
3697			b = i + 1;
3698		}
3699	}
3700
3701	/*
3702	 * setvalid is TRUE when we can safely set the zero'd areas
3703	 * as being valid.  We can do this if there are no cache consistancy
3704	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3705	 */
3706	if (setvalid)
3707		m->valid = VM_PAGE_BITS_ALL;
3708}
3709
3710/*
3711 *	vm_page_is_valid:
3712 *
3713 *	Is (partial) page valid?  Note that the case where size == 0
3714 *	will return FALSE in the degenerate case where the page is
3715 *	entirely invalid, and TRUE otherwise.
3716 */
3717int
3718vm_page_is_valid(vm_page_t m, int base, int size)
3719{
3720	vm_page_bits_t bits;
3721
3722	VM_OBJECT_ASSERT_LOCKED(m->object);
3723	bits = vm_page_bits(base, size);
3724	return (m->valid != 0 && (m->valid & bits) == bits);
3725}
3726
3727/*
3728 * Returns true if all of the specified predicates are true for the entire
3729 * (super)page and false otherwise.
3730 */
3731bool
3732vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3733{
3734	vm_object_t object;
3735	int i, npages;
3736
3737	object = m->object;
3738	if (skip_m != NULL && skip_m->object != object)
3739		return (false);
3740	VM_OBJECT_ASSERT_LOCKED(object);
3741	npages = atop(pagesizes[m->psind]);
3742
3743	/*
3744	 * The physically contiguous pages that make up a superpage, i.e., a
3745	 * page with a page size index ("psind") greater than zero, will
3746	 * occupy adjacent entries in vm_page_array[].
3747	 */
3748	for (i = 0; i < npages; i++) {
3749		/* Always test object consistency, including "skip_m". */
3750		if (m[i].object != object)
3751			return (false);
3752		if (&m[i] == skip_m)
3753			continue;
3754		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3755			return (false);
3756		if ((flags & PS_ALL_DIRTY) != 0) {
3757			/*
3758			 * Calling vm_page_test_dirty() or pmap_is_modified()
3759			 * might stop this case from spuriously returning
3760			 * "false".  However, that would require a write lock
3761			 * on the object containing "m[i]".
3762			 */
3763			if (m[i].dirty != VM_PAGE_BITS_ALL)
3764				return (false);
3765		}
3766		if ((flags & PS_ALL_VALID) != 0 &&
3767		    m[i].valid != VM_PAGE_BITS_ALL)
3768			return (false);
3769	}
3770	return (true);
3771}
3772
3773/*
3774 * Set the page's dirty bits if the page is modified.
3775 */
3776void
3777vm_page_test_dirty(vm_page_t m)
3778{
3779
3780	VM_OBJECT_ASSERT_WLOCKED(m->object);
3781	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3782		vm_page_dirty(m);
3783}
3784
3785void
3786vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3787{
3788
3789	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3790}
3791
3792void
3793vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3794{
3795
3796	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3797}
3798
3799int
3800vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3801{
3802
3803	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3804}
3805
3806#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3807void
3808vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3809{
3810
3811	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3812}
3813
3814void
3815vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3816{
3817
3818	mtx_assert_(vm_page_lockptr(m), a, file, line);
3819}
3820#endif
3821
3822#ifdef INVARIANTS
3823void
3824vm_page_object_lock_assert(vm_page_t m)
3825{
3826
3827	/*
3828	 * Certain of the page's fields may only be modified by the
3829	 * holder of the containing object's lock or the exclusive busy.
3830	 * holder.  Unfortunately, the holder of the write busy is
3831	 * not recorded, and thus cannot be checked here.
3832	 */
3833	if (m->object != NULL && !vm_page_xbusied(m))
3834		VM_OBJECT_ASSERT_WLOCKED(m->object);
3835}
3836
3837void
3838vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3839{
3840
3841	if ((bits & PGA_WRITEABLE) == 0)
3842		return;
3843
3844	/*
3845	 * The PGA_WRITEABLE flag can only be set if the page is
3846	 * managed, is exclusively busied or the object is locked.
3847	 * Currently, this flag is only set by pmap_enter().
3848	 */
3849	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3850	    ("PGA_WRITEABLE on unmanaged page"));
3851	if (!vm_page_xbusied(m))
3852		VM_OBJECT_ASSERT_LOCKED(m->object);
3853}
3854#endif
3855
3856#include "opt_ddb.h"
3857#ifdef DDB
3858#include <sys/kernel.h>
3859
3860#include <ddb/ddb.h>
3861
3862DB_SHOW_COMMAND(page, vm_page_print_page_info)
3863{
3864
3865	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3866	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3867	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3868	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3869	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3870	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3871	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3872	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3873	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3874}
3875
3876DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3877{
3878	int dom;
3879
3880	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3881	for (dom = 0; dom < vm_ndomains; dom++) {
3882		db_printf(
3883	    "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d\n",
3884		    dom,
3885		    vm_dom[dom].vmd_page_count,
3886		    vm_dom[dom].vmd_free_count,
3887		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3888		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3889		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt);
3890	}
3891}
3892
3893DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3894{
3895	vm_page_t m;
3896	boolean_t phys, virt;
3897
3898	if (!have_addr) {
3899		db_printf("show pginfo addr\n");
3900		return;
3901	}
3902
3903	phys = strchr(modif, 'p') != NULL;
3904	virt = strchr(modif, 'v') != NULL;
3905	if (virt)
3906		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
3907	else if (phys)
3908		m = PHYS_TO_VM_PAGE(addr);
3909	else
3910		m = (vm_page_t)addr;
3911	db_printf(
3912    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3913    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3914	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3915	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3916	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3917}
3918#endif /* DDB */
3919