vm_page.c revision 304093
1289947Szbb/*-
2289947Szbb * Copyright (c) 1991 Regents of the University of California.
3289947Szbb * All rights reserved.
4289947Szbb * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5289947Szbb *
6289947Szbb * This code is derived from software contributed to Berkeley by
7289947Szbb * The Mach Operating System project at Carnegie-Mellon University.
8289947Szbb *
9289947Szbb * Redistribution and use in source and binary forms, with or without
10289947Szbb * modification, are permitted provided that the following conditions
11289947Szbb * are met:
12289947Szbb * 1. Redistributions of source code must retain the above copyright
13289947Szbb *    notice, this list of conditions and the following disclaimer.
14289947Szbb * 2. Redistributions in binary form must reproduce the above copyright
15289947Szbb *    notice, this list of conditions and the following disclaimer in the
16289947Szbb *    documentation and/or other materials provided with the distribution.
17289947Szbb * 4. Neither the name of the University nor the names of its contributors
18289947Szbb *    may be used to endorse or promote products derived from this software
19289947Szbb *    without specific prior written permission.
20289947Szbb *
21289947Szbb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22289947Szbb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23289947Szbb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24289947Szbb * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25289947Szbb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26289947Szbb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27289947Szbb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28289947Szbb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29289947Szbb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30289947Szbb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31289947Szbb * SUCH DAMAGE.
32289947Szbb *
33289947Szbb *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34289947Szbb */
35289947Szbb
36289947Szbb/*-
37289947Szbb * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38289947Szbb * All rights reserved.
39289947Szbb *
40289947Szbb * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41289947Szbb *
42289947Szbb * Permission to use, copy, modify and distribute this software and
43289947Szbb * its documentation is hereby granted, provided that both the copyright
44289947Szbb * notice and this permission notice appear in all copies of the
45289947Szbb * software, derivative works or modified versions, and any portions
46289947Szbb * thereof, and that both notices appear in supporting documentation.
47289947Szbb *
48289947Szbb * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49289947Szbb * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50289947Szbb * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51289947Szbb *
52289947Szbb * Carnegie Mellon requests users of this software to return to
53289947Szbb *
54289947Szbb *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55289947Szbb *  School of Computer Science
56289947Szbb *  Carnegie Mellon University
57289947Szbb *  Pittsburgh PA 15213-3890
58289947Szbb *
59289947Szbb * any improvements or extensions that they make and grant Carnegie the
60289947Szbb * rights to redistribute these changes.
61289947Szbb */
62289947Szbb
63289947Szbb/*
64289947Szbb *			GENERAL RULES ON VM_PAGE MANIPULATION
65289947Szbb *
66289947Szbb *	- A page queue lock is required when adding or removing a page from a
67289947Szbb *	  page queue regardless of other locks or the busy state of a page.
68289947Szbb *
69289947Szbb *		* In general, no thread besides the page daemon can acquire or
70289947Szbb *		  hold more than one page queue lock at a time.
71289947Szbb *
72289947Szbb *		* The page daemon can acquire and hold any pair of page queue
73289947Szbb *		  locks in any order.
74289947Szbb *
75289947Szbb *	- The object lock is required when inserting or removing
76289947Szbb *	  pages from an object (vm_page_insert() or vm_page_remove()).
77289947Szbb *
78289947Szbb */
79289947Szbb
80289947Szbb/*
81289947Szbb *	Resident memory management module.
82289947Szbb */
83289947Szbb
84289947Szbb#include <sys/cdefs.h>
85289947Szbb__FBSDID("$FreeBSD: stable/11/sys/vm/vm_page.c 304093 2016-08-14 19:01:32Z markj $");
86289947Szbb
87289947Szbb#include "opt_vm.h"
88289947Szbb
89289947Szbb#include <sys/param.h>
90289947Szbb#include <sys/systm.h>
91289947Szbb#include <sys/lock.h>
92289947Szbb#include <sys/kernel.h>
93289947Szbb#include <sys/limits.h>
94289947Szbb#include <sys/linker.h>
95289947Szbb#include <sys/malloc.h>
96289947Szbb#include <sys/mman.h>
97289947Szbb#include <sys/msgbuf.h>
98289947Szbb#include <sys/mutex.h>
99289947Szbb#include <sys/proc.h>
100289947Szbb#include <sys/rwlock.h>
101289947Szbb#include <sys/sbuf.h>
102289947Szbb#include <sys/smp.h>
103289947Szbb#include <sys/sysctl.h>
104289947Szbb#include <sys/vmmeter.h>
105289947Szbb#include <sys/vnode.h>
106289947Szbb
107289947Szbb#include <vm/vm.h>
108289947Szbb#include <vm/pmap.h>
109289947Szbb#include <vm/vm_param.h>
110289947Szbb#include <vm/vm_kern.h>
111289947Szbb#include <vm/vm_object.h>
112289947Szbb#include <vm/vm_page.h>
113289947Szbb#include <vm/vm_pageout.h>
114289947Szbb#include <vm/vm_pager.h>
115289947Szbb#include <vm/vm_phys.h>
116289947Szbb#include <vm/vm_radix.h>
117289947Szbb#include <vm/vm_reserv.h>
118289947Szbb#include <vm/vm_extern.h>
119289947Szbb#include <vm/uma.h>
120289947Szbb#include <vm/uma_int.h>
121289947Szbb
122289947Szbb#include <machine/md_var.h>
123289947Szbb
124289947Szbb/*
125289947Szbb *	Associated with page of user-allocatable memory is a
126289947Szbb *	page structure.
127289947Szbb */
128289947Szbb
129289947Szbbstruct vm_domain vm_dom[MAXMEMDOM];
130289947Szbbstruct mtx_padalign vm_page_queue_free_mtx;
131289947Szbb
132289947Szbbstruct mtx_padalign pa_lock[PA_LOCK_COUNT];
133289947Szbb
134289947Szbbvm_page_t vm_page_array;
135289947Szbblong vm_page_array_size;
136289947Szbblong first_page;
137289947Szbbint vm_page_zero_count;
138289947Szbb
139289947Szbbstatic int boot_pages = UMA_BOOT_PAGES;
140289947SzbbSYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
141289947Szbb    &boot_pages, 0,
142289947Szbb    "number of pages allocated for bootstrapping the VM system");
143289947Szbb
144289947Szbbstatic int pa_tryrelock_restart;
145289947SzbbSYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146289947Szbb    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
147289947Szbb
148289947Szbbstatic TAILQ_HEAD(, vm_page) blacklist_head;
149289947Szbbstatic int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
150289947SzbbSYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
151289947Szbb    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
152289947Szbb
153289947Szbb/* Is the page daemon waiting for free pages? */
154289947Szbbstatic int vm_pageout_pages_needed;
155289947Szbb
156289947Szbbstatic uma_zone_t fakepg_zone;
157289947Szbb
158289947Szbbstatic struct vnode *vm_page_alloc_init(vm_page_t m);
159289947Szbbstatic void vm_page_cache_turn_free(vm_page_t m);
160289947Szbbstatic void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
161289947Szbbstatic void vm_page_enqueue(uint8_t queue, vm_page_t m);
162289947Szbbstatic void vm_page_free_wakeup(void);
163289947Szbbstatic void vm_page_init_fakepg(void *dummy);
164289947Szbbstatic int vm_page_insert_after(vm_page_t m, vm_object_t object,
165289947Szbb    vm_pindex_t pindex, vm_page_t mpred);
166289947Szbbstatic void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
167289947Szbb    vm_page_t mpred);
168289947Szbbstatic int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
169289947Szbb    vm_paddr_t high);
170289947Szbb
171289947SzbbSYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
172289947Szbb
173289947Szbbstatic void
174289947Szbbvm_page_init_fakepg(void *dummy)
175289947Szbb{
176289947Szbb
177289947Szbb	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
178289947Szbb	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
179289947Szbb}
180289947Szbb
181289947Szbb/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
182289947Szbb#if PAGE_SIZE == 32768
183289947Szbb#ifdef CTASSERT
184289947SzbbCTASSERT(sizeof(u_long) >= 8);
185289947Szbb#endif
186#endif
187
188/*
189 * Try to acquire a physical address lock while a pmap is locked.  If we
190 * fail to trylock we unlock and lock the pmap directly and cache the
191 * locked pa in *locked.  The caller should then restart their loop in case
192 * the virtual to physical mapping has changed.
193 */
194int
195vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
196{
197	vm_paddr_t lockpa;
198
199	lockpa = *locked;
200	*locked = pa;
201	if (lockpa) {
202		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204			return (0);
205		PA_UNLOCK(lockpa);
206	}
207	if (PA_TRYLOCK(pa))
208		return (0);
209	PMAP_UNLOCK(pmap);
210	atomic_add_int(&pa_tryrelock_restart, 1);
211	PA_LOCK(pa);
212	PMAP_LOCK(pmap);
213	return (EAGAIN);
214}
215
216/*
217 *	vm_set_page_size:
218 *
219 *	Sets the page size, perhaps based upon the memory
220 *	size.  Must be called before any use of page-size
221 *	dependent functions.
222 */
223void
224vm_set_page_size(void)
225{
226	if (vm_cnt.v_page_size == 0)
227		vm_cnt.v_page_size = PAGE_SIZE;
228	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
229		panic("vm_set_page_size: page size not a power of two");
230}
231
232/*
233 *	vm_page_blacklist_next:
234 *
235 *	Find the next entry in the provided string of blacklist
236 *	addresses.  Entries are separated by space, comma, or newline.
237 *	If an invalid integer is encountered then the rest of the
238 *	string is skipped.  Updates the list pointer to the next
239 *	character, or NULL if the string is exhausted or invalid.
240 */
241static vm_paddr_t
242vm_page_blacklist_next(char **list, char *end)
243{
244	vm_paddr_t bad;
245	char *cp, *pos;
246
247	if (list == NULL || *list == NULL)
248		return (0);
249	if (**list =='\0') {
250		*list = NULL;
251		return (0);
252	}
253
254	/*
255	 * If there's no end pointer then the buffer is coming from
256	 * the kenv and we know it's null-terminated.
257	 */
258	if (end == NULL)
259		end = *list + strlen(*list);
260
261	/* Ensure that strtoq() won't walk off the end */
262	if (*end != '\0') {
263		if (*end == '\n' || *end == ' ' || *end  == ',')
264			*end = '\0';
265		else {
266			printf("Blacklist not terminated, skipping\n");
267			*list = NULL;
268			return (0);
269		}
270	}
271
272	for (pos = *list; *pos != '\0'; pos = cp) {
273		bad = strtoq(pos, &cp, 0);
274		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
275			if (bad == 0) {
276				if (++cp < end)
277					continue;
278				else
279					break;
280			}
281		} else
282			break;
283		if (*cp == '\0' || ++cp >= end)
284			*list = NULL;
285		else
286			*list = cp;
287		return (trunc_page(bad));
288	}
289	printf("Garbage in RAM blacklist, skipping\n");
290	*list = NULL;
291	return (0);
292}
293
294/*
295 *	vm_page_blacklist_check:
296 *
297 *	Iterate through the provided string of blacklist addresses, pulling
298 *	each entry out of the physical allocator free list and putting it
299 *	onto a list for reporting via the vm.page_blacklist sysctl.
300 */
301static void
302vm_page_blacklist_check(char *list, char *end)
303{
304	vm_paddr_t pa;
305	vm_page_t m;
306	char *next;
307	int ret;
308
309	next = list;
310	while (next != NULL) {
311		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
312			continue;
313		m = vm_phys_paddr_to_vm_page(pa);
314		if (m == NULL)
315			continue;
316		mtx_lock(&vm_page_queue_free_mtx);
317		ret = vm_phys_unfree_page(m);
318		mtx_unlock(&vm_page_queue_free_mtx);
319		if (ret == TRUE) {
320			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
321			if (bootverbose)
322				printf("Skipping page with pa 0x%jx\n",
323				    (uintmax_t)pa);
324		}
325	}
326}
327
328/*
329 *	vm_page_blacklist_load:
330 *
331 *	Search for a special module named "ram_blacklist".  It'll be a
332 *	plain text file provided by the user via the loader directive
333 *	of the same name.
334 */
335static void
336vm_page_blacklist_load(char **list, char **end)
337{
338	void *mod;
339	u_char *ptr;
340	u_int len;
341
342	mod = NULL;
343	ptr = NULL;
344
345	mod = preload_search_by_type("ram_blacklist");
346	if (mod != NULL) {
347		ptr = preload_fetch_addr(mod);
348		len = preload_fetch_size(mod);
349        }
350	*list = ptr;
351	if (ptr != NULL)
352		*end = ptr + len;
353	else
354		*end = NULL;
355	return;
356}
357
358static int
359sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
360{
361	vm_page_t m;
362	struct sbuf sbuf;
363	int error, first;
364
365	first = 1;
366	error = sysctl_wire_old_buffer(req, 0);
367	if (error != 0)
368		return (error);
369	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
370	TAILQ_FOREACH(m, &blacklist_head, listq) {
371		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
372		    (uintmax_t)m->phys_addr);
373		first = 0;
374	}
375	error = sbuf_finish(&sbuf);
376	sbuf_delete(&sbuf);
377	return (error);
378}
379
380static void
381vm_page_domain_init(struct vm_domain *vmd)
382{
383	struct vm_pagequeue *pq;
384	int i;
385
386	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
387	    "vm inactive pagequeue";
388	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
389	    &vm_cnt.v_inactive_count;
390	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
391	    "vm active pagequeue";
392	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
393	    &vm_cnt.v_active_count;
394	vmd->vmd_page_count = 0;
395	vmd->vmd_free_count = 0;
396	vmd->vmd_segs = 0;
397	vmd->vmd_oom = FALSE;
398	vmd->vmd_pass = 0;
399	for (i = 0; i < PQ_COUNT; i++) {
400		pq = &vmd->vmd_pagequeues[i];
401		TAILQ_INIT(&pq->pq_pl);
402		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
403		    MTX_DEF | MTX_DUPOK);
404	}
405}
406
407/*
408 *	vm_page_startup:
409 *
410 *	Initializes the resident memory module.
411 *
412 *	Allocates memory for the page cells, and
413 *	for the object/offset-to-page hash table headers.
414 *	Each page cell is initialized and placed on the free list.
415 */
416vm_offset_t
417vm_page_startup(vm_offset_t vaddr)
418{
419	vm_offset_t mapped;
420	vm_paddr_t page_range;
421	vm_paddr_t new_end;
422	int i;
423	vm_paddr_t pa;
424	vm_paddr_t last_pa;
425	char *list, *listend;
426	vm_paddr_t end;
427	vm_paddr_t biggestsize;
428	vm_paddr_t low_water, high_water;
429	int biggestone;
430	int pages_per_zone;
431
432	biggestsize = 0;
433	biggestone = 0;
434	vaddr = round_page(vaddr);
435
436	for (i = 0; phys_avail[i + 1]; i += 2) {
437		phys_avail[i] = round_page(phys_avail[i]);
438		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
439	}
440
441	low_water = phys_avail[0];
442	high_water = phys_avail[1];
443
444	for (i = 0; i < vm_phys_nsegs; i++) {
445		if (vm_phys_segs[i].start < low_water)
446			low_water = vm_phys_segs[i].start;
447		if (vm_phys_segs[i].end > high_water)
448			high_water = vm_phys_segs[i].end;
449	}
450	for (i = 0; phys_avail[i + 1]; i += 2) {
451		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
452
453		if (size > biggestsize) {
454			biggestone = i;
455			biggestsize = size;
456		}
457		if (phys_avail[i] < low_water)
458			low_water = phys_avail[i];
459		if (phys_avail[i + 1] > high_water)
460			high_water = phys_avail[i + 1];
461	}
462
463	end = phys_avail[biggestone+1];
464
465	/*
466	 * Initialize the page and queue locks.
467	 */
468	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
469	for (i = 0; i < PA_LOCK_COUNT; i++)
470		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
471	for (i = 0; i < vm_ndomains; i++)
472		vm_page_domain_init(&vm_dom[i]);
473
474	/*
475	 * Almost all of the pages needed for boot strapping UMA are used
476	 * for zone structures, so if the number of CPUs results in those
477	 * structures taking more than one page each, we set aside more pages
478	 * in proportion to the zone structure size.
479	 */
480	pages_per_zone = howmany(sizeof(struct uma_zone) +
481	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
482	if (pages_per_zone > 1) {
483		/* Reserve more pages so that we don't run out. */
484		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
485	}
486
487	/*
488	 * Allocate memory for use when boot strapping the kernel memory
489	 * allocator.
490	 *
491	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
492	 * manually fetch the value.
493	 */
494	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
495	new_end = end - (boot_pages * UMA_SLAB_SIZE);
496	new_end = trunc_page(new_end);
497	mapped = pmap_map(&vaddr, new_end, end,
498	    VM_PROT_READ | VM_PROT_WRITE);
499	bzero((void *)mapped, end - new_end);
500	uma_startup((void *)mapped, boot_pages);
501
502#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
503    defined(__i386__) || defined(__mips__)
504	/*
505	 * Allocate a bitmap to indicate that a random physical page
506	 * needs to be included in a minidump.
507	 *
508	 * The amd64 port needs this to indicate which direct map pages
509	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
510	 *
511	 * However, i386 still needs this workspace internally within the
512	 * minidump code.  In theory, they are not needed on i386, but are
513	 * included should the sf_buf code decide to use them.
514	 */
515	last_pa = 0;
516	for (i = 0; dump_avail[i + 1] != 0; i += 2)
517		if (dump_avail[i + 1] > last_pa)
518			last_pa = dump_avail[i + 1];
519	page_range = last_pa / PAGE_SIZE;
520	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
521	new_end -= vm_page_dump_size;
522	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
523	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
524	bzero((void *)vm_page_dump, vm_page_dump_size);
525#endif
526#ifdef __amd64__
527	/*
528	 * Request that the physical pages underlying the message buffer be
529	 * included in a crash dump.  Since the message buffer is accessed
530	 * through the direct map, they are not automatically included.
531	 */
532	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
533	last_pa = pa + round_page(msgbufsize);
534	while (pa < last_pa) {
535		dump_add_page(pa);
536		pa += PAGE_SIZE;
537	}
538#endif
539	/*
540	 * Compute the number of pages of memory that will be available for
541	 * use (taking into account the overhead of a page structure per
542	 * page).
543	 */
544	first_page = low_water / PAGE_SIZE;
545#ifdef VM_PHYSSEG_SPARSE
546	page_range = 0;
547	for (i = 0; i < vm_phys_nsegs; i++) {
548		page_range += atop(vm_phys_segs[i].end -
549		    vm_phys_segs[i].start);
550	}
551	for (i = 0; phys_avail[i + 1] != 0; i += 2)
552		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
553#elif defined(VM_PHYSSEG_DENSE)
554	page_range = high_water / PAGE_SIZE - first_page;
555#else
556#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
557#endif
558	end = new_end;
559
560	/*
561	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
562	 */
563	vaddr += PAGE_SIZE;
564
565	/*
566	 * Initialize the mem entry structures now, and put them in the free
567	 * queue.
568	 */
569	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
570	mapped = pmap_map(&vaddr, new_end, end,
571	    VM_PROT_READ | VM_PROT_WRITE);
572	vm_page_array = (vm_page_t) mapped;
573#if VM_NRESERVLEVEL > 0
574	/*
575	 * Allocate memory for the reservation management system's data
576	 * structures.
577	 */
578	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
579#endif
580#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
581	/*
582	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
583	 * not kvm like i386, so the pages must be tracked for a crashdump to
584	 * include this data.  This includes the vm_page_array and the early
585	 * UMA bootstrap pages.
586	 */
587	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
588		dump_add_page(pa);
589#endif
590	phys_avail[biggestone + 1] = new_end;
591
592	/*
593	 * Add physical memory segments corresponding to the available
594	 * physical pages.
595	 */
596	for (i = 0; phys_avail[i + 1] != 0; i += 2)
597		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
598
599	/*
600	 * Clear all of the page structures
601	 */
602	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
603	for (i = 0; i < page_range; i++)
604		vm_page_array[i].order = VM_NFREEORDER;
605	vm_page_array_size = page_range;
606
607	/*
608	 * Initialize the physical memory allocator.
609	 */
610	vm_phys_init();
611
612	/*
613	 * Add every available physical page that is not blacklisted to
614	 * the free lists.
615	 */
616	vm_cnt.v_page_count = 0;
617	vm_cnt.v_free_count = 0;
618	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
619		pa = phys_avail[i];
620		last_pa = phys_avail[i + 1];
621		while (pa < last_pa) {
622			vm_phys_add_page(pa);
623			pa += PAGE_SIZE;
624		}
625	}
626
627	TAILQ_INIT(&blacklist_head);
628	vm_page_blacklist_load(&list, &listend);
629	vm_page_blacklist_check(list, listend);
630
631	list = kern_getenv("vm.blacklist");
632	vm_page_blacklist_check(list, NULL);
633
634	freeenv(list);
635#if VM_NRESERVLEVEL > 0
636	/*
637	 * Initialize the reservation management system.
638	 */
639	vm_reserv_init();
640#endif
641	return (vaddr);
642}
643
644void
645vm_page_reference(vm_page_t m)
646{
647
648	vm_page_aflag_set(m, PGA_REFERENCED);
649}
650
651/*
652 *	vm_page_busy_downgrade:
653 *
654 *	Downgrade an exclusive busy page into a single shared busy page.
655 */
656void
657vm_page_busy_downgrade(vm_page_t m)
658{
659	u_int x;
660
661	vm_page_assert_xbusied(m);
662
663	for (;;) {
664		x = m->busy_lock;
665		x &= VPB_BIT_WAITERS;
666		if (atomic_cmpset_rel_int(&m->busy_lock,
667		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
668			break;
669	}
670}
671
672/*
673 *	vm_page_sbusied:
674 *
675 *	Return a positive value if the page is shared busied, 0 otherwise.
676 */
677int
678vm_page_sbusied(vm_page_t m)
679{
680	u_int x;
681
682	x = m->busy_lock;
683	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
684}
685
686/*
687 *	vm_page_sunbusy:
688 *
689 *	Shared unbusy a page.
690 */
691void
692vm_page_sunbusy(vm_page_t m)
693{
694	u_int x;
695
696	vm_page_assert_sbusied(m);
697
698	for (;;) {
699		x = m->busy_lock;
700		if (VPB_SHARERS(x) > 1) {
701			if (atomic_cmpset_int(&m->busy_lock, x,
702			    x - VPB_ONE_SHARER))
703				break;
704			continue;
705		}
706		if ((x & VPB_BIT_WAITERS) == 0) {
707			KASSERT(x == VPB_SHARERS_WORD(1),
708			    ("vm_page_sunbusy: invalid lock state"));
709			if (atomic_cmpset_int(&m->busy_lock,
710			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
711				break;
712			continue;
713		}
714		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
715		    ("vm_page_sunbusy: invalid lock state for waiters"));
716
717		vm_page_lock(m);
718		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
719			vm_page_unlock(m);
720			continue;
721		}
722		wakeup(m);
723		vm_page_unlock(m);
724		break;
725	}
726}
727
728/*
729 *	vm_page_busy_sleep:
730 *
731 *	Sleep and release the page lock, using the page pointer as wchan.
732 *	This is used to implement the hard-path of busying mechanism.
733 *
734 *	The given page must be locked.
735 */
736void
737vm_page_busy_sleep(vm_page_t m, const char *wmesg)
738{
739	u_int x;
740
741	vm_page_lock_assert(m, MA_OWNED);
742
743	x = m->busy_lock;
744	if (x == VPB_UNBUSIED) {
745		vm_page_unlock(m);
746		return;
747	}
748	if ((x & VPB_BIT_WAITERS) == 0 &&
749	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
750		vm_page_unlock(m);
751		return;
752	}
753	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
754}
755
756/*
757 *	vm_page_trysbusy:
758 *
759 *	Try to shared busy a page.
760 *	If the operation succeeds 1 is returned otherwise 0.
761 *	The operation never sleeps.
762 */
763int
764vm_page_trysbusy(vm_page_t m)
765{
766	u_int x;
767
768	for (;;) {
769		x = m->busy_lock;
770		if ((x & VPB_BIT_SHARED) == 0)
771			return (0);
772		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
773			return (1);
774	}
775}
776
777static void
778vm_page_xunbusy_locked(vm_page_t m)
779{
780
781	vm_page_assert_xbusied(m);
782	vm_page_assert_locked(m);
783
784	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
785	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
786	wakeup(m);
787}
788
789static void
790vm_page_xunbusy_maybelocked(vm_page_t m)
791{
792	bool lockacq;
793
794	vm_page_assert_xbusied(m);
795
796	/*
797	 * Fast path for unbusy.  If it succeeds, we know that there
798	 * are no waiters, so we do not need a wakeup.
799	 */
800	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
801	    VPB_UNBUSIED))
802		return;
803
804	lockacq = !mtx_owned(vm_page_lockptr(m));
805	if (lockacq)
806		vm_page_lock(m);
807	vm_page_xunbusy_locked(m);
808	if (lockacq)
809		vm_page_unlock(m);
810}
811
812/*
813 *	vm_page_xunbusy_hard:
814 *
815 *	Called after the first try the exclusive unbusy of a page failed.
816 *	It is assumed that the waiters bit is on.
817 */
818void
819vm_page_xunbusy_hard(vm_page_t m)
820{
821
822	vm_page_assert_xbusied(m);
823
824	vm_page_lock(m);
825	vm_page_xunbusy_locked(m);
826	vm_page_unlock(m);
827}
828
829/*
830 *	vm_page_flash:
831 *
832 *	Wakeup anyone waiting for the page.
833 *	The ownership bits do not change.
834 *
835 *	The given page must be locked.
836 */
837void
838vm_page_flash(vm_page_t m)
839{
840	u_int x;
841
842	vm_page_lock_assert(m, MA_OWNED);
843
844	for (;;) {
845		x = m->busy_lock;
846		if ((x & VPB_BIT_WAITERS) == 0)
847			return;
848		if (atomic_cmpset_int(&m->busy_lock, x,
849		    x & (~VPB_BIT_WAITERS)))
850			break;
851	}
852	wakeup(m);
853}
854
855/*
856 * Keep page from being freed by the page daemon
857 * much of the same effect as wiring, except much lower
858 * overhead and should be used only for *very* temporary
859 * holding ("wiring").
860 */
861void
862vm_page_hold(vm_page_t mem)
863{
864
865	vm_page_lock_assert(mem, MA_OWNED);
866        mem->hold_count++;
867}
868
869void
870vm_page_unhold(vm_page_t mem)
871{
872
873	vm_page_lock_assert(mem, MA_OWNED);
874	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
875	--mem->hold_count;
876	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
877		vm_page_free_toq(mem);
878}
879
880/*
881 *	vm_page_unhold_pages:
882 *
883 *	Unhold each of the pages that is referenced by the given array.
884 */
885void
886vm_page_unhold_pages(vm_page_t *ma, int count)
887{
888	struct mtx *mtx, *new_mtx;
889
890	mtx = NULL;
891	for (; count != 0; count--) {
892		/*
893		 * Avoid releasing and reacquiring the same page lock.
894		 */
895		new_mtx = vm_page_lockptr(*ma);
896		if (mtx != new_mtx) {
897			if (mtx != NULL)
898				mtx_unlock(mtx);
899			mtx = new_mtx;
900			mtx_lock(mtx);
901		}
902		vm_page_unhold(*ma);
903		ma++;
904	}
905	if (mtx != NULL)
906		mtx_unlock(mtx);
907}
908
909vm_page_t
910PHYS_TO_VM_PAGE(vm_paddr_t pa)
911{
912	vm_page_t m;
913
914#ifdef VM_PHYSSEG_SPARSE
915	m = vm_phys_paddr_to_vm_page(pa);
916	if (m == NULL)
917		m = vm_phys_fictitious_to_vm_page(pa);
918	return (m);
919#elif defined(VM_PHYSSEG_DENSE)
920	long pi;
921
922	pi = atop(pa);
923	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
924		m = &vm_page_array[pi - first_page];
925		return (m);
926	}
927	return (vm_phys_fictitious_to_vm_page(pa));
928#else
929#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
930#endif
931}
932
933/*
934 *	vm_page_getfake:
935 *
936 *	Create a fictitious page with the specified physical address and
937 *	memory attribute.  The memory attribute is the only the machine-
938 *	dependent aspect of a fictitious page that must be initialized.
939 */
940vm_page_t
941vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
942{
943	vm_page_t m;
944
945	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
946	vm_page_initfake(m, paddr, memattr);
947	return (m);
948}
949
950void
951vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
952{
953
954	if ((m->flags & PG_FICTITIOUS) != 0) {
955		/*
956		 * The page's memattr might have changed since the
957		 * previous initialization.  Update the pmap to the
958		 * new memattr.
959		 */
960		goto memattr;
961	}
962	m->phys_addr = paddr;
963	m->queue = PQ_NONE;
964	/* Fictitious pages don't use "segind". */
965	m->flags = PG_FICTITIOUS;
966	/* Fictitious pages don't use "order" or "pool". */
967	m->oflags = VPO_UNMANAGED;
968	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
969	m->wire_count = 1;
970	pmap_page_init(m);
971memattr:
972	pmap_page_set_memattr(m, memattr);
973}
974
975/*
976 *	vm_page_putfake:
977 *
978 *	Release a fictitious page.
979 */
980void
981vm_page_putfake(vm_page_t m)
982{
983
984	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
985	KASSERT((m->flags & PG_FICTITIOUS) != 0,
986	    ("vm_page_putfake: bad page %p", m));
987	uma_zfree(fakepg_zone, m);
988}
989
990/*
991 *	vm_page_updatefake:
992 *
993 *	Update the given fictitious page to the specified physical address and
994 *	memory attribute.
995 */
996void
997vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
998{
999
1000	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1001	    ("vm_page_updatefake: bad page %p", m));
1002	m->phys_addr = paddr;
1003	pmap_page_set_memattr(m, memattr);
1004}
1005
1006/*
1007 *	vm_page_free:
1008 *
1009 *	Free a page.
1010 */
1011void
1012vm_page_free(vm_page_t m)
1013{
1014
1015	m->flags &= ~PG_ZERO;
1016	vm_page_free_toq(m);
1017}
1018
1019/*
1020 *	vm_page_free_zero:
1021 *
1022 *	Free a page to the zerod-pages queue
1023 */
1024void
1025vm_page_free_zero(vm_page_t m)
1026{
1027
1028	m->flags |= PG_ZERO;
1029	vm_page_free_toq(m);
1030}
1031
1032/*
1033 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
1034 * array which was optionally read ahead or behind.
1035 */
1036void
1037vm_page_readahead_finish(vm_page_t m)
1038{
1039
1040	/* We shouldn't put invalid pages on queues. */
1041	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1042
1043	/*
1044	 * Since the page is not the actually needed one, whether it should
1045	 * be activated or deactivated is not obvious.  Empirical results
1046	 * have shown that deactivating the page is usually the best choice,
1047	 * unless the page is wanted by another thread.
1048	 */
1049	vm_page_lock(m);
1050	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1051		vm_page_activate(m);
1052	else
1053		vm_page_deactivate(m);
1054	vm_page_unlock(m);
1055	vm_page_xunbusy(m);
1056}
1057
1058/*
1059 *	vm_page_sleep_if_busy:
1060 *
1061 *	Sleep and release the page queues lock if the page is busied.
1062 *	Returns TRUE if the thread slept.
1063 *
1064 *	The given page must be unlocked and object containing it must
1065 *	be locked.
1066 */
1067int
1068vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1069{
1070	vm_object_t obj;
1071
1072	vm_page_lock_assert(m, MA_NOTOWNED);
1073	VM_OBJECT_ASSERT_WLOCKED(m->object);
1074
1075	if (vm_page_busied(m)) {
1076		/*
1077		 * The page-specific object must be cached because page
1078		 * identity can change during the sleep, causing the
1079		 * re-lock of a different object.
1080		 * It is assumed that a reference to the object is already
1081		 * held by the callers.
1082		 */
1083		obj = m->object;
1084		vm_page_lock(m);
1085		VM_OBJECT_WUNLOCK(obj);
1086		vm_page_busy_sleep(m, msg);
1087		VM_OBJECT_WLOCK(obj);
1088		return (TRUE);
1089	}
1090	return (FALSE);
1091}
1092
1093/*
1094 *	vm_page_dirty_KBI:		[ internal use only ]
1095 *
1096 *	Set all bits in the page's dirty field.
1097 *
1098 *	The object containing the specified page must be locked if the
1099 *	call is made from the machine-independent layer.
1100 *
1101 *	See vm_page_clear_dirty_mask().
1102 *
1103 *	This function should only be called by vm_page_dirty().
1104 */
1105void
1106vm_page_dirty_KBI(vm_page_t m)
1107{
1108
1109	/* These assertions refer to this operation by its public name. */
1110	KASSERT((m->flags & PG_CACHED) == 0,
1111	    ("vm_page_dirty: page in cache!"));
1112	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1113	    ("vm_page_dirty: page is invalid!"));
1114	m->dirty = VM_PAGE_BITS_ALL;
1115}
1116
1117/*
1118 *	vm_page_insert:		[ internal use only ]
1119 *
1120 *	Inserts the given mem entry into the object and object list.
1121 *
1122 *	The object must be locked.
1123 */
1124int
1125vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1126{
1127	vm_page_t mpred;
1128
1129	VM_OBJECT_ASSERT_WLOCKED(object);
1130	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1131	return (vm_page_insert_after(m, object, pindex, mpred));
1132}
1133
1134/*
1135 *	vm_page_insert_after:
1136 *
1137 *	Inserts the page "m" into the specified object at offset "pindex".
1138 *
1139 *	The page "mpred" must immediately precede the offset "pindex" within
1140 *	the specified object.
1141 *
1142 *	The object must be locked.
1143 */
1144static int
1145vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1146    vm_page_t mpred)
1147{
1148	vm_page_t msucc;
1149
1150	VM_OBJECT_ASSERT_WLOCKED(object);
1151	KASSERT(m->object == NULL,
1152	    ("vm_page_insert_after: page already inserted"));
1153	if (mpred != NULL) {
1154		KASSERT(mpred->object == object,
1155		    ("vm_page_insert_after: object doesn't contain mpred"));
1156		KASSERT(mpred->pindex < pindex,
1157		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1158		msucc = TAILQ_NEXT(mpred, listq);
1159	} else
1160		msucc = TAILQ_FIRST(&object->memq);
1161	if (msucc != NULL)
1162		KASSERT(msucc->pindex > pindex,
1163		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1164
1165	/*
1166	 * Record the object/offset pair in this page
1167	 */
1168	m->object = object;
1169	m->pindex = pindex;
1170
1171	/*
1172	 * Now link into the object's ordered list of backed pages.
1173	 */
1174	if (vm_radix_insert(&object->rtree, m)) {
1175		m->object = NULL;
1176		m->pindex = 0;
1177		return (1);
1178	}
1179	vm_page_insert_radixdone(m, object, mpred);
1180	return (0);
1181}
1182
1183/*
1184 *	vm_page_insert_radixdone:
1185 *
1186 *	Complete page "m" insertion into the specified object after the
1187 *	radix trie hooking.
1188 *
1189 *	The page "mpred" must precede the offset "m->pindex" within the
1190 *	specified object.
1191 *
1192 *	The object must be locked.
1193 */
1194static void
1195vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1196{
1197
1198	VM_OBJECT_ASSERT_WLOCKED(object);
1199	KASSERT(object != NULL && m->object == object,
1200	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1201	if (mpred != NULL) {
1202		KASSERT(mpred->object == object,
1203		    ("vm_page_insert_after: object doesn't contain mpred"));
1204		KASSERT(mpred->pindex < m->pindex,
1205		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1206	}
1207
1208	if (mpred != NULL)
1209		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1210	else
1211		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1212
1213	/*
1214	 * Show that the object has one more resident page.
1215	 */
1216	object->resident_page_count++;
1217
1218	/*
1219	 * Hold the vnode until the last page is released.
1220	 */
1221	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1222		vhold(object->handle);
1223
1224	/*
1225	 * Since we are inserting a new and possibly dirty page,
1226	 * update the object's OBJ_MIGHTBEDIRTY flag.
1227	 */
1228	if (pmap_page_is_write_mapped(m))
1229		vm_object_set_writeable_dirty(object);
1230}
1231
1232/*
1233 *	vm_page_remove:
1234 *
1235 *	Removes the given mem entry from the object/offset-page
1236 *	table and the object page list, but do not invalidate/terminate
1237 *	the backing store.
1238 *
1239 *	The object must be locked.  The page must be locked if it is managed.
1240 */
1241void
1242vm_page_remove(vm_page_t m)
1243{
1244	vm_object_t object;
1245
1246	if ((m->oflags & VPO_UNMANAGED) == 0)
1247		vm_page_assert_locked(m);
1248	if ((object = m->object) == NULL)
1249		return;
1250	VM_OBJECT_ASSERT_WLOCKED(object);
1251	if (vm_page_xbusied(m))
1252		vm_page_xunbusy_maybelocked(m);
1253
1254	/*
1255	 * Now remove from the object's list of backed pages.
1256	 */
1257	vm_radix_remove(&object->rtree, m->pindex);
1258	TAILQ_REMOVE(&object->memq, m, listq);
1259
1260	/*
1261	 * And show that the object has one fewer resident page.
1262	 */
1263	object->resident_page_count--;
1264
1265	/*
1266	 * The vnode may now be recycled.
1267	 */
1268	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1269		vdrop(object->handle);
1270
1271	m->object = NULL;
1272}
1273
1274/*
1275 *	vm_page_lookup:
1276 *
1277 *	Returns the page associated with the object/offset
1278 *	pair specified; if none is found, NULL is returned.
1279 *
1280 *	The object must be locked.
1281 */
1282vm_page_t
1283vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1284{
1285
1286	VM_OBJECT_ASSERT_LOCKED(object);
1287	return (vm_radix_lookup(&object->rtree, pindex));
1288}
1289
1290/*
1291 *	vm_page_find_least:
1292 *
1293 *	Returns the page associated with the object with least pindex
1294 *	greater than or equal to the parameter pindex, or NULL.
1295 *
1296 *	The object must be locked.
1297 */
1298vm_page_t
1299vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1300{
1301	vm_page_t m;
1302
1303	VM_OBJECT_ASSERT_LOCKED(object);
1304	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1305		m = vm_radix_lookup_ge(&object->rtree, pindex);
1306	return (m);
1307}
1308
1309/*
1310 * Returns the given page's successor (by pindex) within the object if it is
1311 * resident; if none is found, NULL is returned.
1312 *
1313 * The object must be locked.
1314 */
1315vm_page_t
1316vm_page_next(vm_page_t m)
1317{
1318	vm_page_t next;
1319
1320	VM_OBJECT_ASSERT_LOCKED(m->object);
1321	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1322	    next->pindex != m->pindex + 1)
1323		next = NULL;
1324	return (next);
1325}
1326
1327/*
1328 * Returns the given page's predecessor (by pindex) within the object if it is
1329 * resident; if none is found, NULL is returned.
1330 *
1331 * The object must be locked.
1332 */
1333vm_page_t
1334vm_page_prev(vm_page_t m)
1335{
1336	vm_page_t prev;
1337
1338	VM_OBJECT_ASSERT_LOCKED(m->object);
1339	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1340	    prev->pindex != m->pindex - 1)
1341		prev = NULL;
1342	return (prev);
1343}
1344
1345/*
1346 * Uses the page mnew as a replacement for an existing page at index
1347 * pindex which must be already present in the object.
1348 *
1349 * The existing page must not be on a paging queue.
1350 */
1351vm_page_t
1352vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1353{
1354	vm_page_t mold;
1355
1356	VM_OBJECT_ASSERT_WLOCKED(object);
1357	KASSERT(mnew->object == NULL,
1358	    ("vm_page_replace: page already in object"));
1359
1360	/*
1361	 * This function mostly follows vm_page_insert() and
1362	 * vm_page_remove() without the radix, object count and vnode
1363	 * dance.  Double check such functions for more comments.
1364	 */
1365
1366	mnew->object = object;
1367	mnew->pindex = pindex;
1368	mold = vm_radix_replace(&object->rtree, mnew);
1369	KASSERT(mold->queue == PQ_NONE,
1370	    ("vm_page_replace: mold is on a paging queue"));
1371
1372	/* Keep the resident page list in sorted order. */
1373	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1374	TAILQ_REMOVE(&object->memq, mold, listq);
1375
1376	mold->object = NULL;
1377	vm_page_xunbusy_maybelocked(mold);
1378
1379	/*
1380	 * The object's resident_page_count does not change because we have
1381	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1382	 */
1383	if (pmap_page_is_write_mapped(mnew))
1384		vm_object_set_writeable_dirty(object);
1385	return (mold);
1386}
1387
1388/*
1389 *	vm_page_rename:
1390 *
1391 *	Move the given memory entry from its
1392 *	current object to the specified target object/offset.
1393 *
1394 *	Note: swap associated with the page must be invalidated by the move.  We
1395 *	      have to do this for several reasons:  (1) we aren't freeing the
1396 *	      page, (2) we are dirtying the page, (3) the VM system is probably
1397 *	      moving the page from object A to B, and will then later move
1398 *	      the backing store from A to B and we can't have a conflict.
1399 *
1400 *	Note: we *always* dirty the page.  It is necessary both for the
1401 *	      fact that we moved it, and because we may be invalidating
1402 *	      swap.  If the page is on the cache, we have to deactivate it
1403 *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1404 *	      on the cache.
1405 *
1406 *	The objects must be locked.
1407 */
1408int
1409vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1410{
1411	vm_page_t mpred;
1412	vm_pindex_t opidx;
1413
1414	VM_OBJECT_ASSERT_WLOCKED(new_object);
1415
1416	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1417	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1418	    ("vm_page_rename: pindex already renamed"));
1419
1420	/*
1421	 * Create a custom version of vm_page_insert() which does not depend
1422	 * by m_prev and can cheat on the implementation aspects of the
1423	 * function.
1424	 */
1425	opidx = m->pindex;
1426	m->pindex = new_pindex;
1427	if (vm_radix_insert(&new_object->rtree, m)) {
1428		m->pindex = opidx;
1429		return (1);
1430	}
1431
1432	/*
1433	 * The operation cannot fail anymore.  The removal must happen before
1434	 * the listq iterator is tainted.
1435	 */
1436	m->pindex = opidx;
1437	vm_page_lock(m);
1438	vm_page_remove(m);
1439
1440	/* Return back to the new pindex to complete vm_page_insert(). */
1441	m->pindex = new_pindex;
1442	m->object = new_object;
1443	vm_page_unlock(m);
1444	vm_page_insert_radixdone(m, new_object, mpred);
1445	vm_page_dirty(m);
1446	return (0);
1447}
1448
1449/*
1450 *	Convert all of the given object's cached pages that have a
1451 *	pindex within the given range into free pages.  If the value
1452 *	zero is given for "end", then the range's upper bound is
1453 *	infinity.  If the given object is backed by a vnode and it
1454 *	transitions from having one or more cached pages to none, the
1455 *	vnode's hold count is reduced.
1456 */
1457void
1458vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1459{
1460	vm_page_t m;
1461	boolean_t empty;
1462
1463	mtx_lock(&vm_page_queue_free_mtx);
1464	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1465		mtx_unlock(&vm_page_queue_free_mtx);
1466		return;
1467	}
1468	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1469		if (end != 0 && m->pindex >= end)
1470			break;
1471		vm_radix_remove(&object->cache, m->pindex);
1472		vm_page_cache_turn_free(m);
1473	}
1474	empty = vm_radix_is_empty(&object->cache);
1475	mtx_unlock(&vm_page_queue_free_mtx);
1476	if (object->type == OBJT_VNODE && empty)
1477		vdrop(object->handle);
1478}
1479
1480/*
1481 *	Returns the cached page that is associated with the given
1482 *	object and offset.  If, however, none exists, returns NULL.
1483 *
1484 *	The free page queue must be locked.
1485 */
1486static inline vm_page_t
1487vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1488{
1489
1490	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1491	return (vm_radix_lookup(&object->cache, pindex));
1492}
1493
1494/*
1495 *	Remove the given cached page from its containing object's
1496 *	collection of cached pages.
1497 *
1498 *	The free page queue must be locked.
1499 */
1500static void
1501vm_page_cache_remove(vm_page_t m)
1502{
1503
1504	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1505	KASSERT((m->flags & PG_CACHED) != 0,
1506	    ("vm_page_cache_remove: page %p is not cached", m));
1507	vm_radix_remove(&m->object->cache, m->pindex);
1508	m->object = NULL;
1509	vm_cnt.v_cache_count--;
1510}
1511
1512/*
1513 *	Transfer all of the cached pages with offset greater than or
1514 *	equal to 'offidxstart' from the original object's cache to the
1515 *	new object's cache.  However, any cached pages with offset
1516 *	greater than or equal to the new object's size are kept in the
1517 *	original object.  Initially, the new object's cache must be
1518 *	empty.  Offset 'offidxstart' in the original object must
1519 *	correspond to offset zero in the new object.
1520 *
1521 *	The new object must be locked.
1522 */
1523void
1524vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1525    vm_object_t new_object)
1526{
1527	vm_page_t m;
1528
1529	/*
1530	 * Insertion into an object's collection of cached pages
1531	 * requires the object to be locked.  In contrast, removal does
1532	 * not.
1533	 */
1534	VM_OBJECT_ASSERT_WLOCKED(new_object);
1535	KASSERT(vm_radix_is_empty(&new_object->cache),
1536	    ("vm_page_cache_transfer: object %p has cached pages",
1537	    new_object));
1538	mtx_lock(&vm_page_queue_free_mtx);
1539	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1540	    offidxstart)) != NULL) {
1541		/*
1542		 * Transfer all of the pages with offset greater than or
1543		 * equal to 'offidxstart' from the original object's
1544		 * cache to the new object's cache.
1545		 */
1546		if ((m->pindex - offidxstart) >= new_object->size)
1547			break;
1548		vm_radix_remove(&orig_object->cache, m->pindex);
1549		/* Update the page's object and offset. */
1550		m->object = new_object;
1551		m->pindex -= offidxstart;
1552		if (vm_radix_insert(&new_object->cache, m))
1553			vm_page_cache_turn_free(m);
1554	}
1555	mtx_unlock(&vm_page_queue_free_mtx);
1556}
1557
1558/*
1559 *	Returns TRUE if a cached page is associated with the given object and
1560 *	offset, and FALSE otherwise.
1561 *
1562 *	The object must be locked.
1563 */
1564boolean_t
1565vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1566{
1567	vm_page_t m;
1568
1569	/*
1570	 * Insertion into an object's collection of cached pages requires the
1571	 * object to be locked.  Therefore, if the object is locked and the
1572	 * object's collection is empty, there is no need to acquire the free
1573	 * page queues lock in order to prove that the specified page doesn't
1574	 * exist.
1575	 */
1576	VM_OBJECT_ASSERT_WLOCKED(object);
1577	if (__predict_true(vm_object_cache_is_empty(object)))
1578		return (FALSE);
1579	mtx_lock(&vm_page_queue_free_mtx);
1580	m = vm_page_cache_lookup(object, pindex);
1581	mtx_unlock(&vm_page_queue_free_mtx);
1582	return (m != NULL);
1583}
1584
1585/*
1586 *	vm_page_alloc:
1587 *
1588 *	Allocate and return a page that is associated with the specified
1589 *	object and offset pair.  By default, this page is exclusive busied.
1590 *
1591 *	The caller must always specify an allocation class.
1592 *
1593 *	allocation classes:
1594 *	VM_ALLOC_NORMAL		normal process request
1595 *	VM_ALLOC_SYSTEM		system *really* needs a page
1596 *	VM_ALLOC_INTERRUPT	interrupt time request
1597 *
1598 *	optional allocation flags:
1599 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1600 *				intends to allocate
1601 *	VM_ALLOC_IFCACHED	return page only if it is cached
1602 *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1603 *				is cached
1604 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1605 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1606 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1607 *				should not be exclusive busy
1608 *	VM_ALLOC_SBUSY		shared busy the allocated page
1609 *	VM_ALLOC_WIRED		wire the allocated page
1610 *	VM_ALLOC_ZERO		prefer a zeroed page
1611 *
1612 *	This routine may not sleep.
1613 */
1614vm_page_t
1615vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1616{
1617	struct vnode *vp = NULL;
1618	vm_object_t m_object;
1619	vm_page_t m, mpred;
1620	int flags, req_class;
1621
1622	mpred = 0;	/* XXX: pacify gcc */
1623	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1624	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1625	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1626	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1627	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1628	    req));
1629	if (object != NULL)
1630		VM_OBJECT_ASSERT_WLOCKED(object);
1631
1632	req_class = req & VM_ALLOC_CLASS_MASK;
1633
1634	/*
1635	 * The page daemon is allowed to dig deeper into the free page list.
1636	 */
1637	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1638		req_class = VM_ALLOC_SYSTEM;
1639
1640	if (object != NULL) {
1641		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1642		KASSERT(mpred == NULL || mpred->pindex != pindex,
1643		   ("vm_page_alloc: pindex already allocated"));
1644	}
1645
1646	/*
1647	 * The page allocation request can came from consumers which already
1648	 * hold the free page queue mutex, like vm_page_insert() in
1649	 * vm_page_cache().
1650	 */
1651	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1652	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1653	    (req_class == VM_ALLOC_SYSTEM &&
1654	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1655	    (req_class == VM_ALLOC_INTERRUPT &&
1656	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1657		/*
1658		 * Allocate from the free queue if the number of free pages
1659		 * exceeds the minimum for the request class.
1660		 */
1661		if (object != NULL &&
1662		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1663			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1664				mtx_unlock(&vm_page_queue_free_mtx);
1665				return (NULL);
1666			}
1667			if (vm_phys_unfree_page(m))
1668				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1669#if VM_NRESERVLEVEL > 0
1670			else if (!vm_reserv_reactivate_page(m))
1671#else
1672			else
1673#endif
1674				panic("vm_page_alloc: cache page %p is missing"
1675				    " from the free queue", m);
1676		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1677			mtx_unlock(&vm_page_queue_free_mtx);
1678			return (NULL);
1679#if VM_NRESERVLEVEL > 0
1680		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1681		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1682		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1683#else
1684		} else {
1685#endif
1686			m = vm_phys_alloc_pages(object != NULL ?
1687			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1688#if VM_NRESERVLEVEL > 0
1689			if (m == NULL && vm_reserv_reclaim_inactive()) {
1690				m = vm_phys_alloc_pages(object != NULL ?
1691				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1692				    0);
1693			}
1694#endif
1695		}
1696	} else {
1697		/*
1698		 * Not allocatable, give up.
1699		 */
1700		mtx_unlock(&vm_page_queue_free_mtx);
1701		atomic_add_int(&vm_pageout_deficit,
1702		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1703		pagedaemon_wakeup();
1704		return (NULL);
1705	}
1706
1707	/*
1708	 *  At this point we had better have found a good page.
1709	 */
1710	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1711	KASSERT(m->queue == PQ_NONE,
1712	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1713	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1714	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1715	KASSERT(!vm_page_sbusied(m),
1716	    ("vm_page_alloc: page %p is busy", m));
1717	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1718	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1719	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1720	    pmap_page_get_memattr(m)));
1721	if ((m->flags & PG_CACHED) != 0) {
1722		KASSERT((m->flags & PG_ZERO) == 0,
1723		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1724		KASSERT(m->valid != 0,
1725		    ("vm_page_alloc: cached page %p is invalid", m));
1726		if (m->object == object && m->pindex == pindex)
1727			vm_cnt.v_reactivated++;
1728		else
1729			m->valid = 0;
1730		m_object = m->object;
1731		vm_page_cache_remove(m);
1732		if (m_object->type == OBJT_VNODE &&
1733		    vm_object_cache_is_empty(m_object))
1734			vp = m_object->handle;
1735	} else {
1736		KASSERT(m->valid == 0,
1737		    ("vm_page_alloc: free page %p is valid", m));
1738		vm_phys_freecnt_adj(m, -1);
1739		if ((m->flags & PG_ZERO) != 0)
1740			vm_page_zero_count--;
1741	}
1742	mtx_unlock(&vm_page_queue_free_mtx);
1743
1744	/*
1745	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1746	 */
1747	flags = 0;
1748	if ((req & VM_ALLOC_ZERO) != 0)
1749		flags = PG_ZERO;
1750	flags &= m->flags;
1751	if ((req & VM_ALLOC_NODUMP) != 0)
1752		flags |= PG_NODUMP;
1753	m->flags = flags;
1754	m->aflags = 0;
1755	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1756	    VPO_UNMANAGED : 0;
1757	m->busy_lock = VPB_UNBUSIED;
1758	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1759		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1760	if ((req & VM_ALLOC_SBUSY) != 0)
1761		m->busy_lock = VPB_SHARERS_WORD(1);
1762	if (req & VM_ALLOC_WIRED) {
1763		/*
1764		 * The page lock is not required for wiring a page until that
1765		 * page is inserted into the object.
1766		 */
1767		atomic_add_int(&vm_cnt.v_wire_count, 1);
1768		m->wire_count = 1;
1769	}
1770	m->act_count = 0;
1771
1772	if (object != NULL) {
1773		if (vm_page_insert_after(m, object, pindex, mpred)) {
1774			/* See the comment below about hold count. */
1775			if (vp != NULL)
1776				vdrop(vp);
1777			pagedaemon_wakeup();
1778			if (req & VM_ALLOC_WIRED) {
1779				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1780				m->wire_count = 0;
1781			}
1782			m->object = NULL;
1783			m->oflags = VPO_UNMANAGED;
1784			m->busy_lock = VPB_UNBUSIED;
1785			vm_page_free(m);
1786			return (NULL);
1787		}
1788
1789		/* Ignore device objects; the pager sets "memattr" for them. */
1790		if (object->memattr != VM_MEMATTR_DEFAULT &&
1791		    (object->flags & OBJ_FICTITIOUS) == 0)
1792			pmap_page_set_memattr(m, object->memattr);
1793	} else
1794		m->pindex = pindex;
1795
1796	/*
1797	 * The following call to vdrop() must come after the above call
1798	 * to vm_page_insert() in case both affect the same object and
1799	 * vnode.  Otherwise, the affected vnode's hold count could
1800	 * temporarily become zero.
1801	 */
1802	if (vp != NULL)
1803		vdrop(vp);
1804
1805	/*
1806	 * Don't wakeup too often - wakeup the pageout daemon when
1807	 * we would be nearly out of memory.
1808	 */
1809	if (vm_paging_needed())
1810		pagedaemon_wakeup();
1811
1812	return (m);
1813}
1814
1815static void
1816vm_page_alloc_contig_vdrop(struct spglist *lst)
1817{
1818
1819	while (!SLIST_EMPTY(lst)) {
1820		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1821		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1822	}
1823}
1824
1825/*
1826 *	vm_page_alloc_contig:
1827 *
1828 *	Allocate a contiguous set of physical pages of the given size "npages"
1829 *	from the free lists.  All of the physical pages must be at or above
1830 *	the given physical address "low" and below the given physical address
1831 *	"high".  The given value "alignment" determines the alignment of the
1832 *	first physical page in the set.  If the given value "boundary" is
1833 *	non-zero, then the set of physical pages cannot cross any physical
1834 *	address boundary that is a multiple of that value.  Both "alignment"
1835 *	and "boundary" must be a power of two.
1836 *
1837 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1838 *	then the memory attribute setting for the physical pages is configured
1839 *	to the object's memory attribute setting.  Otherwise, the memory
1840 *	attribute setting for the physical pages is configured to "memattr",
1841 *	overriding the object's memory attribute setting.  However, if the
1842 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1843 *	memory attribute setting for the physical pages cannot be configured
1844 *	to VM_MEMATTR_DEFAULT.
1845 *
1846 *	The caller must always specify an allocation class.
1847 *
1848 *	allocation classes:
1849 *	VM_ALLOC_NORMAL		normal process request
1850 *	VM_ALLOC_SYSTEM		system *really* needs a page
1851 *	VM_ALLOC_INTERRUPT	interrupt time request
1852 *
1853 *	optional allocation flags:
1854 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1855 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1856 *	VM_ALLOC_NOOBJ		page is not associated with an object and
1857 *				should not be exclusive busy
1858 *	VM_ALLOC_SBUSY		shared busy the allocated page
1859 *	VM_ALLOC_WIRED		wire the allocated page
1860 *	VM_ALLOC_ZERO		prefer a zeroed page
1861 *
1862 *	This routine may not sleep.
1863 */
1864vm_page_t
1865vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1866    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1867    vm_paddr_t boundary, vm_memattr_t memattr)
1868{
1869	struct vnode *drop;
1870	struct spglist deferred_vdrop_list;
1871	vm_page_t m, m_tmp, m_ret;
1872	u_int flags;
1873	int req_class;
1874
1875	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1876	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1877	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1878	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1879	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1880	    req));
1881	if (object != NULL) {
1882		VM_OBJECT_ASSERT_WLOCKED(object);
1883		KASSERT(object->type == OBJT_PHYS,
1884		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1885		    object));
1886	}
1887	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1888	req_class = req & VM_ALLOC_CLASS_MASK;
1889
1890	/*
1891	 * The page daemon is allowed to dig deeper into the free page list.
1892	 */
1893	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1894		req_class = VM_ALLOC_SYSTEM;
1895
1896	SLIST_INIT(&deferred_vdrop_list);
1897	mtx_lock(&vm_page_queue_free_mtx);
1898	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1899	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1900	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1901	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1902	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1903#if VM_NRESERVLEVEL > 0
1904retry:
1905		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1906		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1907		    low, high, alignment, boundary)) == NULL)
1908#endif
1909			m_ret = vm_phys_alloc_contig(npages, low, high,
1910			    alignment, boundary);
1911	} else {
1912		mtx_unlock(&vm_page_queue_free_mtx);
1913		atomic_add_int(&vm_pageout_deficit, npages);
1914		pagedaemon_wakeup();
1915		return (NULL);
1916	}
1917	if (m_ret != NULL)
1918		for (m = m_ret; m < &m_ret[npages]; m++) {
1919			drop = vm_page_alloc_init(m);
1920			if (drop != NULL) {
1921				/*
1922				 * Enqueue the vnode for deferred vdrop().
1923				 */
1924				m->plinks.s.pv = drop;
1925				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1926				    plinks.s.ss);
1927			}
1928		}
1929	else {
1930#if VM_NRESERVLEVEL > 0
1931		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1932		    boundary))
1933			goto retry;
1934#endif
1935	}
1936	mtx_unlock(&vm_page_queue_free_mtx);
1937	if (m_ret == NULL)
1938		return (NULL);
1939
1940	/*
1941	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1942	 */
1943	flags = 0;
1944	if ((req & VM_ALLOC_ZERO) != 0)
1945		flags = PG_ZERO;
1946	if ((req & VM_ALLOC_NODUMP) != 0)
1947		flags |= PG_NODUMP;
1948	if ((req & VM_ALLOC_WIRED) != 0)
1949		atomic_add_int(&vm_cnt.v_wire_count, npages);
1950	if (object != NULL) {
1951		if (object->memattr != VM_MEMATTR_DEFAULT &&
1952		    memattr == VM_MEMATTR_DEFAULT)
1953			memattr = object->memattr;
1954	}
1955	for (m = m_ret; m < &m_ret[npages]; m++) {
1956		m->aflags = 0;
1957		m->flags = (m->flags | PG_NODUMP) & flags;
1958		m->busy_lock = VPB_UNBUSIED;
1959		if (object != NULL) {
1960			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1961				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1962			if ((req & VM_ALLOC_SBUSY) != 0)
1963				m->busy_lock = VPB_SHARERS_WORD(1);
1964		}
1965		if ((req & VM_ALLOC_WIRED) != 0)
1966			m->wire_count = 1;
1967		/* Unmanaged pages don't use "act_count". */
1968		m->oflags = VPO_UNMANAGED;
1969		if (object != NULL) {
1970			if (vm_page_insert(m, object, pindex)) {
1971				vm_page_alloc_contig_vdrop(
1972				    &deferred_vdrop_list);
1973				if (vm_paging_needed())
1974					pagedaemon_wakeup();
1975				if ((req & VM_ALLOC_WIRED) != 0)
1976					atomic_subtract_int(&vm_cnt.v_wire_count,
1977					    npages);
1978				for (m_tmp = m, m = m_ret;
1979				    m < &m_ret[npages]; m++) {
1980					if ((req & VM_ALLOC_WIRED) != 0)
1981						m->wire_count = 0;
1982					if (m >= m_tmp) {
1983						m->object = NULL;
1984						m->oflags |= VPO_UNMANAGED;
1985					}
1986					m->busy_lock = VPB_UNBUSIED;
1987					vm_page_free(m);
1988				}
1989				return (NULL);
1990			}
1991		} else
1992			m->pindex = pindex;
1993		if (memattr != VM_MEMATTR_DEFAULT)
1994			pmap_page_set_memattr(m, memattr);
1995		pindex++;
1996	}
1997	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1998	if (vm_paging_needed())
1999		pagedaemon_wakeup();
2000	return (m_ret);
2001}
2002
2003/*
2004 * Initialize a page that has been freshly dequeued from a freelist.
2005 * The caller has to drop the vnode returned, if it is not NULL.
2006 *
2007 * This function may only be used to initialize unmanaged pages.
2008 *
2009 * To be called with vm_page_queue_free_mtx held.
2010 */
2011static struct vnode *
2012vm_page_alloc_init(vm_page_t m)
2013{
2014	struct vnode *drop;
2015	vm_object_t m_object;
2016
2017	KASSERT(m->queue == PQ_NONE,
2018	    ("vm_page_alloc_init: page %p has unexpected queue %d",
2019	    m, m->queue));
2020	KASSERT(m->wire_count == 0,
2021	    ("vm_page_alloc_init: page %p is wired", m));
2022	KASSERT(m->hold_count == 0,
2023	    ("vm_page_alloc_init: page %p is held", m));
2024	KASSERT(!vm_page_sbusied(m),
2025	    ("vm_page_alloc_init: page %p is busy", m));
2026	KASSERT(m->dirty == 0,
2027	    ("vm_page_alloc_init: page %p is dirty", m));
2028	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2029	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2030	    m, pmap_page_get_memattr(m)));
2031	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2032	drop = NULL;
2033	if ((m->flags & PG_CACHED) != 0) {
2034		KASSERT((m->flags & PG_ZERO) == 0,
2035		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2036		m->valid = 0;
2037		m_object = m->object;
2038		vm_page_cache_remove(m);
2039		if (m_object->type == OBJT_VNODE &&
2040		    vm_object_cache_is_empty(m_object))
2041			drop = m_object->handle;
2042	} else {
2043		KASSERT(m->valid == 0,
2044		    ("vm_page_alloc_init: free page %p is valid", m));
2045		vm_phys_freecnt_adj(m, -1);
2046		if ((m->flags & PG_ZERO) != 0)
2047			vm_page_zero_count--;
2048	}
2049	return (drop);
2050}
2051
2052/*
2053 * 	vm_page_alloc_freelist:
2054 *
2055 *	Allocate a physical page from the specified free page list.
2056 *
2057 *	The caller must always specify an allocation class.
2058 *
2059 *	allocation classes:
2060 *	VM_ALLOC_NORMAL		normal process request
2061 *	VM_ALLOC_SYSTEM		system *really* needs a page
2062 *	VM_ALLOC_INTERRUPT	interrupt time request
2063 *
2064 *	optional allocation flags:
2065 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2066 *				intends to allocate
2067 *	VM_ALLOC_WIRED		wire the allocated page
2068 *	VM_ALLOC_ZERO		prefer a zeroed page
2069 *
2070 *	This routine may not sleep.
2071 */
2072vm_page_t
2073vm_page_alloc_freelist(int flind, int req)
2074{
2075	struct vnode *drop;
2076	vm_page_t m;
2077	u_int flags;
2078	int req_class;
2079
2080	req_class = req & VM_ALLOC_CLASS_MASK;
2081
2082	/*
2083	 * The page daemon is allowed to dig deeper into the free page list.
2084	 */
2085	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2086		req_class = VM_ALLOC_SYSTEM;
2087
2088	/*
2089	 * Do not allocate reserved pages unless the req has asked for it.
2090	 */
2091	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2092	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2093	    (req_class == VM_ALLOC_SYSTEM &&
2094	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2095	    (req_class == VM_ALLOC_INTERRUPT &&
2096	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2097		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2098	else {
2099		mtx_unlock(&vm_page_queue_free_mtx);
2100		atomic_add_int(&vm_pageout_deficit,
2101		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2102		pagedaemon_wakeup();
2103		return (NULL);
2104	}
2105	if (m == NULL) {
2106		mtx_unlock(&vm_page_queue_free_mtx);
2107		return (NULL);
2108	}
2109	drop = vm_page_alloc_init(m);
2110	mtx_unlock(&vm_page_queue_free_mtx);
2111
2112	/*
2113	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2114	 */
2115	m->aflags = 0;
2116	flags = 0;
2117	if ((req & VM_ALLOC_ZERO) != 0)
2118		flags = PG_ZERO;
2119	m->flags &= flags;
2120	if ((req & VM_ALLOC_WIRED) != 0) {
2121		/*
2122		 * The page lock is not required for wiring a page that does
2123		 * not belong to an object.
2124		 */
2125		atomic_add_int(&vm_cnt.v_wire_count, 1);
2126		m->wire_count = 1;
2127	}
2128	/* Unmanaged pages don't use "act_count". */
2129	m->oflags = VPO_UNMANAGED;
2130	if (drop != NULL)
2131		vdrop(drop);
2132	if (vm_paging_needed())
2133		pagedaemon_wakeup();
2134	return (m);
2135}
2136
2137#define	VPSC_ANY	0	/* No restrictions. */
2138#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2139#define	VPSC_NOSUPER	2	/* Skip superpages. */
2140
2141/*
2142 *	vm_page_scan_contig:
2143 *
2144 *	Scan vm_page_array[] between the specified entries "m_start" and
2145 *	"m_end" for a run of contiguous physical pages that satisfy the
2146 *	specified conditions, and return the lowest page in the run.  The
2147 *	specified "alignment" determines the alignment of the lowest physical
2148 *	page in the run.  If the specified "boundary" is non-zero, then the
2149 *	run of physical pages cannot span a physical address that is a
2150 *	multiple of "boundary".
2151 *
2152 *	"m_end" is never dereferenced, so it need not point to a vm_page
2153 *	structure within vm_page_array[].
2154 *
2155 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2156 *	span a hole (or discontiguity) in the physical address space.  Both
2157 *	"alignment" and "boundary" must be a power of two.
2158 */
2159vm_page_t
2160vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2161    u_long alignment, vm_paddr_t boundary, int options)
2162{
2163	struct mtx *m_mtx, *new_mtx;
2164	vm_object_t object;
2165	vm_paddr_t pa;
2166	vm_page_t m, m_run;
2167#if VM_NRESERVLEVEL > 0
2168	int level;
2169#endif
2170	int m_inc, order, run_ext, run_len;
2171
2172	KASSERT(npages > 0, ("npages is 0"));
2173	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2174	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2175	m_run = NULL;
2176	run_len = 0;
2177	m_mtx = NULL;
2178	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2179		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2180		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2181
2182		/*
2183		 * If the current page would be the start of a run, check its
2184		 * physical address against the end, alignment, and boundary
2185		 * conditions.  If it doesn't satisfy these conditions, either
2186		 * terminate the scan or advance to the next page that
2187		 * satisfies the failed condition.
2188		 */
2189		if (run_len == 0) {
2190			KASSERT(m_run == NULL, ("m_run != NULL"));
2191			if (m + npages > m_end)
2192				break;
2193			pa = VM_PAGE_TO_PHYS(m);
2194			if ((pa & (alignment - 1)) != 0) {
2195				m_inc = atop(roundup2(pa, alignment) - pa);
2196				continue;
2197			}
2198			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2199			    boundary) != 0) {
2200				m_inc = atop(roundup2(pa, boundary) - pa);
2201				continue;
2202			}
2203		} else
2204			KASSERT(m_run != NULL, ("m_run == NULL"));
2205
2206		/*
2207		 * Avoid releasing and reacquiring the same page lock.
2208		 */
2209		new_mtx = vm_page_lockptr(m);
2210		if (m_mtx != new_mtx) {
2211			if (m_mtx != NULL)
2212				mtx_unlock(m_mtx);
2213			m_mtx = new_mtx;
2214			mtx_lock(m_mtx);
2215		}
2216		m_inc = 1;
2217retry:
2218		if (m->wire_count != 0 || m->hold_count != 0)
2219			run_ext = 0;
2220#if VM_NRESERVLEVEL > 0
2221		else if ((level = vm_reserv_level(m)) >= 0 &&
2222		    (options & VPSC_NORESERV) != 0) {
2223			run_ext = 0;
2224			/* Advance to the end of the reservation. */
2225			pa = VM_PAGE_TO_PHYS(m);
2226			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2227			    pa);
2228		}
2229#endif
2230		else if ((object = m->object) != NULL) {
2231			/*
2232			 * The page is considered eligible for relocation if
2233			 * and only if it could be laundered or reclaimed by
2234			 * the page daemon.
2235			 */
2236			if (!VM_OBJECT_TRYRLOCK(object)) {
2237				mtx_unlock(m_mtx);
2238				VM_OBJECT_RLOCK(object);
2239				mtx_lock(m_mtx);
2240				if (m->object != object) {
2241					/*
2242					 * The page may have been freed.
2243					 */
2244					VM_OBJECT_RUNLOCK(object);
2245					goto retry;
2246				} else if (m->wire_count != 0 ||
2247				    m->hold_count != 0) {
2248					run_ext = 0;
2249					goto unlock;
2250				}
2251			}
2252			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2253			    ("page %p is PG_UNHOLDFREE", m));
2254			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2255			if (object->type != OBJT_DEFAULT &&
2256			    object->type != OBJT_SWAP &&
2257			    object->type != OBJT_VNODE)
2258				run_ext = 0;
2259			else if ((m->flags & PG_CACHED) != 0 ||
2260			    m != vm_page_lookup(object, m->pindex)) {
2261				/*
2262				 * The page is cached or recently converted
2263				 * from cached to free.
2264				 */
2265#if VM_NRESERVLEVEL > 0
2266				if (level >= 0) {
2267					/*
2268					 * The page is reserved.  Extend the
2269					 * current run by one page.
2270					 */
2271					run_ext = 1;
2272				} else
2273#endif
2274				if ((order = m->order) < VM_NFREEORDER) {
2275					/*
2276					 * The page is enqueued in the
2277					 * physical memory allocator's cache/
2278					 * free page queues.  Moreover, it is
2279					 * the first page in a power-of-two-
2280					 * sized run of contiguous cache/free
2281					 * pages.  Add these pages to the end
2282					 * of the current run, and jump
2283					 * ahead.
2284					 */
2285					run_ext = 1 << order;
2286					m_inc = 1 << order;
2287				} else
2288					run_ext = 0;
2289#if VM_NRESERVLEVEL > 0
2290			} else if ((options & VPSC_NOSUPER) != 0 &&
2291			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2292				run_ext = 0;
2293				/* Advance to the end of the superpage. */
2294				pa = VM_PAGE_TO_PHYS(m);
2295				m_inc = atop(roundup2(pa + 1,
2296				    vm_reserv_size(level)) - pa);
2297#endif
2298			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2299			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2300				/*
2301				 * The page is allocated but eligible for
2302				 * relocation.  Extend the current run by one
2303				 * page.
2304				 */
2305				KASSERT(pmap_page_get_memattr(m) ==
2306				    VM_MEMATTR_DEFAULT,
2307				    ("page %p has an unexpected memattr", m));
2308				KASSERT((m->oflags & (VPO_SWAPINPROG |
2309				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2310				    ("page %p has unexpected oflags", m));
2311				/* Don't care: VPO_NOSYNC. */
2312				run_ext = 1;
2313			} else
2314				run_ext = 0;
2315unlock:
2316			VM_OBJECT_RUNLOCK(object);
2317#if VM_NRESERVLEVEL > 0
2318		} else if (level >= 0) {
2319			/*
2320			 * The page is reserved but not yet allocated.  In
2321			 * other words, it is still cached or free.  Extend
2322			 * the current run by one page.
2323			 */
2324			run_ext = 1;
2325#endif
2326		} else if ((order = m->order) < VM_NFREEORDER) {
2327			/*
2328			 * The page is enqueued in the physical memory
2329			 * allocator's cache/free page queues.  Moreover, it
2330			 * is the first page in a power-of-two-sized run of
2331			 * contiguous cache/free pages.  Add these pages to
2332			 * the end of the current run, and jump ahead.
2333			 */
2334			run_ext = 1 << order;
2335			m_inc = 1 << order;
2336		} else {
2337			/*
2338			 * Skip the page for one of the following reasons: (1)
2339			 * It is enqueued in the physical memory allocator's
2340			 * cache/free page queues.  However, it is not the
2341			 * first page in a run of contiguous cache/free pages.
2342			 * (This case rarely occurs because the scan is
2343			 * performed in ascending order.) (2) It is not
2344			 * reserved, and it is transitioning from free to
2345			 * allocated.  (Conversely, the transition from
2346			 * allocated to free for managed pages is blocked by
2347			 * the page lock.) (3) It is allocated but not
2348			 * contained by an object and not wired, e.g.,
2349			 * allocated by Xen's balloon driver.
2350			 */
2351			run_ext = 0;
2352		}
2353
2354		/*
2355		 * Extend or reset the current run of pages.
2356		 */
2357		if (run_ext > 0) {
2358			if (run_len == 0)
2359				m_run = m;
2360			run_len += run_ext;
2361		} else {
2362			if (run_len > 0) {
2363				m_run = NULL;
2364				run_len = 0;
2365			}
2366		}
2367	}
2368	if (m_mtx != NULL)
2369		mtx_unlock(m_mtx);
2370	if (run_len >= npages)
2371		return (m_run);
2372	return (NULL);
2373}
2374
2375/*
2376 *	vm_page_reclaim_run:
2377 *
2378 *	Try to relocate each of the allocated virtual pages within the
2379 *	specified run of physical pages to a new physical address.  Free the
2380 *	physical pages underlying the relocated virtual pages.  A virtual page
2381 *	is relocatable if and only if it could be laundered or reclaimed by
2382 *	the page daemon.  Whenever possible, a virtual page is relocated to a
2383 *	physical address above "high".
2384 *
2385 *	Returns 0 if every physical page within the run was already free or
2386 *	just freed by a successful relocation.  Otherwise, returns a non-zero
2387 *	value indicating why the last attempt to relocate a virtual page was
2388 *	unsuccessful.
2389 *
2390 *	"req_class" must be an allocation class.
2391 */
2392static int
2393vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2394    vm_paddr_t high)
2395{
2396	struct mtx *m_mtx, *new_mtx;
2397	struct spglist free;
2398	vm_object_t object;
2399	vm_paddr_t pa;
2400	vm_page_t m, m_end, m_new;
2401	int error, order, req;
2402
2403	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2404	    ("req_class is not an allocation class"));
2405	SLIST_INIT(&free);
2406	error = 0;
2407	m = m_run;
2408	m_end = m_run + npages;
2409	m_mtx = NULL;
2410	for (; error == 0 && m < m_end; m++) {
2411		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2412		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2413
2414		/*
2415		 * Avoid releasing and reacquiring the same page lock.
2416		 */
2417		new_mtx = vm_page_lockptr(m);
2418		if (m_mtx != new_mtx) {
2419			if (m_mtx != NULL)
2420				mtx_unlock(m_mtx);
2421			m_mtx = new_mtx;
2422			mtx_lock(m_mtx);
2423		}
2424retry:
2425		if (m->wire_count != 0 || m->hold_count != 0)
2426			error = EBUSY;
2427		else if ((object = m->object) != NULL) {
2428			/*
2429			 * The page is relocated if and only if it could be
2430			 * laundered or reclaimed by the page daemon.
2431			 */
2432			if (!VM_OBJECT_TRYWLOCK(object)) {
2433				mtx_unlock(m_mtx);
2434				VM_OBJECT_WLOCK(object);
2435				mtx_lock(m_mtx);
2436				if (m->object != object) {
2437					/*
2438					 * The page may have been freed.
2439					 */
2440					VM_OBJECT_WUNLOCK(object);
2441					goto retry;
2442				} else if (m->wire_count != 0 ||
2443				    m->hold_count != 0) {
2444					error = EBUSY;
2445					goto unlock;
2446				}
2447			}
2448			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2449			    ("page %p is PG_UNHOLDFREE", m));
2450			/* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
2451			if (object->type != OBJT_DEFAULT &&
2452			    object->type != OBJT_SWAP &&
2453			    object->type != OBJT_VNODE)
2454				error = EINVAL;
2455			else if ((m->flags & PG_CACHED) != 0 ||
2456			    m != vm_page_lookup(object, m->pindex)) {
2457				/*
2458				 * The page is cached or recently converted
2459				 * from cached to free.
2460				 */
2461				VM_OBJECT_WUNLOCK(object);
2462				goto cached;
2463			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2464				error = EINVAL;
2465			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2466				KASSERT(pmap_page_get_memattr(m) ==
2467				    VM_MEMATTR_DEFAULT,
2468				    ("page %p has an unexpected memattr", m));
2469				KASSERT((m->oflags & (VPO_SWAPINPROG |
2470				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2471				    ("page %p has unexpected oflags", m));
2472				/* Don't care: VPO_NOSYNC. */
2473				if (m->valid != 0) {
2474					/*
2475					 * First, try to allocate a new page
2476					 * that is above "high".  Failing
2477					 * that, try to allocate a new page
2478					 * that is below "m_run".  Allocate
2479					 * the new page between the end of
2480					 * "m_run" and "high" only as a last
2481					 * resort.
2482					 */
2483					req = req_class | VM_ALLOC_NOOBJ;
2484					if ((m->flags & PG_NODUMP) != 0)
2485						req |= VM_ALLOC_NODUMP;
2486					if (trunc_page(high) !=
2487					    ~(vm_paddr_t)PAGE_MASK) {
2488						m_new = vm_page_alloc_contig(
2489						    NULL, 0, req, 1,
2490						    round_page(high),
2491						    ~(vm_paddr_t)0,
2492						    PAGE_SIZE, 0,
2493						    VM_MEMATTR_DEFAULT);
2494					} else
2495						m_new = NULL;
2496					if (m_new == NULL) {
2497						pa = VM_PAGE_TO_PHYS(m_run);
2498						m_new = vm_page_alloc_contig(
2499						    NULL, 0, req, 1,
2500						    0, pa - 1, PAGE_SIZE, 0,
2501						    VM_MEMATTR_DEFAULT);
2502					}
2503					if (m_new == NULL) {
2504						pa += ptoa(npages);
2505						m_new = vm_page_alloc_contig(
2506						    NULL, 0, req, 1,
2507						    pa, high, PAGE_SIZE, 0,
2508						    VM_MEMATTR_DEFAULT);
2509					}
2510					if (m_new == NULL) {
2511						error = ENOMEM;
2512						goto unlock;
2513					}
2514					KASSERT(m_new->wire_count == 0,
2515					    ("page %p is wired", m));
2516
2517					/*
2518					 * Replace "m" with the new page.  For
2519					 * vm_page_replace(), "m" must be busy
2520					 * and dequeued.  Finally, change "m"
2521					 * as if vm_page_free() was called.
2522					 */
2523					if (object->ref_count != 0)
2524						pmap_remove_all(m);
2525					m_new->aflags = m->aflags;
2526					KASSERT(m_new->oflags == VPO_UNMANAGED,
2527					    ("page %p is managed", m));
2528					m_new->oflags = m->oflags & VPO_NOSYNC;
2529					pmap_copy_page(m, m_new);
2530					m_new->valid = m->valid;
2531					m_new->dirty = m->dirty;
2532					m->flags &= ~PG_ZERO;
2533					vm_page_xbusy(m);
2534					vm_page_remque(m);
2535					vm_page_replace_checked(m_new, object,
2536					    m->pindex, m);
2537					m->valid = 0;
2538					vm_page_undirty(m);
2539
2540					/*
2541					 * The new page must be deactivated
2542					 * before the object is unlocked.
2543					 */
2544					new_mtx = vm_page_lockptr(m_new);
2545					if (m_mtx != new_mtx) {
2546						mtx_unlock(m_mtx);
2547						m_mtx = new_mtx;
2548						mtx_lock(m_mtx);
2549					}
2550					vm_page_deactivate(m_new);
2551				} else {
2552					m->flags &= ~PG_ZERO;
2553					vm_page_remque(m);
2554					vm_page_remove(m);
2555					KASSERT(m->dirty == 0,
2556					    ("page %p is dirty", m));
2557				}
2558				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2559			} else
2560				error = EBUSY;
2561unlock:
2562			VM_OBJECT_WUNLOCK(object);
2563		} else {
2564cached:
2565			mtx_lock(&vm_page_queue_free_mtx);
2566			order = m->order;
2567			if (order < VM_NFREEORDER) {
2568				/*
2569				 * The page is enqueued in the physical memory
2570				 * allocator's cache/free page queues.
2571				 * Moreover, it is the first page in a power-
2572				 * of-two-sized run of contiguous cache/free
2573				 * pages.  Jump ahead to the last page within
2574				 * that run, and continue from there.
2575				 */
2576				m += (1 << order) - 1;
2577			}
2578#if VM_NRESERVLEVEL > 0
2579			else if (vm_reserv_is_page_free(m))
2580				order = 0;
2581#endif
2582			mtx_unlock(&vm_page_queue_free_mtx);
2583			if (order == VM_NFREEORDER)
2584				error = EINVAL;
2585		}
2586	}
2587	if (m_mtx != NULL)
2588		mtx_unlock(m_mtx);
2589	if ((m = SLIST_FIRST(&free)) != NULL) {
2590		mtx_lock(&vm_page_queue_free_mtx);
2591		do {
2592			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2593			vm_phys_freecnt_adj(m, 1);
2594#if VM_NRESERVLEVEL > 0
2595			if (!vm_reserv_free_page(m))
2596#else
2597			if (true)
2598#endif
2599				vm_phys_free_pages(m, 0);
2600		} while ((m = SLIST_FIRST(&free)) != NULL);
2601		vm_page_zero_idle_wakeup();
2602		vm_page_free_wakeup();
2603		mtx_unlock(&vm_page_queue_free_mtx);
2604	}
2605	return (error);
2606}
2607
2608#define	NRUNS	16
2609
2610CTASSERT(powerof2(NRUNS));
2611
2612#define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2613
2614#define	MIN_RECLAIM	8
2615
2616/*
2617 *	vm_page_reclaim_contig:
2618 *
2619 *	Reclaim allocated, contiguous physical memory satisfying the specified
2620 *	conditions by relocating the virtual pages using that physical memory.
2621 *	Returns true if reclamation is successful and false otherwise.  Since
2622 *	relocation requires the allocation of physical pages, reclamation may
2623 *	fail due to a shortage of cache/free pages.  When reclamation fails,
2624 *	callers are expected to perform VM_WAIT before retrying a failed
2625 *	allocation operation, e.g., vm_page_alloc_contig().
2626 *
2627 *	The caller must always specify an allocation class through "req".
2628 *
2629 *	allocation classes:
2630 *	VM_ALLOC_NORMAL		normal process request
2631 *	VM_ALLOC_SYSTEM		system *really* needs a page
2632 *	VM_ALLOC_INTERRUPT	interrupt time request
2633 *
2634 *	The optional allocation flags are ignored.
2635 *
2636 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2637 *	must be a power of two.
2638 */
2639bool
2640vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2641    u_long alignment, vm_paddr_t boundary)
2642{
2643	vm_paddr_t curr_low;
2644	vm_page_t m_run, m_runs[NRUNS];
2645	u_long count, reclaimed;
2646	int error, i, options, req_class;
2647
2648	KASSERT(npages > 0, ("npages is 0"));
2649	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2650	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2651	req_class = req & VM_ALLOC_CLASS_MASK;
2652
2653	/*
2654	 * The page daemon is allowed to dig deeper into the free page list.
2655	 */
2656	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2657		req_class = VM_ALLOC_SYSTEM;
2658
2659	/*
2660	 * Return if the number of cached and free pages cannot satisfy the
2661	 * requested allocation.
2662	 */
2663	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2664	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2665	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2666	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2667		return (false);
2668
2669	/*
2670	 * Scan up to three times, relaxing the restrictions ("options") on
2671	 * the reclamation of reservations and superpages each time.
2672	 */
2673	for (options = VPSC_NORESERV;;) {
2674		/*
2675		 * Find the highest runs that satisfy the given constraints
2676		 * and restrictions, and record them in "m_runs".
2677		 */
2678		curr_low = low;
2679		count = 0;
2680		for (;;) {
2681			m_run = vm_phys_scan_contig(npages, curr_low, high,
2682			    alignment, boundary, options);
2683			if (m_run == NULL)
2684				break;
2685			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2686			m_runs[RUN_INDEX(count)] = m_run;
2687			count++;
2688		}
2689
2690		/*
2691		 * Reclaim the highest runs in LIFO (descending) order until
2692		 * the number of reclaimed pages, "reclaimed", is at least
2693		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2694		 * reclamation is idempotent, and runs will (likely) recur
2695		 * from one scan to the next as restrictions are relaxed.
2696		 */
2697		reclaimed = 0;
2698		for (i = 0; count > 0 && i < NRUNS; i++) {
2699			count--;
2700			m_run = m_runs[RUN_INDEX(count)];
2701			error = vm_page_reclaim_run(req_class, npages, m_run,
2702			    high);
2703			if (error == 0) {
2704				reclaimed += npages;
2705				if (reclaimed >= MIN_RECLAIM)
2706					return (true);
2707			}
2708		}
2709
2710		/*
2711		 * Either relax the restrictions on the next scan or return if
2712		 * the last scan had no restrictions.
2713		 */
2714		if (options == VPSC_NORESERV)
2715			options = VPSC_NOSUPER;
2716		else if (options == VPSC_NOSUPER)
2717			options = VPSC_ANY;
2718		else if (options == VPSC_ANY)
2719			return (reclaimed != 0);
2720	}
2721}
2722
2723/*
2724 *	vm_wait:	(also see VM_WAIT macro)
2725 *
2726 *	Sleep until free pages are available for allocation.
2727 *	- Called in various places before memory allocations.
2728 */
2729void
2730vm_wait(void)
2731{
2732
2733	mtx_lock(&vm_page_queue_free_mtx);
2734	if (curproc == pageproc) {
2735		vm_pageout_pages_needed = 1;
2736		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2737		    PDROP | PSWP, "VMWait", 0);
2738	} else {
2739		if (!vm_pageout_wanted) {
2740			vm_pageout_wanted = true;
2741			wakeup(&vm_pageout_wanted);
2742		}
2743		vm_pages_needed = true;
2744		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2745		    "vmwait", 0);
2746	}
2747}
2748
2749/*
2750 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2751 *
2752 *	Sleep until free pages are available for allocation.
2753 *	- Called only in vm_fault so that processes page faulting
2754 *	  can be easily tracked.
2755 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2756 *	  processes will be able to grab memory first.  Do not change
2757 *	  this balance without careful testing first.
2758 */
2759void
2760vm_waitpfault(void)
2761{
2762
2763	mtx_lock(&vm_page_queue_free_mtx);
2764	if (!vm_pageout_wanted) {
2765		vm_pageout_wanted = true;
2766		wakeup(&vm_pageout_wanted);
2767	}
2768	vm_pages_needed = true;
2769	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2770	    "pfault", 0);
2771}
2772
2773struct vm_pagequeue *
2774vm_page_pagequeue(vm_page_t m)
2775{
2776
2777	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2778}
2779
2780/*
2781 *	vm_page_dequeue:
2782 *
2783 *	Remove the given page from its current page queue.
2784 *
2785 *	The page must be locked.
2786 */
2787void
2788vm_page_dequeue(vm_page_t m)
2789{
2790	struct vm_pagequeue *pq;
2791
2792	vm_page_assert_locked(m);
2793	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2794	    m));
2795	pq = vm_page_pagequeue(m);
2796	vm_pagequeue_lock(pq);
2797	m->queue = PQ_NONE;
2798	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2799	vm_pagequeue_cnt_dec(pq);
2800	vm_pagequeue_unlock(pq);
2801}
2802
2803/*
2804 *	vm_page_dequeue_locked:
2805 *
2806 *	Remove the given page from its current page queue.
2807 *
2808 *	The page and page queue must be locked.
2809 */
2810void
2811vm_page_dequeue_locked(vm_page_t m)
2812{
2813	struct vm_pagequeue *pq;
2814
2815	vm_page_lock_assert(m, MA_OWNED);
2816	pq = vm_page_pagequeue(m);
2817	vm_pagequeue_assert_locked(pq);
2818	m->queue = PQ_NONE;
2819	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2820	vm_pagequeue_cnt_dec(pq);
2821}
2822
2823/*
2824 *	vm_page_enqueue:
2825 *
2826 *	Add the given page to the specified page queue.
2827 *
2828 *	The page must be locked.
2829 */
2830static void
2831vm_page_enqueue(uint8_t queue, vm_page_t m)
2832{
2833	struct vm_pagequeue *pq;
2834
2835	vm_page_lock_assert(m, MA_OWNED);
2836	KASSERT(queue < PQ_COUNT,
2837	    ("vm_page_enqueue: invalid queue %u request for page %p",
2838	    queue, m));
2839	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2840	vm_pagequeue_lock(pq);
2841	m->queue = queue;
2842	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2843	vm_pagequeue_cnt_inc(pq);
2844	vm_pagequeue_unlock(pq);
2845}
2846
2847/*
2848 *	vm_page_requeue:
2849 *
2850 *	Move the given page to the tail of its current page queue.
2851 *
2852 *	The page must be locked.
2853 */
2854void
2855vm_page_requeue(vm_page_t m)
2856{
2857	struct vm_pagequeue *pq;
2858
2859	vm_page_lock_assert(m, MA_OWNED);
2860	KASSERT(m->queue != PQ_NONE,
2861	    ("vm_page_requeue: page %p is not queued", m));
2862	pq = vm_page_pagequeue(m);
2863	vm_pagequeue_lock(pq);
2864	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2865	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2866	vm_pagequeue_unlock(pq);
2867}
2868
2869/*
2870 *	vm_page_requeue_locked:
2871 *
2872 *	Move the given page to the tail of its current page queue.
2873 *
2874 *	The page queue must be locked.
2875 */
2876void
2877vm_page_requeue_locked(vm_page_t m)
2878{
2879	struct vm_pagequeue *pq;
2880
2881	KASSERT(m->queue != PQ_NONE,
2882	    ("vm_page_requeue_locked: page %p is not queued", m));
2883	pq = vm_page_pagequeue(m);
2884	vm_pagequeue_assert_locked(pq);
2885	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2886	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2887}
2888
2889/*
2890 *	vm_page_activate:
2891 *
2892 *	Put the specified page on the active list (if appropriate).
2893 *	Ensure that act_count is at least ACT_INIT but do not otherwise
2894 *	mess with it.
2895 *
2896 *	The page must be locked.
2897 */
2898void
2899vm_page_activate(vm_page_t m)
2900{
2901	int queue;
2902
2903	vm_page_lock_assert(m, MA_OWNED);
2904	if ((queue = m->queue) != PQ_ACTIVE) {
2905		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2906			if (m->act_count < ACT_INIT)
2907				m->act_count = ACT_INIT;
2908			if (queue != PQ_NONE)
2909				vm_page_dequeue(m);
2910			vm_page_enqueue(PQ_ACTIVE, m);
2911		} else
2912			KASSERT(queue == PQ_NONE,
2913			    ("vm_page_activate: wired page %p is queued", m));
2914	} else {
2915		if (m->act_count < ACT_INIT)
2916			m->act_count = ACT_INIT;
2917	}
2918}
2919
2920/*
2921 *	vm_page_free_wakeup:
2922 *
2923 *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2924 *	routine is called when a page has been added to the cache or free
2925 *	queues.
2926 *
2927 *	The page queues must be locked.
2928 */
2929static inline void
2930vm_page_free_wakeup(void)
2931{
2932
2933	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2934	/*
2935	 * if pageout daemon needs pages, then tell it that there are
2936	 * some free.
2937	 */
2938	if (vm_pageout_pages_needed &&
2939	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2940		wakeup(&vm_pageout_pages_needed);
2941		vm_pageout_pages_needed = 0;
2942	}
2943	/*
2944	 * wakeup processes that are waiting on memory if we hit a
2945	 * high water mark. And wakeup scheduler process if we have
2946	 * lots of memory. this process will swapin processes.
2947	 */
2948	if (vm_pages_needed && !vm_page_count_min()) {
2949		vm_pages_needed = false;
2950		wakeup(&vm_cnt.v_free_count);
2951	}
2952}
2953
2954/*
2955 *	Turn a cached page into a free page, by changing its attributes.
2956 *	Keep the statistics up-to-date.
2957 *
2958 *	The free page queue must be locked.
2959 */
2960static void
2961vm_page_cache_turn_free(vm_page_t m)
2962{
2963
2964	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2965
2966	m->object = NULL;
2967	m->valid = 0;
2968	KASSERT((m->flags & PG_CACHED) != 0,
2969	    ("vm_page_cache_turn_free: page %p is not cached", m));
2970	m->flags &= ~PG_CACHED;
2971	vm_cnt.v_cache_count--;
2972	vm_phys_freecnt_adj(m, 1);
2973}
2974
2975/*
2976 *	vm_page_free_toq:
2977 *
2978 *	Returns the given page to the free list,
2979 *	disassociating it with any VM object.
2980 *
2981 *	The object must be locked.  The page must be locked if it is managed.
2982 */
2983void
2984vm_page_free_toq(vm_page_t m)
2985{
2986
2987	if ((m->oflags & VPO_UNMANAGED) == 0) {
2988		vm_page_lock_assert(m, MA_OWNED);
2989		KASSERT(!pmap_page_is_mapped(m),
2990		    ("vm_page_free_toq: freeing mapped page %p", m));
2991	} else
2992		KASSERT(m->queue == PQ_NONE,
2993		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2994	PCPU_INC(cnt.v_tfree);
2995
2996	if (vm_page_sbusied(m))
2997		panic("vm_page_free: freeing busy page %p", m);
2998
2999	/*
3000	 * Unqueue, then remove page.  Note that we cannot destroy
3001	 * the page here because we do not want to call the pager's
3002	 * callback routine until after we've put the page on the
3003	 * appropriate free queue.
3004	 */
3005	vm_page_remque(m);
3006	vm_page_remove(m);
3007
3008	/*
3009	 * If fictitious remove object association and
3010	 * return, otherwise delay object association removal.
3011	 */
3012	if ((m->flags & PG_FICTITIOUS) != 0) {
3013		return;
3014	}
3015
3016	m->valid = 0;
3017	vm_page_undirty(m);
3018
3019	if (m->wire_count != 0)
3020		panic("vm_page_free: freeing wired page %p", m);
3021	if (m->hold_count != 0) {
3022		m->flags &= ~PG_ZERO;
3023		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3024		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
3025		m->flags |= PG_UNHOLDFREE;
3026	} else {
3027		/*
3028		 * Restore the default memory attribute to the page.
3029		 */
3030		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3031			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3032
3033		/*
3034		 * Insert the page into the physical memory allocator's
3035		 * cache/free page queues.
3036		 */
3037		mtx_lock(&vm_page_queue_free_mtx);
3038		vm_phys_freecnt_adj(m, 1);
3039#if VM_NRESERVLEVEL > 0
3040		if (!vm_reserv_free_page(m))
3041#else
3042		if (TRUE)
3043#endif
3044			vm_phys_free_pages(m, 0);
3045		if ((m->flags & PG_ZERO) != 0)
3046			++vm_page_zero_count;
3047		else
3048			vm_page_zero_idle_wakeup();
3049		vm_page_free_wakeup();
3050		mtx_unlock(&vm_page_queue_free_mtx);
3051	}
3052}
3053
3054/*
3055 *	vm_page_wire:
3056 *
3057 *	Mark this page as wired down by yet
3058 *	another map, removing it from paging queues
3059 *	as necessary.
3060 *
3061 *	If the page is fictitious, then its wire count must remain one.
3062 *
3063 *	The page must be locked.
3064 */
3065void
3066vm_page_wire(vm_page_t m)
3067{
3068
3069	/*
3070	 * Only bump the wire statistics if the page is not already wired,
3071	 * and only unqueue the page if it is on some queue (if it is unmanaged
3072	 * it is already off the queues).
3073	 */
3074	vm_page_lock_assert(m, MA_OWNED);
3075	if ((m->flags & PG_FICTITIOUS) != 0) {
3076		KASSERT(m->wire_count == 1,
3077		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3078		    m));
3079		return;
3080	}
3081	if (m->wire_count == 0) {
3082		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3083		    m->queue == PQ_NONE,
3084		    ("vm_page_wire: unmanaged page %p is queued", m));
3085		vm_page_remque(m);
3086		atomic_add_int(&vm_cnt.v_wire_count, 1);
3087	}
3088	m->wire_count++;
3089	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3090}
3091
3092/*
3093 * vm_page_unwire:
3094 *
3095 * Release one wiring of the specified page, potentially allowing it to be
3096 * paged out.  Returns TRUE if the number of wirings transitions to zero and
3097 * FALSE otherwise.
3098 *
3099 * Only managed pages belonging to an object can be paged out.  If the number
3100 * of wirings transitions to zero and the page is eligible for page out, then
3101 * the page is added to the specified paging queue (unless PQ_NONE is
3102 * specified).
3103 *
3104 * If a page is fictitious, then its wire count must always be one.
3105 *
3106 * A managed page must be locked.
3107 */
3108boolean_t
3109vm_page_unwire(vm_page_t m, uint8_t queue)
3110{
3111
3112	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3113	    ("vm_page_unwire: invalid queue %u request for page %p",
3114	    queue, m));
3115	if ((m->oflags & VPO_UNMANAGED) == 0)
3116		vm_page_assert_locked(m);
3117	if ((m->flags & PG_FICTITIOUS) != 0) {
3118		KASSERT(m->wire_count == 1,
3119	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3120		return (FALSE);
3121	}
3122	if (m->wire_count > 0) {
3123		m->wire_count--;
3124		if (m->wire_count == 0) {
3125			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3126			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3127			    m->object != NULL && queue != PQ_NONE) {
3128				if (queue == PQ_INACTIVE)
3129					m->flags &= ~PG_WINATCFLS;
3130				vm_page_enqueue(queue, m);
3131			}
3132			return (TRUE);
3133		} else
3134			return (FALSE);
3135	} else
3136		panic("vm_page_unwire: page %p's wire count is zero", m);
3137}
3138
3139/*
3140 * Move the specified page to the inactive queue.
3141 *
3142 * Many pages placed on the inactive queue should actually go
3143 * into the cache, but it is difficult to figure out which.  What
3144 * we do instead, if the inactive target is well met, is to put
3145 * clean pages at the head of the inactive queue instead of the tail.
3146 * This will cause them to be moved to the cache more quickly and
3147 * if not actively re-referenced, reclaimed more quickly.  If we just
3148 * stick these pages at the end of the inactive queue, heavy filesystem
3149 * meta-data accesses can cause an unnecessary paging load on memory bound
3150 * processes.  This optimization causes one-time-use metadata to be
3151 * reused more quickly.
3152 *
3153 * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3154 * to TRUE if we want this page to be 'as if it were placed in the cache',
3155 * except without unmapping it from the process address space.  In
3156 * practice this is implemented by inserting the page at the head of the
3157 * queue, using a marker page to guide FIFO insertion ordering.
3158 *
3159 * The page must be locked.
3160 */
3161static inline void
3162_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3163{
3164	struct vm_pagequeue *pq;
3165	int queue;
3166
3167	vm_page_assert_locked(m);
3168
3169	/*
3170	 * Ignore if the page is already inactive, unless it is unlikely to be
3171	 * reactivated.
3172	 */
3173	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3174		return;
3175	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3176		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3177		/* Avoid multiple acquisitions of the inactive queue lock. */
3178		if (queue == PQ_INACTIVE) {
3179			vm_pagequeue_lock(pq);
3180			vm_page_dequeue_locked(m);
3181		} else {
3182			if (queue != PQ_NONE)
3183				vm_page_dequeue(m);
3184			m->flags &= ~PG_WINATCFLS;
3185			vm_pagequeue_lock(pq);
3186		}
3187		m->queue = PQ_INACTIVE;
3188		if (noreuse)
3189			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3190			    m, plinks.q);
3191		else
3192			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3193		vm_pagequeue_cnt_inc(pq);
3194		vm_pagequeue_unlock(pq);
3195	}
3196}
3197
3198/*
3199 * Move the specified page to the inactive queue.
3200 *
3201 * The page must be locked.
3202 */
3203void
3204vm_page_deactivate(vm_page_t m)
3205{
3206
3207	_vm_page_deactivate(m, FALSE);
3208}
3209
3210/*
3211 * Move the specified page to the inactive queue with the expectation
3212 * that it is unlikely to be reused.
3213 *
3214 * The page must be locked.
3215 */
3216void
3217vm_page_deactivate_noreuse(vm_page_t m)
3218{
3219
3220	_vm_page_deactivate(m, TRUE);
3221}
3222
3223/*
3224 * vm_page_try_to_cache:
3225 *
3226 * Returns 0 on failure, 1 on success
3227 */
3228int
3229vm_page_try_to_cache(vm_page_t m)
3230{
3231
3232	vm_page_lock_assert(m, MA_OWNED);
3233	VM_OBJECT_ASSERT_WLOCKED(m->object);
3234	if (m->dirty || m->hold_count || m->wire_count ||
3235	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3236		return (0);
3237	pmap_remove_all(m);
3238	if (m->dirty)
3239		return (0);
3240	vm_page_cache(m);
3241	return (1);
3242}
3243
3244/*
3245 * vm_page_try_to_free()
3246 *
3247 *	Attempt to free the page.  If we cannot free it, we do nothing.
3248 *	1 is returned on success, 0 on failure.
3249 */
3250int
3251vm_page_try_to_free(vm_page_t m)
3252{
3253
3254	vm_page_lock_assert(m, MA_OWNED);
3255	if (m->object != NULL)
3256		VM_OBJECT_ASSERT_WLOCKED(m->object);
3257	if (m->dirty || m->hold_count || m->wire_count ||
3258	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3259		return (0);
3260	pmap_remove_all(m);
3261	if (m->dirty)
3262		return (0);
3263	vm_page_free(m);
3264	return (1);
3265}
3266
3267/*
3268 * vm_page_cache
3269 *
3270 * Put the specified page onto the page cache queue (if appropriate).
3271 *
3272 * The object and page must be locked.
3273 */
3274void
3275vm_page_cache(vm_page_t m)
3276{
3277	vm_object_t object;
3278	boolean_t cache_was_empty;
3279
3280	vm_page_lock_assert(m, MA_OWNED);
3281	object = m->object;
3282	VM_OBJECT_ASSERT_WLOCKED(object);
3283	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
3284	    m->hold_count || m->wire_count)
3285		panic("vm_page_cache: attempting to cache busy page");
3286	KASSERT(!pmap_page_is_mapped(m),
3287	    ("vm_page_cache: page %p is mapped", m));
3288	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
3289	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
3290	    (object->type == OBJT_SWAP &&
3291	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
3292		/*
3293		 * Hypothesis: A cache-eligible page belonging to a
3294		 * default object or swap object but without a backing
3295		 * store must be zero filled.
3296		 */
3297		vm_page_free(m);
3298		return;
3299	}
3300	KASSERT((m->flags & PG_CACHED) == 0,
3301	    ("vm_page_cache: page %p is already cached", m));
3302
3303	/*
3304	 * Remove the page from the paging queues.
3305	 */
3306	vm_page_remque(m);
3307
3308	/*
3309	 * Remove the page from the object's collection of resident
3310	 * pages.
3311	 */
3312	vm_radix_remove(&object->rtree, m->pindex);
3313	TAILQ_REMOVE(&object->memq, m, listq);
3314	object->resident_page_count--;
3315
3316	/*
3317	 * Restore the default memory attribute to the page.
3318	 */
3319	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3320		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3321
3322	/*
3323	 * Insert the page into the object's collection of cached pages
3324	 * and the physical memory allocator's cache/free page queues.
3325	 */
3326	m->flags &= ~PG_ZERO;
3327	mtx_lock(&vm_page_queue_free_mtx);
3328	cache_was_empty = vm_radix_is_empty(&object->cache);
3329	if (vm_radix_insert(&object->cache, m)) {
3330		mtx_unlock(&vm_page_queue_free_mtx);
3331		if (object->type == OBJT_VNODE &&
3332		    object->resident_page_count == 0)
3333			vdrop(object->handle);
3334		m->object = NULL;
3335		vm_page_free(m);
3336		return;
3337	}
3338
3339	/*
3340	 * The above call to vm_radix_insert() could reclaim the one pre-
3341	 * existing cached page from this object, resulting in a call to
3342	 * vdrop().
3343	 */
3344	if (!cache_was_empty)
3345		cache_was_empty = vm_radix_is_singleton(&object->cache);
3346
3347	m->flags |= PG_CACHED;
3348	vm_cnt.v_cache_count++;
3349	PCPU_INC(cnt.v_tcached);
3350#if VM_NRESERVLEVEL > 0
3351	if (!vm_reserv_free_page(m)) {
3352#else
3353	if (TRUE) {
3354#endif
3355		vm_phys_free_pages(m, 0);
3356	}
3357	vm_page_free_wakeup();
3358	mtx_unlock(&vm_page_queue_free_mtx);
3359
3360	/*
3361	 * Increment the vnode's hold count if this is the object's only
3362	 * cached page.  Decrement the vnode's hold count if this was
3363	 * the object's only resident page.
3364	 */
3365	if (object->type == OBJT_VNODE) {
3366		if (cache_was_empty && object->resident_page_count != 0)
3367			vhold(object->handle);
3368		else if (!cache_was_empty && object->resident_page_count == 0)
3369			vdrop(object->handle);
3370	}
3371}
3372
3373/*
3374 * vm_page_advise
3375 *
3376 * 	Deactivate or do nothing, as appropriate.
3377 *
3378 *	The object and page must be locked.
3379 */
3380void
3381vm_page_advise(vm_page_t m, int advice)
3382{
3383
3384	vm_page_assert_locked(m);
3385	VM_OBJECT_ASSERT_WLOCKED(m->object);
3386	if (advice == MADV_FREE)
3387		/*
3388		 * Mark the page clean.  This will allow the page to be freed
3389		 * up by the system.  However, such pages are often reused
3390		 * quickly by malloc() so we do not do anything that would
3391		 * cause a page fault if we can help it.
3392		 *
3393		 * Specifically, we do not try to actually free the page now
3394		 * nor do we try to put it in the cache (which would cause a
3395		 * page fault on reuse).
3396		 *
3397		 * But we do make the page as freeable as we can without
3398		 * actually taking the step of unmapping it.
3399		 */
3400		vm_page_undirty(m);
3401	else if (advice != MADV_DONTNEED)
3402		return;
3403
3404	/*
3405	 * Clear any references to the page.  Otherwise, the page daemon will
3406	 * immediately reactivate the page.
3407	 */
3408	vm_page_aflag_clear(m, PGA_REFERENCED);
3409
3410	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3411		vm_page_dirty(m);
3412
3413	/*
3414	 * Place clean pages at the head of the inactive queue rather than the
3415	 * tail, thus defeating the queue's LRU operation and ensuring that the
3416	 * page will be reused quickly.
3417	 */
3418	_vm_page_deactivate(m, m->dirty == 0);
3419}
3420
3421/*
3422 * Grab a page, waiting until we are waken up due to the page
3423 * changing state.  We keep on waiting, if the page continues
3424 * to be in the object.  If the page doesn't exist, first allocate it
3425 * and then conditionally zero it.
3426 *
3427 * This routine may sleep.
3428 *
3429 * The object must be locked on entry.  The lock will, however, be released
3430 * and reacquired if the routine sleeps.
3431 */
3432vm_page_t
3433vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3434{
3435	vm_page_t m;
3436	int sleep;
3437
3438	VM_OBJECT_ASSERT_WLOCKED(object);
3439	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3440	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3441	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3442retrylookup:
3443	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3444		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3445		    vm_page_xbusied(m) : vm_page_busied(m);
3446		if (sleep) {
3447			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3448				return (NULL);
3449			/*
3450			 * Reference the page before unlocking and
3451			 * sleeping so that the page daemon is less
3452			 * likely to reclaim it.
3453			 */
3454			vm_page_aflag_set(m, PGA_REFERENCED);
3455			vm_page_lock(m);
3456			VM_OBJECT_WUNLOCK(object);
3457			vm_page_busy_sleep(m, "pgrbwt");
3458			VM_OBJECT_WLOCK(object);
3459			goto retrylookup;
3460		} else {
3461			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3462				vm_page_lock(m);
3463				vm_page_wire(m);
3464				vm_page_unlock(m);
3465			}
3466			if ((allocflags &
3467			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3468				vm_page_xbusy(m);
3469			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3470				vm_page_sbusy(m);
3471			return (m);
3472		}
3473	}
3474	m = vm_page_alloc(object, pindex, allocflags);
3475	if (m == NULL) {
3476		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3477			return (NULL);
3478		VM_OBJECT_WUNLOCK(object);
3479		VM_WAIT;
3480		VM_OBJECT_WLOCK(object);
3481		goto retrylookup;
3482	} else if (m->valid != 0)
3483		return (m);
3484	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3485		pmap_zero_page(m);
3486	return (m);
3487}
3488
3489/*
3490 * Mapping function for valid or dirty bits in a page.
3491 *
3492 * Inputs are required to range within a page.
3493 */
3494vm_page_bits_t
3495vm_page_bits(int base, int size)
3496{
3497	int first_bit;
3498	int last_bit;
3499
3500	KASSERT(
3501	    base + size <= PAGE_SIZE,
3502	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3503	);
3504
3505	if (size == 0)		/* handle degenerate case */
3506		return (0);
3507
3508	first_bit = base >> DEV_BSHIFT;
3509	last_bit = (base + size - 1) >> DEV_BSHIFT;
3510
3511	return (((vm_page_bits_t)2 << last_bit) -
3512	    ((vm_page_bits_t)1 << first_bit));
3513}
3514
3515/*
3516 *	vm_page_set_valid_range:
3517 *
3518 *	Sets portions of a page valid.  The arguments are expected
3519 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3520 *	of any partial chunks touched by the range.  The invalid portion of
3521 *	such chunks will be zeroed.
3522 *
3523 *	(base + size) must be less then or equal to PAGE_SIZE.
3524 */
3525void
3526vm_page_set_valid_range(vm_page_t m, int base, int size)
3527{
3528	int endoff, frag;
3529
3530	VM_OBJECT_ASSERT_WLOCKED(m->object);
3531	if (size == 0)	/* handle degenerate case */
3532		return;
3533
3534	/*
3535	 * If the base is not DEV_BSIZE aligned and the valid
3536	 * bit is clear, we have to zero out a portion of the
3537	 * first block.
3538	 */
3539	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3540	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3541		pmap_zero_page_area(m, frag, base - frag);
3542
3543	/*
3544	 * If the ending offset is not DEV_BSIZE aligned and the
3545	 * valid bit is clear, we have to zero out a portion of
3546	 * the last block.
3547	 */
3548	endoff = base + size;
3549	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3550	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3551		pmap_zero_page_area(m, endoff,
3552		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3553
3554	/*
3555	 * Assert that no previously invalid block that is now being validated
3556	 * is already dirty.
3557	 */
3558	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3559	    ("vm_page_set_valid_range: page %p is dirty", m));
3560
3561	/*
3562	 * Set valid bits inclusive of any overlap.
3563	 */
3564	m->valid |= vm_page_bits(base, size);
3565}
3566
3567/*
3568 * Clear the given bits from the specified page's dirty field.
3569 */
3570static __inline void
3571vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3572{
3573	uintptr_t addr;
3574#if PAGE_SIZE < 16384
3575	int shift;
3576#endif
3577
3578	/*
3579	 * If the object is locked and the page is neither exclusive busy nor
3580	 * write mapped, then the page's dirty field cannot possibly be
3581	 * set by a concurrent pmap operation.
3582	 */
3583	VM_OBJECT_ASSERT_WLOCKED(m->object);
3584	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3585		m->dirty &= ~pagebits;
3586	else {
3587		/*
3588		 * The pmap layer can call vm_page_dirty() without
3589		 * holding a distinguished lock.  The combination of
3590		 * the object's lock and an atomic operation suffice
3591		 * to guarantee consistency of the page dirty field.
3592		 *
3593		 * For PAGE_SIZE == 32768 case, compiler already
3594		 * properly aligns the dirty field, so no forcible
3595		 * alignment is needed. Only require existence of
3596		 * atomic_clear_64 when page size is 32768.
3597		 */
3598		addr = (uintptr_t)&m->dirty;
3599#if PAGE_SIZE == 32768
3600		atomic_clear_64((uint64_t *)addr, pagebits);
3601#elif PAGE_SIZE == 16384
3602		atomic_clear_32((uint32_t *)addr, pagebits);
3603#else		/* PAGE_SIZE <= 8192 */
3604		/*
3605		 * Use a trick to perform a 32-bit atomic on the
3606		 * containing aligned word, to not depend on the existence
3607		 * of atomic_clear_{8, 16}.
3608		 */
3609		shift = addr & (sizeof(uint32_t) - 1);
3610#if BYTE_ORDER == BIG_ENDIAN
3611		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3612#else
3613		shift *= NBBY;
3614#endif
3615		addr &= ~(sizeof(uint32_t) - 1);
3616		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3617#endif		/* PAGE_SIZE */
3618	}
3619}
3620
3621/*
3622 *	vm_page_set_validclean:
3623 *
3624 *	Sets portions of a page valid and clean.  The arguments are expected
3625 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3626 *	of any partial chunks touched by the range.  The invalid portion of
3627 *	such chunks will be zero'd.
3628 *
3629 *	(base + size) must be less then or equal to PAGE_SIZE.
3630 */
3631void
3632vm_page_set_validclean(vm_page_t m, int base, int size)
3633{
3634	vm_page_bits_t oldvalid, pagebits;
3635	int endoff, frag;
3636
3637	VM_OBJECT_ASSERT_WLOCKED(m->object);
3638	if (size == 0)	/* handle degenerate case */
3639		return;
3640
3641	/*
3642	 * If the base is not DEV_BSIZE aligned and the valid
3643	 * bit is clear, we have to zero out a portion of the
3644	 * first block.
3645	 */
3646	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3647	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3648		pmap_zero_page_area(m, frag, base - frag);
3649
3650	/*
3651	 * If the ending offset is not DEV_BSIZE aligned and the
3652	 * valid bit is clear, we have to zero out a portion of
3653	 * the last block.
3654	 */
3655	endoff = base + size;
3656	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3657	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3658		pmap_zero_page_area(m, endoff,
3659		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3660
3661	/*
3662	 * Set valid, clear dirty bits.  If validating the entire
3663	 * page we can safely clear the pmap modify bit.  We also
3664	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3665	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3666	 * be set again.
3667	 *
3668	 * We set valid bits inclusive of any overlap, but we can only
3669	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3670	 * the range.
3671	 */
3672	oldvalid = m->valid;
3673	pagebits = vm_page_bits(base, size);
3674	m->valid |= pagebits;
3675#if 0	/* NOT YET */
3676	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3677		frag = DEV_BSIZE - frag;
3678		base += frag;
3679		size -= frag;
3680		if (size < 0)
3681			size = 0;
3682	}
3683	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3684#endif
3685	if (base == 0 && size == PAGE_SIZE) {
3686		/*
3687		 * The page can only be modified within the pmap if it is
3688		 * mapped, and it can only be mapped if it was previously
3689		 * fully valid.
3690		 */
3691		if (oldvalid == VM_PAGE_BITS_ALL)
3692			/*
3693			 * Perform the pmap_clear_modify() first.  Otherwise,
3694			 * a concurrent pmap operation, such as
3695			 * pmap_protect(), could clear a modification in the
3696			 * pmap and set the dirty field on the page before
3697			 * pmap_clear_modify() had begun and after the dirty
3698			 * field was cleared here.
3699			 */
3700			pmap_clear_modify(m);
3701		m->dirty = 0;
3702		m->oflags &= ~VPO_NOSYNC;
3703	} else if (oldvalid != VM_PAGE_BITS_ALL)
3704		m->dirty &= ~pagebits;
3705	else
3706		vm_page_clear_dirty_mask(m, pagebits);
3707}
3708
3709void
3710vm_page_clear_dirty(vm_page_t m, int base, int size)
3711{
3712
3713	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3714}
3715
3716/*
3717 *	vm_page_set_invalid:
3718 *
3719 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3720 *	valid and dirty bits for the effected areas are cleared.
3721 */
3722void
3723vm_page_set_invalid(vm_page_t m, int base, int size)
3724{
3725	vm_page_bits_t bits;
3726	vm_object_t object;
3727
3728	object = m->object;
3729	VM_OBJECT_ASSERT_WLOCKED(object);
3730	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3731	    size >= object->un_pager.vnp.vnp_size)
3732		bits = VM_PAGE_BITS_ALL;
3733	else
3734		bits = vm_page_bits(base, size);
3735	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3736	    bits != 0)
3737		pmap_remove_all(m);
3738	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3739	    !pmap_page_is_mapped(m),
3740	    ("vm_page_set_invalid: page %p is mapped", m));
3741	m->valid &= ~bits;
3742	m->dirty &= ~bits;
3743}
3744
3745/*
3746 * vm_page_zero_invalid()
3747 *
3748 *	The kernel assumes that the invalid portions of a page contain
3749 *	garbage, but such pages can be mapped into memory by user code.
3750 *	When this occurs, we must zero out the non-valid portions of the
3751 *	page so user code sees what it expects.
3752 *
3753 *	Pages are most often semi-valid when the end of a file is mapped
3754 *	into memory and the file's size is not page aligned.
3755 */
3756void
3757vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3758{
3759	int b;
3760	int i;
3761
3762	VM_OBJECT_ASSERT_WLOCKED(m->object);
3763	/*
3764	 * Scan the valid bits looking for invalid sections that
3765	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3766	 * valid bit may be set ) have already been zeroed by
3767	 * vm_page_set_validclean().
3768	 */
3769	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3770		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3771		    (m->valid & ((vm_page_bits_t)1 << i))) {
3772			if (i > b) {
3773				pmap_zero_page_area(m,
3774				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3775			}
3776			b = i + 1;
3777		}
3778	}
3779
3780	/*
3781	 * setvalid is TRUE when we can safely set the zero'd areas
3782	 * as being valid.  We can do this if there are no cache consistancy
3783	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3784	 */
3785	if (setvalid)
3786		m->valid = VM_PAGE_BITS_ALL;
3787}
3788
3789/*
3790 *	vm_page_is_valid:
3791 *
3792 *	Is (partial) page valid?  Note that the case where size == 0
3793 *	will return FALSE in the degenerate case where the page is
3794 *	entirely invalid, and TRUE otherwise.
3795 */
3796int
3797vm_page_is_valid(vm_page_t m, int base, int size)
3798{
3799	vm_page_bits_t bits;
3800
3801	VM_OBJECT_ASSERT_LOCKED(m->object);
3802	bits = vm_page_bits(base, size);
3803	return (m->valid != 0 && (m->valid & bits) == bits);
3804}
3805
3806/*
3807 *	vm_page_ps_is_valid:
3808 *
3809 *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3810 */
3811boolean_t
3812vm_page_ps_is_valid(vm_page_t m)
3813{
3814	int i, npages;
3815
3816	VM_OBJECT_ASSERT_LOCKED(m->object);
3817	npages = atop(pagesizes[m->psind]);
3818
3819	/*
3820	 * The physically contiguous pages that make up a superpage, i.e., a
3821	 * page with a page size index ("psind") greater than zero, will
3822	 * occupy adjacent entries in vm_page_array[].
3823	 */
3824	for (i = 0; i < npages; i++) {
3825		if (m[i].valid != VM_PAGE_BITS_ALL)
3826			return (FALSE);
3827	}
3828	return (TRUE);
3829}
3830
3831/*
3832 * Set the page's dirty bits if the page is modified.
3833 */
3834void
3835vm_page_test_dirty(vm_page_t m)
3836{
3837
3838	VM_OBJECT_ASSERT_WLOCKED(m->object);
3839	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3840		vm_page_dirty(m);
3841}
3842
3843void
3844vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3845{
3846
3847	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3848}
3849
3850void
3851vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3852{
3853
3854	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3855}
3856
3857int
3858vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3859{
3860
3861	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3862}
3863
3864#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3865void
3866vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3867{
3868
3869	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3870}
3871
3872void
3873vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3874{
3875
3876	mtx_assert_(vm_page_lockptr(m), a, file, line);
3877}
3878#endif
3879
3880#ifdef INVARIANTS
3881void
3882vm_page_object_lock_assert(vm_page_t m)
3883{
3884
3885	/*
3886	 * Certain of the page's fields may only be modified by the
3887	 * holder of the containing object's lock or the exclusive busy.
3888	 * holder.  Unfortunately, the holder of the write busy is
3889	 * not recorded, and thus cannot be checked here.
3890	 */
3891	if (m->object != NULL && !vm_page_xbusied(m))
3892		VM_OBJECT_ASSERT_WLOCKED(m->object);
3893}
3894
3895void
3896vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3897{
3898
3899	if ((bits & PGA_WRITEABLE) == 0)
3900		return;
3901
3902	/*
3903	 * The PGA_WRITEABLE flag can only be set if the page is
3904	 * managed, is exclusively busied or the object is locked.
3905	 * Currently, this flag is only set by pmap_enter().
3906	 */
3907	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3908	    ("PGA_WRITEABLE on unmanaged page"));
3909	if (!vm_page_xbusied(m))
3910		VM_OBJECT_ASSERT_LOCKED(m->object);
3911}
3912#endif
3913
3914#include "opt_ddb.h"
3915#ifdef DDB
3916#include <sys/kernel.h>
3917
3918#include <ddb/ddb.h>
3919
3920DB_SHOW_COMMAND(page, vm_page_print_page_info)
3921{
3922	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3923	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3924	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3925	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3926	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3927	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3928	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3929	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3930	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3931}
3932
3933DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3934{
3935	int dom;
3936
3937	db_printf("pq_free %d pq_cache %d\n",
3938	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3939	for (dom = 0; dom < vm_ndomains; dom++) {
3940		db_printf(
3941	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3942		    dom,
3943		    vm_dom[dom].vmd_page_count,
3944		    vm_dom[dom].vmd_free_count,
3945		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3946		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3947		    vm_dom[dom].vmd_pass);
3948	}
3949}
3950
3951DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3952{
3953	vm_page_t m;
3954	boolean_t phys;
3955
3956	if (!have_addr) {
3957		db_printf("show pginfo addr\n");
3958		return;
3959	}
3960
3961	phys = strchr(modif, 'p') != NULL;
3962	if (phys)
3963		m = PHYS_TO_VM_PAGE(addr);
3964	else
3965		m = (vm_page_t)addr;
3966	db_printf(
3967    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3968    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3969	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3970	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3971	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3972}
3973#endif /* DDB */
3974