1/*-
2 * Copyright (c) 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_bmap.c	8.7 (Berkeley) 3/21/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/ufs/ufs/ufs_bmap.c 306553 2016-10-01 09:19:43Z kib $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/mount.h>
47#include <sys/racct.h>
48#include <sys/resourcevar.h>
49#include <sys/stat.h>
50
51#include <ufs/ufs/extattr.h>
52#include <ufs/ufs/quota.h>
53#include <ufs/ufs/inode.h>
54#include <ufs/ufs/ufsmount.h>
55#include <ufs/ufs/ufs_extern.h>
56
57/*
58 * Bmap converts the logical block number of a file to its physical block
59 * number on the disk. The conversion is done by using the logical block
60 * number to index into the array of block pointers described by the dinode.
61 */
62int
63ufs_bmap(ap)
64	struct vop_bmap_args /* {
65		struct vnode *a_vp;
66		daddr_t a_bn;
67		struct bufobj **a_bop;
68		daddr_t *a_bnp;
69		int *a_runp;
70		int *a_runb;
71	} */ *ap;
72{
73	ufs2_daddr_t blkno;
74	int error;
75
76	/*
77	 * Check for underlying vnode requests and ensure that logical
78	 * to physical mapping is requested.
79	 */
80	if (ap->a_bop != NULL)
81		*ap->a_bop = &VFSTOUFS(ap->a_vp->v_mount)->um_devvp->v_bufobj;
82	if (ap->a_bnp == NULL)
83		return (0);
84
85	error = ufs_bmaparray(ap->a_vp, ap->a_bn, &blkno, NULL,
86	    ap->a_runp, ap->a_runb);
87	*ap->a_bnp = blkno;
88	return (error);
89}
90
91/*
92 * Indirect blocks are now on the vnode for the file.  They are given negative
93 * logical block numbers.  Indirect blocks are addressed by the negative
94 * address of the first data block to which they point.  Double indirect blocks
95 * are addressed by one less than the address of the first indirect block to
96 * which they point.  Triple indirect blocks are addressed by one less than
97 * the address of the first double indirect block to which they point.
98 *
99 * ufs_bmaparray does the bmap conversion, and if requested returns the
100 * array of logical blocks which must be traversed to get to a block.
101 * Each entry contains the offset into that block that gets you to the
102 * next block and the disk address of the block (if it is assigned).
103 */
104
105int
106ufs_bmaparray(vp, bn, bnp, nbp, runp, runb)
107	struct vnode *vp;
108	ufs2_daddr_t bn;
109	ufs2_daddr_t *bnp;
110	struct buf *nbp;
111	int *runp;
112	int *runb;
113{
114	struct inode *ip;
115	struct buf *bp;
116	struct ufsmount *ump;
117	struct mount *mp;
118	struct indir a[NIADDR+1], *ap;
119	ufs2_daddr_t daddr;
120	ufs_lbn_t metalbn;
121	int error, num, maxrun = 0;
122	int *nump;
123
124	ap = NULL;
125	ip = VTOI(vp);
126	mp = vp->v_mount;
127	ump = VFSTOUFS(mp);
128
129	if (runp) {
130		maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;
131		*runp = 0;
132	}
133
134	if (runb) {
135		*runb = 0;
136	}
137
138
139	ap = a;
140	nump = &num;
141	error = ufs_getlbns(vp, bn, ap, nump);
142	if (error)
143		return (error);
144
145	num = *nump;
146	if (num == 0) {
147		if (bn >= 0 && bn < NDADDR) {
148			*bnp = blkptrtodb(ump, DIP(ip, i_db[bn]));
149		} else if (bn < 0 && bn >= -NXADDR) {
150			*bnp = blkptrtodb(ump, ip->i_din2->di_extb[-1 - bn]);
151			if (*bnp == 0)
152				*bnp = -1;
153			if (nbp == NULL)
154				panic("ufs_bmaparray: mapping ext data");
155			nbp->b_xflags |= BX_ALTDATA;
156			return (0);
157		} else {
158			panic("ufs_bmaparray: blkno out of range");
159		}
160		/*
161		 * Since this is FFS independent code, we are out of
162		 * scope for the definitions of BLK_NOCOPY and
163		 * BLK_SNAP, but we do know that they will fall in
164		 * the range 1..um_seqinc, so we use that test and
165		 * return a request for a zeroed out buffer if attempts
166		 * are made to read a BLK_NOCOPY or BLK_SNAP block.
167		 */
168		if ((ip->i_flags & SF_SNAPSHOT) && DIP(ip, i_db[bn]) > 0 &&
169		    DIP(ip, i_db[bn]) < ump->um_seqinc) {
170			*bnp = -1;
171		} else if (*bnp == 0) {
172			if (ip->i_flags & SF_SNAPSHOT)
173				*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
174			else
175				*bnp = -1;
176		} else if (runp) {
177			ufs2_daddr_t bnb = bn;
178			for (++bn; bn < NDADDR && *runp < maxrun &&
179			    is_sequential(ump, DIP(ip, i_db[bn - 1]),
180			    DIP(ip, i_db[bn]));
181			    ++bn, ++*runp);
182			bn = bnb;
183			if (runb && (bn > 0)) {
184				for (--bn; (bn >= 0) && (*runb < maxrun) &&
185					is_sequential(ump, DIP(ip, i_db[bn]),
186						DIP(ip, i_db[bn+1]));
187						--bn, ++*runb);
188			}
189		}
190		return (0);
191	}
192
193
194	/* Get disk address out of indirect block array */
195	daddr = DIP(ip, i_ib[ap->in_off]);
196
197	for (bp = NULL, ++ap; --num; ++ap) {
198		/*
199		 * Exit the loop if there is no disk address assigned yet and
200		 * the indirect block isn't in the cache, or if we were
201		 * looking for an indirect block and we've found it.
202		 */
203
204		metalbn = ap->in_lbn;
205		if ((daddr == 0 && !incore(&vp->v_bufobj, metalbn)) || metalbn == bn)
206			break;
207		/*
208		 * If we get here, we've either got the block in the cache
209		 * or we have a disk address for it, go fetch it.
210		 */
211		if (bp)
212			bqrelse(bp);
213
214		bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize, 0, 0, 0);
215		if ((bp->b_flags & B_CACHE) == 0) {
216#ifdef INVARIANTS
217			if (!daddr)
218				panic("ufs_bmaparray: indirect block not in cache");
219#endif
220			bp->b_blkno = blkptrtodb(ump, daddr);
221			bp->b_iocmd = BIO_READ;
222			bp->b_flags &= ~B_INVAL;
223			bp->b_ioflags &= ~BIO_ERROR;
224			vfs_busy_pages(bp, 0);
225			bp->b_iooffset = dbtob(bp->b_blkno);
226			bstrategy(bp);
227#ifdef RACCT
228			if (racct_enable) {
229				PROC_LOCK(curproc);
230				racct_add_buf(curproc, bp, 0);
231				PROC_UNLOCK(curproc);
232			}
233#endif /* RACCT */
234			curthread->td_ru.ru_inblock++;
235			error = bufwait(bp);
236			if (error) {
237				brelse(bp);
238				return (error);
239			}
240		}
241
242		if (I_IS_UFS1(ip)) {
243			daddr = ((ufs1_daddr_t *)bp->b_data)[ap->in_off];
244			if (num == 1 && daddr && runp) {
245				for (bn = ap->in_off + 1;
246				    bn < MNINDIR(ump) && *runp < maxrun &&
247				    is_sequential(ump,
248				    ((ufs1_daddr_t *)bp->b_data)[bn - 1],
249				    ((ufs1_daddr_t *)bp->b_data)[bn]);
250				    ++bn, ++*runp);
251				bn = ap->in_off;
252				if (runb && bn) {
253					for (--bn; bn >= 0 && *runb < maxrun &&
254					    is_sequential(ump,
255					    ((ufs1_daddr_t *)bp->b_data)[bn],
256					    ((ufs1_daddr_t *)bp->b_data)[bn+1]);
257					    --bn, ++*runb);
258				}
259			}
260			continue;
261		}
262		daddr = ((ufs2_daddr_t *)bp->b_data)[ap->in_off];
263		if (num == 1 && daddr && runp) {
264			for (bn = ap->in_off + 1;
265			    bn < MNINDIR(ump) && *runp < maxrun &&
266			    is_sequential(ump,
267			    ((ufs2_daddr_t *)bp->b_data)[bn - 1],
268			    ((ufs2_daddr_t *)bp->b_data)[bn]);
269			    ++bn, ++*runp);
270			bn = ap->in_off;
271			if (runb && bn) {
272				for (--bn; bn >= 0 && *runb < maxrun &&
273				    is_sequential(ump,
274				    ((ufs2_daddr_t *)bp->b_data)[bn],
275				    ((ufs2_daddr_t *)bp->b_data)[bn + 1]);
276				    --bn, ++*runb);
277			}
278		}
279	}
280	if (bp)
281		bqrelse(bp);
282
283	/*
284	 * Since this is FFS independent code, we are out of scope for the
285	 * definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
286	 * will fall in the range 1..um_seqinc, so we use that test and
287	 * return a request for a zeroed out buffer if attempts are made
288	 * to read a BLK_NOCOPY or BLK_SNAP block.
289	 */
290	if ((ip->i_flags & SF_SNAPSHOT) && daddr > 0 && daddr < ump->um_seqinc){
291		*bnp = -1;
292		return (0);
293	}
294	*bnp = blkptrtodb(ump, daddr);
295	if (*bnp == 0) {
296		if (ip->i_flags & SF_SNAPSHOT)
297			*bnp = blkptrtodb(ump, bn * ump->um_seqinc);
298		else
299			*bnp = -1;
300	}
301	return (0);
302}
303
304/*
305 * Create an array of logical block number/offset pairs which represent the
306 * path of indirect blocks required to access a data block.  The first "pair"
307 * contains the logical block number of the appropriate single, double or
308 * triple indirect block and the offset into the inode indirect block array.
309 * Note, the logical block number of the inode single/double/triple indirect
310 * block appears twice in the array, once with the offset into the i_ib and
311 * once with the offset into the page itself.
312 */
313int
314ufs_getlbns(vp, bn, ap, nump)
315	struct vnode *vp;
316	ufs2_daddr_t bn;
317	struct indir *ap;
318	int *nump;
319{
320	ufs2_daddr_t blockcnt;
321	ufs_lbn_t metalbn, realbn;
322	struct ufsmount *ump;
323	int i, numlevels, off;
324
325	ump = VFSTOUFS(vp->v_mount);
326	if (nump)
327		*nump = 0;
328	numlevels = 0;
329	realbn = bn;
330	if (bn < 0)
331		bn = -bn;
332
333	/* The first NDADDR blocks are direct blocks. */
334	if (bn < NDADDR)
335		return (0);
336
337	/*
338	 * Determine the number of levels of indirection.  After this loop
339	 * is done, blockcnt indicates the number of data blocks possible
340	 * at the previous level of indirection, and NIADDR - i is the number
341	 * of levels of indirection needed to locate the requested block.
342	 */
343	for (blockcnt = 1, i = NIADDR, bn -= NDADDR;; i--, bn -= blockcnt) {
344		if (i == 0)
345			return (EFBIG);
346		blockcnt *= MNINDIR(ump);
347		if (bn < blockcnt)
348			break;
349	}
350
351	/* Calculate the address of the first meta-block. */
352	if (realbn >= 0)
353		metalbn = -(realbn - bn + NIADDR - i);
354	else
355		metalbn = -(-realbn - bn + NIADDR - i);
356
357	/*
358	 * At each iteration, off is the offset into the bap array which is
359	 * an array of disk addresses at the current level of indirection.
360	 * The logical block number and the offset in that block are stored
361	 * into the argument array.
362	 */
363	ap->in_lbn = metalbn;
364	ap->in_off = off = NIADDR - i;
365	ap++;
366	for (++numlevels; i <= NIADDR; i++) {
367		/* If searching for a meta-data block, quit when found. */
368		if (metalbn == realbn)
369			break;
370
371		blockcnt /= MNINDIR(ump);
372		off = (bn / blockcnt) % MNINDIR(ump);
373
374		++numlevels;
375		ap->in_lbn = metalbn;
376		ap->in_off = off;
377		++ap;
378
379		metalbn -= -1 + off * blockcnt;
380	}
381	if (nump)
382		*nump = numlevels;
383	return (0);
384}
385