1/*-
2 * Copyright (c) 1982, 1986, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)time.h	8.5 (Berkeley) 5/4/95
30 * $FreeBSD: stable/11/sys/sys/time.h 363386 2020-07-21 08:13:35Z kib $
31 */
32
33#ifndef _SYS_TIME_H_
34#define	_SYS_TIME_H_
35
36#include <sys/_timeval.h>
37#include <sys/types.h>
38#include <sys/timespec.h>
39
40struct timezone {
41	int	tz_minuteswest;	/* minutes west of Greenwich */
42	int	tz_dsttime;	/* type of dst correction */
43};
44#define	DST_NONE	0	/* not on dst */
45#define	DST_USA		1	/* USA style dst */
46#define	DST_AUST	2	/* Australian style dst */
47#define	DST_WET		3	/* Western European dst */
48#define	DST_MET		4	/* Middle European dst */
49#define	DST_EET		5	/* Eastern European dst */
50#define	DST_CAN		6	/* Canada */
51
52#if __BSD_VISIBLE
53struct bintime {
54	time_t	sec;
55	uint64_t frac;
56};
57
58static __inline void
59bintime_addx(struct bintime *_bt, uint64_t _x)
60{
61	uint64_t _u;
62
63	_u = _bt->frac;
64	_bt->frac += _x;
65	if (_u > _bt->frac)
66		_bt->sec++;
67}
68
69static __inline void
70bintime_add(struct bintime *_bt, const struct bintime *_bt2)
71{
72	uint64_t _u;
73
74	_u = _bt->frac;
75	_bt->frac += _bt2->frac;
76	if (_u > _bt->frac)
77		_bt->sec++;
78	_bt->sec += _bt2->sec;
79}
80
81static __inline void
82bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
83{
84	uint64_t _u;
85
86	_u = _bt->frac;
87	_bt->frac -= _bt2->frac;
88	if (_u < _bt->frac)
89		_bt->sec--;
90	_bt->sec -= _bt2->sec;
91}
92
93static __inline void
94bintime_mul(struct bintime *_bt, u_int _x)
95{
96	uint64_t _p1, _p2;
97
98	_p1 = (_bt->frac & 0xffffffffull) * _x;
99	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
100	_bt->sec *= _x;
101	_bt->sec += (_p2 >> 32);
102	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
103}
104
105static __inline void
106bintime_shift(struct bintime *_bt, int _exp)
107{
108
109	if (_exp > 0) {
110		_bt->sec <<= _exp;
111		_bt->sec |= _bt->frac >> (64 - _exp);
112		_bt->frac <<= _exp;
113	} else if (_exp < 0) {
114		_bt->frac >>= -_exp;
115		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
116		_bt->sec >>= -_exp;
117	}
118}
119
120#define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
121#define	bintime_isset(a)	((a)->sec || (a)->frac)
122#define	bintime_cmp(a, b, cmp)						\
123	(((a)->sec == (b)->sec) ?					\
124	    ((a)->frac cmp (b)->frac) :					\
125	    ((a)->sec cmp (b)->sec))
126
127#define	SBT_1S	((sbintime_t)1 << 32)
128#define	SBT_1M	(SBT_1S * 60)
129#define	SBT_1MS	(SBT_1S / 1000)
130#define	SBT_1US	(SBT_1S / 1000000)
131#define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
132#define	SBT_MAX	0x7fffffffffffffffLL
133
134static __inline int
135sbintime_getsec(sbintime_t _sbt)
136{
137
138	return (_sbt >> 32);
139}
140
141static __inline sbintime_t
142bttosbt(const struct bintime _bt)
143{
144
145	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
146}
147
148static __inline struct bintime
149sbttobt(sbintime_t _sbt)
150{
151	struct bintime _bt;
152
153	_bt.sec = _sbt >> 32;
154	_bt.frac = _sbt << 32;
155	return (_bt);
156}
157
158/*
159 * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
160 * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
161 * microsecond functions are also provided for completeness.
162 */
163static __inline int64_t
164sbttons(sbintime_t _sbt)
165{
166
167	return ((1000000000 * _sbt) >> 32);
168}
169
170static __inline sbintime_t
171nstosbt(int64_t _ns)
172{
173
174	return ((_ns * (((uint64_t)1 << 63) / 500000000)) >> 32);
175}
176
177static __inline int64_t
178sbttous(sbintime_t _sbt)
179{
180
181	return ((1000000 * _sbt) >> 32);
182}
183
184static __inline sbintime_t
185ustosbt(int64_t _us)
186{
187
188	return ((_us * (((uint64_t)1 << 63) / 500000)) >> 32);
189}
190
191static __inline int64_t
192sbttoms(sbintime_t _sbt)
193{
194
195	return ((1000 * _sbt) >> 32);
196}
197
198static __inline sbintime_t
199mstosbt(int64_t _ms)
200{
201
202	return ((_ms * (((uint64_t)1 << 63) / 500)) >> 32);
203}
204
205/*-
206 * Background information:
207 *
208 * When converting between timestamps on parallel timescales of differing
209 * resolutions it is historical and scientific practice to round down rather
210 * than doing 4/5 rounding.
211 *
212 *   The date changes at midnight, not at noon.
213 *
214 *   Even at 15:59:59.999999999 it's not four'o'clock.
215 *
216 *   time_second ticks after N.999999999 not after N.4999999999
217 */
218
219static __inline void
220bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
221{
222
223	_ts->tv_sec = _bt->sec;
224	_ts->tv_nsec = ((uint64_t)1000000000 *
225	    (uint32_t)(_bt->frac >> 32)) >> 32;
226}
227
228static __inline void
229timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
230{
231
232	_bt->sec = _ts->tv_sec;
233	/* 18446744073 = int(2^64 / 1000000000) */
234	_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
235}
236
237static __inline void
238bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
239{
240
241	_tv->tv_sec = _bt->sec;
242	_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
243}
244
245static __inline void
246timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
247{
248
249	_bt->sec = _tv->tv_sec;
250	/* 18446744073709 = int(2^64 / 1000000) */
251	_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
252}
253
254static __inline struct timespec
255sbttots(sbintime_t _sbt)
256{
257	struct timespec _ts;
258
259	_ts.tv_sec = _sbt >> 32;
260	_ts.tv_nsec = sbttons((uint32_t)_sbt);
261	return (_ts);
262}
263
264static __inline sbintime_t
265tstosbt(struct timespec _ts)
266{
267
268	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
269}
270
271static __inline struct timeval
272sbttotv(sbintime_t _sbt)
273{
274	struct timeval _tv;
275
276	_tv.tv_sec = _sbt >> 32;
277	_tv.tv_usec = sbttous((uint32_t)_sbt);
278	return (_tv);
279}
280
281static __inline sbintime_t
282tvtosbt(struct timeval _tv)
283{
284
285	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
286}
287#endif /* __BSD_VISIBLE */
288
289#ifdef _KERNEL
290
291/* Operations on timespecs */
292#define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
293#define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
294#define	timespeccmp(tvp, uvp, cmp)					\
295	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
296	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
297	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
298#define	timespecadd(vvp, uvp)						\
299	do {								\
300		(vvp)->tv_sec += (uvp)->tv_sec;				\
301		(vvp)->tv_nsec += (uvp)->tv_nsec;			\
302		if ((vvp)->tv_nsec >= 1000000000) {			\
303			(vvp)->tv_sec++;				\
304			(vvp)->tv_nsec -= 1000000000;			\
305		}							\
306	} while (0)
307#define	timespecsub(vvp, uvp)						\
308	do {								\
309		(vvp)->tv_sec -= (uvp)->tv_sec;				\
310		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
311		if ((vvp)->tv_nsec < 0) {				\
312			(vvp)->tv_sec--;				\
313			(vvp)->tv_nsec += 1000000000;			\
314		}							\
315	} while (0)
316
317/* Operations on timevals. */
318
319#define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
320#define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
321#define	timevalcmp(tvp, uvp, cmp)					\
322	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
323	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
324	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
325
326/* timevaladd and timevalsub are not inlined */
327
328#endif /* _KERNEL */
329
330#ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
331
332#define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
333#define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
334#define	timercmp(tvp, uvp, cmp)					\
335	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
336	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
337	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
338#define	timeradd(tvp, uvp, vvp)						\
339	do {								\
340		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
341		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
342		if ((vvp)->tv_usec >= 1000000) {			\
343			(vvp)->tv_sec++;				\
344			(vvp)->tv_usec -= 1000000;			\
345		}							\
346	} while (0)
347#define	timersub(tvp, uvp, vvp)						\
348	do {								\
349		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
350		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
351		if ((vvp)->tv_usec < 0) {				\
352			(vvp)->tv_sec--;				\
353			(vvp)->tv_usec += 1000000;			\
354		}							\
355	} while (0)
356#endif
357
358/*
359 * Names of the interval timers, and structure
360 * defining a timer setting.
361 */
362#define	ITIMER_REAL	0
363#define	ITIMER_VIRTUAL	1
364#define	ITIMER_PROF	2
365
366struct itimerval {
367	struct	timeval it_interval;	/* timer interval */
368	struct	timeval it_value;	/* current value */
369};
370
371/*
372 * Getkerninfo clock information structure
373 */
374struct clockinfo {
375	int	hz;		/* clock frequency */
376	int	tick;		/* micro-seconds per hz tick */
377	int	spare;
378	int	stathz;		/* statistics clock frequency */
379	int	profhz;		/* profiling clock frequency */
380};
381
382/* These macros are also in time.h. */
383#ifndef CLOCK_REALTIME
384#define	CLOCK_REALTIME	0
385#endif
386#ifndef CLOCK_VIRTUAL
387#define	CLOCK_VIRTUAL	1
388#define	CLOCK_PROF	2
389#endif
390#ifndef CLOCK_MONOTONIC
391#define	CLOCK_MONOTONIC	4
392#define	CLOCK_UPTIME	5		/* FreeBSD-specific. */
393#define	CLOCK_UPTIME_PRECISE	7	/* FreeBSD-specific. */
394#define	CLOCK_UPTIME_FAST	8	/* FreeBSD-specific. */
395#define	CLOCK_REALTIME_PRECISE	9	/* FreeBSD-specific. */
396#define	CLOCK_REALTIME_FAST	10	/* FreeBSD-specific. */
397#define	CLOCK_MONOTONIC_PRECISE	11	/* FreeBSD-specific. */
398#define	CLOCK_MONOTONIC_FAST	12	/* FreeBSD-specific. */
399#define	CLOCK_SECOND	13		/* FreeBSD-specific. */
400#define	CLOCK_THREAD_CPUTIME_ID	14
401#define	CLOCK_PROCESS_CPUTIME_ID	15
402#endif
403
404#ifndef TIMER_ABSTIME
405#define	TIMER_RELTIME	0x0	/* relative timer */
406#define	TIMER_ABSTIME	0x1	/* absolute timer */
407#endif
408
409#if __BSD_VISIBLE
410#define	CPUCLOCK_WHICH_PID	0
411#define	CPUCLOCK_WHICH_TID	1
412#endif
413
414#ifdef _KERNEL
415
416/*
417 * Kernel to clock driver interface.
418 */
419void	inittodr(time_t base);
420void	resettodr(void);
421
422extern volatile time_t	time_second;
423extern volatile time_t	time_uptime;
424extern struct bintime tc_tick_bt;
425extern sbintime_t tc_tick_sbt;
426extern struct bintime tick_bt;
427extern sbintime_t tick_sbt;
428extern int tc_precexp;
429extern int tc_timepercentage;
430extern struct bintime bt_timethreshold;
431extern struct bintime bt_tickthreshold;
432extern sbintime_t sbt_timethreshold;
433extern sbintime_t sbt_tickthreshold;
434
435extern volatile int rtc_generation;
436
437/*
438 * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
439 *
440 * Functions without the "get" prefix returns the best timestamp
441 * we can produce in the given format.
442 *
443 * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
444 * "nano"  == struct timespec == seconds + nanoseconds.
445 * "micro" == struct timeval  == seconds + microseconds.
446 *
447 * Functions containing "up" returns time relative to boot and
448 * should be used for calculating time intervals.
449 *
450 * Functions without "up" returns UTC time.
451 *
452 * Functions with the "get" prefix returns a less precise result
453 * much faster than the functions without "get" prefix and should
454 * be used where a precision of 1/hz seconds is acceptable or where
455 * performance is priority. (NB: "precision", _not_ "resolution" !)
456 */
457
458void	binuptime(struct bintime *bt);
459void	nanouptime(struct timespec *tsp);
460void	microuptime(struct timeval *tvp);
461
462static __inline sbintime_t
463sbinuptime(void)
464{
465	struct bintime _bt;
466
467	binuptime(&_bt);
468	return (bttosbt(_bt));
469}
470
471void	bintime(struct bintime *bt);
472void	nanotime(struct timespec *tsp);
473void	microtime(struct timeval *tvp);
474
475void	getbinuptime(struct bintime *bt);
476void	getnanouptime(struct timespec *tsp);
477void	getmicrouptime(struct timeval *tvp);
478
479static __inline sbintime_t
480getsbinuptime(void)
481{
482	struct bintime _bt;
483
484	getbinuptime(&_bt);
485	return (bttosbt(_bt));
486}
487
488void	getbintime(struct bintime *bt);
489void	getnanotime(struct timespec *tsp);
490void	getmicrotime(struct timeval *tvp);
491
492void	getboottime(struct timeval *boottime);
493void	getboottimebin(struct bintime *boottimebin);
494
495/* Other functions */
496int	itimerdecr(struct itimerval *itp, int usec);
497int	itimerfix(struct timeval *tv);
498int	ppsratecheck(struct timeval *, int *, int);
499int	ratecheck(struct timeval *, const struct timeval *);
500void	timevaladd(struct timeval *t1, const struct timeval *t2);
501void	timevalsub(struct timeval *t1, const struct timeval *t2);
502int	tvtohz(struct timeval *tv);
503
504#define	TC_DEFAULTPERC		5
505
506#define	BT2FREQ(bt)                                                     \
507	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
508	    ((bt)->frac >> 1))
509
510#define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
511
512#define	FREQ2BT(freq, bt)                                               \
513{									\
514	(bt)->sec = 0;                                                  \
515	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
516}
517
518#define	TIMESEL(sbt, sbt2)						\
519	(((sbt2) >= sbt_timethreshold) ?				\
520	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
521
522#else /* !_KERNEL */
523#include <time.h>
524
525#include <sys/cdefs.h>
526#include <sys/select.h>
527
528__BEGIN_DECLS
529int	setitimer(int, const struct itimerval *, struct itimerval *);
530int	utimes(const char *, const struct timeval *);
531
532#if __BSD_VISIBLE
533int	adjtime(const struct timeval *, struct timeval *);
534int	clock_getcpuclockid2(id_t, int, clockid_t *);
535int	futimes(int, const struct timeval *);
536int	futimesat(int, const char *, const struct timeval [2]);
537int	lutimes(const char *, const struct timeval *);
538int	settimeofday(const struct timeval *, const struct timezone *);
539#endif
540
541#if __XSI_VISIBLE
542int	getitimer(int, struct itimerval *);
543int	gettimeofday(struct timeval *, struct timezone *);
544#endif
545
546__END_DECLS
547
548#endif /* !_KERNEL */
549
550#endif /* !_SYS_TIME_H_ */
551