machdep.c revision 207537
1/*-
2 * Copyright (c) 2001 Jake Burkholder.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
35 *	from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/sparc64/sparc64/machdep.c 207537 2010-05-02 19:38:17Z marius $");
40
41#include "opt_compat.h"
42#include "opt_ddb.h"
43#include "opt_kstack_pages.h"
44#include "opt_msgbuf.h"
45
46#include <sys/param.h>
47#include <sys/malloc.h>
48#include <sys/proc.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/bus.h>
53#include <sys/cpu.h>
54#include <sys/cons.h>
55#include <sys/eventhandler.h>
56#include <sys/exec.h>
57#include <sys/imgact.h>
58#include <sys/interrupt.h>
59#include <sys/kdb.h>
60#include <sys/kernel.h>
61#include <sys/ktr.h>
62#include <sys/linker.h>
63#include <sys/lock.h>
64#include <sys/msgbuf.h>
65#include <sys/mutex.h>
66#include <sys/pcpu.h>
67#include <sys/ptrace.h>
68#include <sys/reboot.h>
69#include <sys/signalvar.h>
70#include <sys/smp.h>
71#include <sys/sysent.h>
72#include <sys/sysproto.h>
73#include <sys/timetc.h>
74#include <sys/ucontext.h>
75
76#include <dev/ofw/openfirm.h>
77
78#include <vm/vm.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_kern.h>
81#include <vm/vm_page.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_pager.h>
85#include <vm/vm_param.h>
86
87#include <ddb/ddb.h>
88
89#include <machine/bus.h>
90#include <machine/cache.h>
91#include <machine/clock.h>
92#include <machine/cmt.h>
93#include <machine/cpu.h>
94#include <machine/fireplane.h>
95#include <machine/fp.h>
96#include <machine/fsr.h>
97#include <machine/intr_machdep.h>
98#include <machine/jbus.h>
99#include <machine/md_var.h>
100#include <machine/metadata.h>
101#include <machine/ofw_machdep.h>
102#include <machine/ofw_mem.h>
103#include <machine/pcb.h>
104#include <machine/pmap.h>
105#include <machine/pstate.h>
106#include <machine/reg.h>
107#include <machine/sigframe.h>
108#include <machine/smp.h>
109#include <machine/tick.h>
110#include <machine/tlb.h>
111#include <machine/tstate.h>
112#include <machine/upa.h>
113#include <machine/ver.h>
114
115typedef int ofw_vec_t(void *);
116
117#ifdef DDB
118extern vm_offset_t ksym_start, ksym_end;
119#endif
120
121int dtlb_slots;
122int itlb_slots;
123struct tlb_entry *kernel_tlbs;
124int kernel_tlb_slots;
125
126int cold = 1;
127long Maxmem;
128long realmem;
129
130void *dpcpu0;
131char pcpu0[PCPU_PAGES * PAGE_SIZE];
132struct trapframe frame0;
133
134vm_offset_t kstack0;
135vm_paddr_t kstack0_phys;
136
137struct kva_md_info kmi;
138
139u_long ofw_vec;
140u_long ofw_tba;
141u_int tba_taken_over;
142
143char sparc64_model[32];
144
145static int cpu_use_vis = 1;
146
147cpu_block_copy_t *cpu_block_copy;
148cpu_block_zero_t *cpu_block_zero;
149
150static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
151void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
152    ofw_vec_t *vec);
153static void sparc64_shutdown_final(void *dummy, int howto);
154
155static void cpu_startup(void *arg);
156SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
157
158CTASSERT((1 << INT_SHIFT) == sizeof(int));
159CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
160
161CTASSERT(sizeof(struct reg) == 256);
162CTASSERT(sizeof(struct fpreg) == 272);
163CTASSERT(sizeof(struct __mcontext) == 512);
164
165CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
166CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
167CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
168CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
169
170CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
171
172static void
173cpu_startup(void *arg)
174{
175	vm_paddr_t physsz;
176	int i;
177
178	physsz = 0;
179	for (i = 0; i < sparc64_nmemreg; i++)
180		physsz += sparc64_memreg[i].mr_size;
181	printf("real memory  = %lu (%lu MB)\n", physsz,
182	    physsz / (1024 * 1024));
183	realmem = (long)physsz / PAGE_SIZE;
184
185	vm_ksubmap_init(&kmi);
186
187	bufinit();
188	vm_pager_bufferinit();
189
190	EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
191	    SHUTDOWN_PRI_LAST);
192
193	printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
194	    cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
195
196	if (bootverbose)
197		printf("machine: %s\n", sparc64_model);
198
199	cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
200}
201
202void
203cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
204{
205	struct intr_request *ir;
206	int i;
207
208	pcpu->pc_irtail = &pcpu->pc_irhead;
209	for (i = 0; i < IR_FREE; i++) {
210		ir = &pcpu->pc_irpool[i];
211		ir->ir_next = pcpu->pc_irfree;
212		pcpu->pc_irfree = ir;
213	}
214}
215
216void
217spinlock_enter(void)
218{
219	struct thread *td;
220	register_t pil;
221
222	td = curthread;
223	if (td->td_md.md_spinlock_count == 0) {
224		pil = rdpr(pil);
225		wrpr(pil, 0, PIL_TICK);
226		td->td_md.md_saved_pil = pil;
227	}
228	td->td_md.md_spinlock_count++;
229	critical_enter();
230}
231
232void
233spinlock_exit(void)
234{
235	struct thread *td;
236
237	td = curthread;
238	critical_exit();
239	td->td_md.md_spinlock_count--;
240	if (td->td_md.md_spinlock_count == 0)
241		wrpr(pil, td->td_md.md_saved_pil, 0);
242}
243
244static phandle_t
245find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
246{
247	char type[sizeof("cpu")];
248	phandle_t child;
249	uint32_t cpuid;
250
251	for (; node != 0; node = OF_peer(node)) {
252		child = OF_child(node);
253		if (child > 0) {
254			child = find_bsp(child, bspid, cpu_impl);
255			if (child > 0)
256				return (child);
257		} else {
258			if (OF_getprop(node, "device_type", type,
259			    sizeof(type)) <= 0)
260				continue;
261			if (strcmp(type, "cpu") != 0)
262				continue;
263			if (OF_getprop(node, cpu_cpuid_prop(cpu_impl), &cpuid,
264			    sizeof(cpuid)) <= 0)
265				continue;
266			if (cpuid == bspid)
267				return (node);
268		}
269	}
270	return (0);
271}
272
273const char *
274cpu_cpuid_prop(u_int cpu_impl)
275{
276
277	switch (cpu_impl) {
278	case CPU_IMPL_SPARC64:
279	case CPU_IMPL_SPARC64V:
280	case CPU_IMPL_ULTRASPARCI:
281	case CPU_IMPL_ULTRASPARCII:
282	case CPU_IMPL_ULTRASPARCIIi:
283	case CPU_IMPL_ULTRASPARCIIe:
284		return ("upa-portid");
285	case CPU_IMPL_ULTRASPARCIII:
286	case CPU_IMPL_ULTRASPARCIIIp:
287	case CPU_IMPL_ULTRASPARCIIIi:
288	case CPU_IMPL_ULTRASPARCIIIip:
289		return ("portid");
290	case CPU_IMPL_ULTRASPARCIV:
291	case CPU_IMPL_ULTRASPARCIVp:
292		return ("cpuid");
293	default:
294		return ("");
295	}
296}
297
298uint32_t
299cpu_get_mid(u_int cpu_impl)
300{
301
302	switch (cpu_impl) {
303	case CPU_IMPL_SPARC64:
304	case CPU_IMPL_SPARC64V:
305	case CPU_IMPL_ULTRASPARCI:
306	case CPU_IMPL_ULTRASPARCII:
307	case CPU_IMPL_ULTRASPARCIIi:
308	case CPU_IMPL_ULTRASPARCIIe:
309		return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
310	case CPU_IMPL_ULTRASPARCIII:
311	case CPU_IMPL_ULTRASPARCIIIp:
312		return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
313		    ASI_FIREPLANE_CONFIG_REG)));
314	case CPU_IMPL_ULTRASPARCIIIi:
315	case CPU_IMPL_ULTRASPARCIIIip:
316		return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
317	case CPU_IMPL_ULTRASPARCIV:
318	case CPU_IMPL_ULTRASPARCIVp:
319		return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
320	default:
321		return (0);
322	}
323}
324
325void
326sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
327{
328	char *env;
329	struct pcpu *pc;
330	vm_offset_t end;
331	vm_offset_t va;
332	caddr_t kmdp;
333	phandle_t root;
334	u_int cpu_impl;
335
336	end = 0;
337	kmdp = NULL;
338
339	/*
340	 * Find out what kind of CPU we have first, for anything that changes
341	 * behaviour.
342	 */
343	cpu_impl = VER_IMPL(rdpr(ver));
344
345	/*
346	 * Do CPU-specific initialization.
347	 */
348	if (cpu_impl == CPU_IMPL_SPARC64V ||
349	    cpu_impl >= CPU_IMPL_ULTRASPARCIII)
350		cheetah_init(cpu_impl);
351
352	/*
353	 * Clear (S)TICK timer (including NPT).
354	 */
355	tick_clear(cpu_impl);
356
357	/*
358	 * UltraSparc II[e,i] based systems come up with the tick interrupt
359	 * enabled and a handler that resets the tick counter, causing DELAY()
360	 * to not work properly when used early in boot.
361	 * UltraSPARC III based systems come up with the system tick interrupt
362	 * enabled, causing an interrupt storm on startup since they are not
363	 * handled.
364	 */
365	tick_stop(cpu_impl);
366
367	/*
368	 * Set up Open Firmware entry points.
369	 */
370	ofw_tba = rdpr(tba);
371	ofw_vec = (u_long)vec;
372
373	/*
374	 * Parse metadata if present and fetch parameters.  Must be before the
375	 * console is inited so cninit gets the right value of boothowto.
376	 */
377	if (mdp != NULL) {
378		preload_metadata = mdp;
379		kmdp = preload_search_by_type("elf kernel");
380		if (kmdp != NULL) {
381			boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
382			kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
383			end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
384			kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
385			    int);
386			kernel_tlbs = (void *)preload_search_info(kmdp,
387			    MODINFO_METADATA | MODINFOMD_DTLB);
388		}
389	}
390
391	init_param1();
392
393	/*
394	 * Initialize Open Firmware (needed for console).
395	 */
396	OF_install(OFW_STD_DIRECT, 0);
397	OF_init(ofw_entry);
398
399	/*
400	 * Prime our per-CPU data page for use.  Note, we are using it for
401	 * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
402	 * or it'll zero it out from under us.
403	 */
404	pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
405	pcpu_init(pc, 0, sizeof(struct pcpu));
406	pc->pc_addr = (vm_offset_t)pcpu0;
407	pc->pc_impl = cpu_impl;
408	pc->pc_mid = cpu_get_mid(cpu_impl);
409	pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
410	pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
411	pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
412
413	/*
414	 * Determine the OFW node and frequency of the BSP (and ensure the
415	 * BSP is in the device tree in the first place).
416	 */
417	root = OF_peer(0);
418	pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
419	if (pc->pc_node == 0)
420		OF_exit();
421	if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
422	    sizeof(pc->pc_clock)) <= 0)
423		OF_exit();
424
425	/*
426	 * Provide a DELAY() that works before PCPU_REG is set.  We can't
427	 * set PCPU_REG without also taking over the trap table or the
428	 * firmware will overwrite it.  Unfortunately, it's way to early
429	 * to also take over the trap table at this point.
430	 */
431	clock_boot = pc->pc_clock;
432	delay_func = delay_boot;
433
434	/*
435	 * Initialize the console before printing anything.
436	 * NB: the low-level console drivers require a working DELAY() at
437	 * this point.
438	 */
439	cninit();
440
441	/*
442	 * Panic if there is no metadata.  Most likely the kernel was booted
443	 * directly, instead of through loader(8).
444	 */
445	if (mdp == NULL || kmdp == NULL || end == 0 ||
446	    kernel_tlb_slots == 0 || kernel_tlbs == NULL) {
447		printf("sparc64_init: missing loader metadata.\n"
448		    "This probably means you are not using loader(8).\n");
449		panic("sparc64_init");
450	}
451
452	/*
453	 * Work around the broken loader behavior of not demapping no
454	 * longer used kernel TLB slots when unloading the kernel or
455	 * modules.
456	 */
457	for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
458	    va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
459		if (bootverbose)
460			printf("demapping unused kernel TLB slot "
461			    "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
462		stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
463		    ASI_DMMU_DEMAP, 0);
464		stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
465		    ASI_IMMU_DEMAP, 0);
466		flush(KERNBASE);
467		kernel_tlb_slots--;
468	}
469
470	/*
471	 * Determine the TLB slot maxima, which are expected to be
472	 * equal across all CPUs.
473	 * NB: for cheetah-class CPUs, these properties only refer
474	 * to the t16s.
475	 */
476	if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
477	    sizeof(dtlb_slots)) == -1)
478		panic("sparc64_init: cannot determine number of dTLB slots");
479	if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
480	    sizeof(itlb_slots)) == -1)
481		panic("sparc64_init: cannot determine number of iTLB slots");
482
483	/*
484	 * Initialize and enable the caches.  Note that his may include
485	 * applying workarounds.
486	 */
487	cache_init(pc);
488	cache_enable(cpu_impl);
489	uma_set_align(pc->pc_cache.dc_linesize - 1);
490
491	cpu_block_copy = bcopy;
492	cpu_block_zero = bzero;
493	getenv_int("machdep.use_vis", &cpu_use_vis);
494	if (cpu_use_vis) {
495		switch (cpu_impl) {
496		case CPU_IMPL_SPARC64:
497		case CPU_IMPL_SPARC64V:
498		case CPU_IMPL_ULTRASPARCI:
499		case CPU_IMPL_ULTRASPARCII:
500		case CPU_IMPL_ULTRASPARCIIi:
501		case CPU_IMPL_ULTRASPARCIIe:
502		case CPU_IMPL_ULTRASPARCIII:	/* NB: we've disabled P$. */
503		case CPU_IMPL_ULTRASPARCIIIp:
504		case CPU_IMPL_ULTRASPARCIIIi:
505		case CPU_IMPL_ULTRASPARCIV:
506		case CPU_IMPL_ULTRASPARCIVp:
507		case CPU_IMPL_ULTRASPARCIIIip:
508			cpu_block_copy = spitfire_block_copy;
509			cpu_block_zero = spitfire_block_zero;
510			break;
511		}
512	}
513
514#ifdef SMP
515	mp_init(cpu_impl);
516#endif
517
518	/*
519	 * Initialize virtual memory and calculate physmem.
520	 */
521	pmap_bootstrap(cpu_impl);
522
523	/*
524	 * Initialize tunables.
525	 */
526	init_param2(physmem);
527	env = getenv("kernelname");
528	if (env != NULL) {
529		strlcpy(kernelname, env, sizeof(kernelname));
530		freeenv(env);
531	}
532
533	/*
534	 * Initialize the interrupt tables.
535	 */
536	intr_init1();
537
538	/*
539	 * Initialize proc0, set kstack0, frame0, curthread and curpcb.
540	 */
541	proc_linkup0(&proc0, &thread0);
542	proc0.p_md.md_sigtramp = NULL;
543	proc0.p_md.md_utrap = NULL;
544	thread0.td_kstack = kstack0;
545	thread0.td_pcb = (struct pcb *)
546	    (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
547	frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
548	thread0.td_frame = &frame0;
549	pc->pc_curthread = &thread0;
550	pc->pc_curpcb = thread0.td_pcb;
551
552	/*
553	 * Initialize global registers.
554	 */
555	cpu_setregs(pc);
556
557	/*
558	 * Take over the trap table via the PROM.  Using the PROM for this
559	 * is necessary in order to set obp-control-relinquished to true
560	 * within the PROM so obtaining /virtual-memory/translations doesn't
561	 * trigger a fatal reset error or worse things further down the road.
562	 * XXX it should be possible to use this soley instead of writing
563	 * %tba in cpu_setregs().  Doing so causes a hang however.
564	 */
565	sun4u_set_traptable(tl0_base);
566
567	/*
568	 * It's now safe to use the real DELAY().
569	 */
570	delay_func = delay_tick;
571
572	/*
573	 * Initialize the dynamic per-CPU area for the BSP and the message
574	 * buffer (after setting the trap table).
575	 */
576	dpcpu_init(dpcpu0, 0);
577	msgbufinit(msgbufp, MSGBUF_SIZE);
578
579	/*
580	 * Initialize mutexes.
581	 */
582	mutex_init();
583
584	/*
585	 * Finish the interrupt initialization now that mutexes work and
586	 * enable them.
587	 */
588	intr_init2();
589	wrpr(pil, 0, PIL_TICK);
590	wrpr(pstate, 0, PSTATE_KERNEL);
591
592	/*
593	 * Finish pmap initialization now that we're ready for mutexes.
594	 */
595	PMAP_LOCK_INIT(kernel_pmap);
596
597	OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
598
599	kdb_init();
600
601#ifdef KDB
602	if (boothowto & RB_KDB)
603		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
604#endif
605}
606
607void
608sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
609{
610	struct trapframe *tf;
611	struct sigframe *sfp;
612	struct sigacts *psp;
613	struct sigframe sf;
614	struct thread *td;
615	struct frame *fp;
616	struct proc *p;
617	u_long sp;
618	int oonstack;
619	int sig;
620
621	oonstack = 0;
622	td = curthread;
623	p = td->td_proc;
624	PROC_LOCK_ASSERT(p, MA_OWNED);
625	sig = ksi->ksi_signo;
626	psp = p->p_sigacts;
627	mtx_assert(&psp->ps_mtx, MA_OWNED);
628	tf = td->td_frame;
629	sp = tf->tf_sp + SPOFF;
630	oonstack = sigonstack(sp);
631
632	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
633	    catcher, sig);
634
635	/* Make sure we have a signal trampoline to return to. */
636	if (p->p_md.md_sigtramp == NULL) {
637		/*
638		 * No signal trampoline... kill the process.
639		 */
640		CTR0(KTR_SIG, "sendsig: no sigtramp");
641		printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
642		sigexit(td, sig);
643		/* NOTREACHED */
644	}
645
646	/* Save user context. */
647	bzero(&sf, sizeof(sf));
648	get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
649	sf.sf_uc.uc_sigmask = *mask;
650	sf.sf_uc.uc_stack = td->td_sigstk;
651	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
652	    ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
653
654	/* Allocate and validate space for the signal handler context. */
655	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
656	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
657		sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
658		    td->td_sigstk.ss_size - sizeof(struct sigframe));
659	} else
660		sfp = (struct sigframe *)sp - 1;
661	mtx_unlock(&psp->ps_mtx);
662	PROC_UNLOCK(p);
663
664	fp = (struct frame *)sfp - 1;
665
666	/* Translate the signal if appropriate. */
667	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
668		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
669
670	/* Build the argument list for the signal handler. */
671	tf->tf_out[0] = sig;
672	tf->tf_out[2] = (register_t)&sfp->sf_uc;
673	tf->tf_out[4] = (register_t)catcher;
674	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
675		/* Signal handler installed with SA_SIGINFO. */
676		tf->tf_out[1] = (register_t)&sfp->sf_si;
677
678		/* Fill in POSIX parts. */
679		sf.sf_si = ksi->ksi_info;
680		sf.sf_si.si_signo = sig; /* maybe a translated signal */
681	} else {
682		/* Old FreeBSD-style arguments. */
683		tf->tf_out[1] = ksi->ksi_code;
684		tf->tf_out[3] = (register_t)ksi->ksi_addr;
685	}
686
687	/* Copy the sigframe out to the user's stack. */
688	if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
689	    suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
690		/*
691		 * Something is wrong with the stack pointer.
692		 * ...Kill the process.
693		 */
694		CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
695		PROC_LOCK(p);
696		sigexit(td, SIGILL);
697		/* NOTREACHED */
698	}
699
700	tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
701	tf->tf_tnpc = tf->tf_tpc + 4;
702	tf->tf_sp = (u_long)fp - SPOFF;
703
704	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
705	    tf->tf_sp);
706
707	PROC_LOCK(p);
708	mtx_lock(&psp->ps_mtx);
709}
710
711#ifndef	_SYS_SYSPROTO_H_
712struct sigreturn_args {
713	ucontext_t *ucp;
714};
715#endif
716
717/*
718 * MPSAFE
719 */
720int
721sigreturn(struct thread *td, struct sigreturn_args *uap)
722{
723	struct proc *p;
724	mcontext_t *mc;
725	ucontext_t uc;
726	int error;
727
728	p = td->td_proc;
729	if (rwindow_save(td)) {
730		PROC_LOCK(p);
731		sigexit(td, SIGILL);
732	}
733
734	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
735	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
736		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
737		return (EFAULT);
738	}
739
740	mc = &uc.uc_mcontext;
741	error = set_mcontext(td, mc);
742	if (error != 0)
743		return (error);
744
745	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
746
747	CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
748	    td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
749	return (EJUSTRETURN);
750}
751
752/*
753 * Construct a PCB from a trapframe. This is called from kdb_trap() where
754 * we want to start a backtrace from the function that caused us to enter
755 * the debugger. We have the context in the trapframe, but base the trace
756 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
757 * enough for a backtrace.
758 */
759void
760makectx(struct trapframe *tf, struct pcb *pcb)
761{
762
763	pcb->pcb_pc = tf->tf_tpc;
764	pcb->pcb_sp = tf->tf_sp;
765}
766
767int
768get_mcontext(struct thread *td, mcontext_t *mc, int flags)
769{
770	struct trapframe *tf;
771	struct pcb *pcb;
772
773	tf = td->td_frame;
774	pcb = td->td_pcb;
775	/*
776	 * Copy the registers which will be restored by tl0_ret() from the
777	 * trapframe.
778	 * Note that we skip %g7 which is used as the userland TLS register
779	 * and %wstate.
780	 */
781	mc->mc_flags = _MC_VERSION;
782	mc->mc_global[1] = tf->tf_global[1];
783	mc->mc_global[2] = tf->tf_global[2];
784	mc->mc_global[3] = tf->tf_global[3];
785	mc->mc_global[4] = tf->tf_global[4];
786	mc->mc_global[5] = tf->tf_global[5];
787	mc->mc_global[6] = tf->tf_global[6];
788	if (flags & GET_MC_CLEAR_RET) {
789		mc->mc_out[0] = 0;
790		mc->mc_out[1] = 0;
791	} else {
792		mc->mc_out[0] = tf->tf_out[0];
793		mc->mc_out[1] = tf->tf_out[1];
794	}
795	mc->mc_out[2] = tf->tf_out[2];
796	mc->mc_out[3] = tf->tf_out[3];
797	mc->mc_out[4] = tf->tf_out[4];
798	mc->mc_out[5] = tf->tf_out[5];
799	mc->mc_out[6] = tf->tf_out[6];
800	mc->mc_out[7] = tf->tf_out[7];
801	mc->mc_fprs = tf->tf_fprs;
802	mc->mc_fsr = tf->tf_fsr;
803	mc->mc_gsr = tf->tf_gsr;
804	mc->mc_tnpc = tf->tf_tnpc;
805	mc->mc_tpc = tf->tf_tpc;
806	mc->mc_tstate = tf->tf_tstate;
807	mc->mc_y = tf->tf_y;
808	critical_enter();
809	if ((tf->tf_fprs & FPRS_FEF) != 0) {
810		savefpctx(pcb->pcb_ufp);
811		tf->tf_fprs &= ~FPRS_FEF;
812		pcb->pcb_flags |= PCB_FEF;
813	}
814	if ((pcb->pcb_flags & PCB_FEF) != 0) {
815		bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
816		mc->mc_fprs |= FPRS_FEF;
817	}
818	critical_exit();
819	return (0);
820}
821
822int
823set_mcontext(struct thread *td, const mcontext_t *mc)
824{
825	struct trapframe *tf;
826	struct pcb *pcb;
827
828	if (!TSTATE_SECURE(mc->mc_tstate) ||
829	    (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
830		return (EINVAL);
831	tf = td->td_frame;
832	pcb = td->td_pcb;
833	/* Make sure the windows are spilled first. */
834	flushw();
835	/*
836	 * Copy the registers which will be restored by tl0_ret() to the
837	 * trapframe.
838	 * Note that we skip %g7 which is used as the userland TLS register
839	 * and %wstate.
840	 */
841	tf->tf_global[1] = mc->mc_global[1];
842	tf->tf_global[2] = mc->mc_global[2];
843	tf->tf_global[3] = mc->mc_global[3];
844	tf->tf_global[4] = mc->mc_global[4];
845	tf->tf_global[5] = mc->mc_global[5];
846	tf->tf_global[6] = mc->mc_global[6];
847	tf->tf_out[0] = mc->mc_out[0];
848	tf->tf_out[1] = mc->mc_out[1];
849	tf->tf_out[2] = mc->mc_out[2];
850	tf->tf_out[3] = mc->mc_out[3];
851	tf->tf_out[4] = mc->mc_out[4];
852	tf->tf_out[5] = mc->mc_out[5];
853	tf->tf_out[6] = mc->mc_out[6];
854	tf->tf_out[7] = mc->mc_out[7];
855	tf->tf_fprs = mc->mc_fprs;
856	tf->tf_fsr = mc->mc_fsr;
857	tf->tf_gsr = mc->mc_gsr;
858	tf->tf_tnpc = mc->mc_tnpc;
859	tf->tf_tpc = mc->mc_tpc;
860	tf->tf_tstate = mc->mc_tstate;
861	tf->tf_y = mc->mc_y;
862	if ((mc->mc_fprs & FPRS_FEF) != 0) {
863		tf->tf_fprs = 0;
864		bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
865		pcb->pcb_flags |= PCB_FEF;
866	}
867	return (0);
868}
869
870/*
871 * Exit the kernel and execute a firmware call that will not return, as
872 * specified by the arguments.
873 */
874void
875cpu_shutdown(void *args)
876{
877
878#ifdef SMP
879	cpu_mp_shutdown();
880#endif
881	ofw_exit(args);
882}
883
884/*
885 * Flush the D-cache for non-DMA I/O so that the I-cache can
886 * be made coherent later.
887 */
888void
889cpu_flush_dcache(void *ptr, size_t len)
890{
891
892	/* TBD */
893}
894
895/* Get current clock frequency for the given CPU ID. */
896int
897cpu_est_clockrate(int cpu_id, uint64_t *rate)
898{
899	struct pcpu *pc;
900
901	pc = pcpu_find(cpu_id);
902	if (pc == NULL || rate == NULL)
903		return (EINVAL);
904	*rate = pc->pc_clock;
905	return (0);
906}
907
908/*
909 * Duplicate OF_exit() with a different firmware call function that restores
910 * the trap table, otherwise a RED state exception is triggered in at least
911 * some firmware versions.
912 */
913void
914cpu_halt(void)
915{
916	static struct {
917		cell_t name;
918		cell_t nargs;
919		cell_t nreturns;
920	} args = {
921		(cell_t)"exit",
922		0,
923		0
924	};
925
926	cpu_shutdown(&args);
927}
928
929static void
930sparc64_shutdown_final(void *dummy, int howto)
931{
932	static struct {
933		cell_t name;
934		cell_t nargs;
935		cell_t nreturns;
936	} args = {
937		(cell_t)"SUNW,power-off",
938		0,
939		0
940	};
941
942	/* Turn the power off? */
943	if ((howto & RB_POWEROFF) != 0)
944		cpu_shutdown(&args);
945	/* In case of halt, return to the firmware. */
946	if ((howto & RB_HALT) != 0)
947		cpu_halt();
948}
949
950void
951cpu_idle(int busy)
952{
953
954	/* Insert code to halt (until next interrupt) for the idle loop. */
955}
956
957int
958cpu_idle_wakeup(int cpu)
959{
960
961	return (0);
962}
963
964int
965ptrace_set_pc(struct thread *td, u_long addr)
966{
967
968	td->td_frame->tf_tpc = addr;
969	td->td_frame->tf_tnpc = addr + 4;
970	return (0);
971}
972
973int
974ptrace_single_step(struct thread *td)
975{
976
977	/* TODO; */
978	return (0);
979}
980
981int
982ptrace_clear_single_step(struct thread *td)
983{
984
985	/* TODO; */
986	return (0);
987}
988
989void
990exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
991{
992	struct trapframe *tf;
993	struct pcb *pcb;
994	struct proc *p;
995	u_long sp;
996
997	/* XXX no cpu_exec */
998	p = td->td_proc;
999	p->p_md.md_sigtramp = NULL;
1000	if (p->p_md.md_utrap != NULL) {
1001		utrap_free(p->p_md.md_utrap);
1002		p->p_md.md_utrap = NULL;
1003	}
1004
1005	pcb = td->td_pcb;
1006	tf = td->td_frame;
1007	sp = rounddown(stack, 16);
1008	bzero(pcb, sizeof(*pcb));
1009	bzero(tf, sizeof(*tf));
1010	tf->tf_out[0] = stack;
1011	tf->tf_out[3] = p->p_sysent->sv_psstrings;
1012	tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
1013	tf->tf_tnpc = imgp->entry_addr + 4;
1014	tf->tf_tpc = imgp->entry_addr;
1015	tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
1016
1017	td->td_retval[0] = tf->tf_out[0];
1018	td->td_retval[1] = tf->tf_out[1];
1019}
1020
1021int
1022fill_regs(struct thread *td, struct reg *regs)
1023{
1024
1025	bcopy(td->td_frame, regs, sizeof(*regs));
1026	return (0);
1027}
1028
1029int
1030set_regs(struct thread *td, struct reg *regs)
1031{
1032	struct trapframe *tf;
1033
1034	if (!TSTATE_SECURE(regs->r_tstate))
1035		return (EINVAL);
1036	tf = td->td_frame;
1037	regs->r_wstate = tf->tf_wstate;
1038	bcopy(regs, tf, sizeof(*regs));
1039	return (0);
1040}
1041
1042int
1043fill_dbregs(struct thread *td, struct dbreg *dbregs)
1044{
1045
1046	return (ENOSYS);
1047}
1048
1049int
1050set_dbregs(struct thread *td, struct dbreg *dbregs)
1051{
1052
1053	return (ENOSYS);
1054}
1055
1056int
1057fill_fpregs(struct thread *td, struct fpreg *fpregs)
1058{
1059	struct trapframe *tf;
1060	struct pcb *pcb;
1061
1062	pcb = td->td_pcb;
1063	tf = td->td_frame;
1064	bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
1065	fpregs->fr_fsr = tf->tf_fsr;
1066	fpregs->fr_gsr = tf->tf_gsr;
1067	return (0);
1068}
1069
1070int
1071set_fpregs(struct thread *td, struct fpreg *fpregs)
1072{
1073	struct trapframe *tf;
1074	struct pcb *pcb;
1075
1076	pcb = td->td_pcb;
1077	tf = td->td_frame;
1078	tf->tf_fprs &= ~FPRS_FEF;
1079	bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
1080	tf->tf_fsr = fpregs->fr_fsr;
1081	tf->tf_gsr = fpregs->fr_gsr;
1082	return (0);
1083}
1084
1085struct md_utrap *
1086utrap_alloc(void)
1087{
1088	struct md_utrap *ut;
1089
1090	ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
1091	ut->ut_refcnt = 1;
1092	return (ut);
1093}
1094
1095void
1096utrap_free(struct md_utrap *ut)
1097{
1098	int refcnt;
1099
1100	if (ut == NULL)
1101		return;
1102	mtx_pool_lock(mtxpool_sleep, ut);
1103	ut->ut_refcnt--;
1104	refcnt = ut->ut_refcnt;
1105	mtx_pool_unlock(mtxpool_sleep, ut);
1106	if (refcnt == 0)
1107		free(ut, M_SUBPROC);
1108}
1109
1110struct md_utrap *
1111utrap_hold(struct md_utrap *ut)
1112{
1113
1114	if (ut == NULL)
1115		return (NULL);
1116	mtx_pool_lock(mtxpool_sleep, ut);
1117	ut->ut_refcnt++;
1118	mtx_pool_unlock(mtxpool_sleep, ut);
1119	return (ut);
1120}
1121