1/*-
2 * Copyright (c) 2001 Jake Burkholder.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
35 *	from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/11/sys/sparc64/sparc64/machdep.c 341491 2018-12-04 19:07:10Z markj $");
40
41#include "opt_compat.h"
42#include "opt_ddb.h"
43#include "opt_kstack_pages.h"
44
45#include <sys/param.h>
46#include <sys/malloc.h>
47#include <sys/proc.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/bus.h>
52#include <sys/cpu.h>
53#include <sys/cons.h>
54#include <sys/eventhandler.h>
55#include <sys/exec.h>
56#include <sys/imgact.h>
57#include <sys/interrupt.h>
58#include <sys/kdb.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/msgbuf.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/ptrace.h>
67#include <sys/reboot.h>
68#include <sys/rwlock.h>
69#include <sys/signalvar.h>
70#include <sys/smp.h>
71#include <sys/syscallsubr.h>
72#include <sys/sysent.h>
73#include <sys/sysproto.h>
74#include <sys/timetc.h>
75#include <sys/ucontext.h>
76#include <sys/vmmeter.h>
77
78#include <dev/ofw/openfirm.h>
79
80#include <vm/vm.h>
81#include <vm/vm_extern.h>
82#include <vm/vm_kern.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_pager.h>
87#include <vm/vm_param.h>
88
89#include <ddb/ddb.h>
90
91#include <machine/bus.h>
92#include <machine/cache.h>
93#include <machine/cmt.h>
94#include <machine/cpu.h>
95#include <machine/fireplane.h>
96#include <machine/fp.h>
97#include <machine/fsr.h>
98#include <machine/intr_machdep.h>
99#include <machine/jbus.h>
100#include <machine/md_var.h>
101#include <machine/metadata.h>
102#include <machine/ofw_machdep.h>
103#include <machine/ofw_mem.h>
104#include <machine/pcb.h>
105#include <machine/pmap.h>
106#include <machine/pstate.h>
107#include <machine/reg.h>
108#include <machine/sigframe.h>
109#include <machine/smp.h>
110#include <machine/tick.h>
111#include <machine/tlb.h>
112#include <machine/tstate.h>
113#include <machine/upa.h>
114#include <machine/ver.h>
115
116typedef int ofw_vec_t(void *);
117
118int dtlb_slots;
119int itlb_slots;
120struct tlb_entry *kernel_tlbs;
121int kernel_tlb_slots;
122
123int cold = 1;
124long Maxmem;
125long realmem;
126
127void *dpcpu0;
128char pcpu0[PCPU_PAGES * PAGE_SIZE];
129struct trapframe frame0;
130
131vm_offset_t kstack0;
132vm_paddr_t kstack0_phys;
133
134struct kva_md_info kmi;
135
136u_long ofw_vec;
137u_long ofw_tba;
138u_int tba_taken_over;
139
140char sparc64_model[32];
141
142static int cpu_use_vis = 1;
143
144cpu_block_copy_t *cpu_block_copy;
145cpu_block_zero_t *cpu_block_zero;
146
147static phandle_t find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl);
148void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
149    ofw_vec_t *vec);
150static void sparc64_shutdown_final(void *dummy, int howto);
151
152static void cpu_startup(void *arg);
153SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
154
155CTASSERT((1 << INT_SHIFT) == sizeof(int));
156CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
157
158CTASSERT(sizeof(struct reg) == 256);
159CTASSERT(sizeof(struct fpreg) == 272);
160CTASSERT(sizeof(struct __mcontext) == 512);
161
162CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
163CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
164CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
165CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
166
167CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
168
169static void
170cpu_startup(void *arg)
171{
172	vm_paddr_t physsz;
173	int i;
174
175	physsz = 0;
176	for (i = 0; i < sparc64_nmemreg; i++)
177		physsz += sparc64_memreg[i].mr_size;
178	printf("real memory  = %lu (%lu MB)\n", physsz,
179	    physsz / (1024 * 1024));
180	realmem = (long)physsz / PAGE_SIZE;
181
182	vm_ksubmap_init(&kmi);
183
184	bufinit();
185	vm_pager_bufferinit();
186
187	EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
188	    SHUTDOWN_PRI_LAST);
189
190	printf("avail memory = %lu (%lu MB)\n", vm_cnt.v_free_count * PAGE_SIZE,
191	    vm_cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
192
193	if (bootverbose)
194		printf("machine: %s\n", sparc64_model);
195
196	cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
197}
198
199void
200cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
201{
202	struct intr_request *ir;
203	int i;
204
205	pcpu->pc_irtail = &pcpu->pc_irhead;
206	for (i = 0; i < IR_FREE; i++) {
207		ir = &pcpu->pc_irpool[i];
208		ir->ir_next = pcpu->pc_irfree;
209		pcpu->pc_irfree = ir;
210	}
211}
212
213void
214spinlock_enter(void)
215{
216	struct thread *td;
217	register_t pil;
218
219	td = curthread;
220	if (td->td_md.md_spinlock_count == 0) {
221		pil = rdpr(pil);
222		wrpr(pil, 0, PIL_TICK);
223		td->td_md.md_spinlock_count = 1;
224		td->td_md.md_saved_pil = pil;
225	} else
226		td->td_md.md_spinlock_count++;
227	critical_enter();
228}
229
230void
231spinlock_exit(void)
232{
233	struct thread *td;
234	register_t pil;
235
236	td = curthread;
237	critical_exit();
238	pil = td->td_md.md_saved_pil;
239	td->td_md.md_spinlock_count--;
240	if (td->td_md.md_spinlock_count == 0)
241		wrpr(pil, pil, 0);
242}
243
244static phandle_t
245find_bsp(phandle_t node, uint32_t bspid, u_int cpu_impl)
246{
247	char type[sizeof("cpu")];
248	phandle_t child;
249	uint32_t portid;
250
251	for (; node != 0; node = OF_peer(node)) {
252		child = OF_child(node);
253		if (child > 0) {
254			child = find_bsp(child, bspid, cpu_impl);
255			if (child > 0)
256				return (child);
257		} else {
258			if (OF_getprop(node, "device_type", type,
259			    sizeof(type)) <= 0)
260				continue;
261			if (strcmp(type, "cpu") != 0)
262				continue;
263			if (OF_getprop(node, cpu_portid_prop(cpu_impl),
264			    &portid, sizeof(portid)) <= 0)
265				continue;
266			if (portid == bspid)
267				return (node);
268		}
269	}
270	return (0);
271}
272
273const char *
274cpu_portid_prop(u_int cpu_impl)
275{
276
277	switch (cpu_impl) {
278	case CPU_IMPL_SPARC64:
279	case CPU_IMPL_SPARC64V:
280	case CPU_IMPL_ULTRASPARCI:
281	case CPU_IMPL_ULTRASPARCII:
282	case CPU_IMPL_ULTRASPARCIIi:
283	case CPU_IMPL_ULTRASPARCIIe:
284		return ("upa-portid");
285	case CPU_IMPL_ULTRASPARCIII:
286	case CPU_IMPL_ULTRASPARCIIIp:
287	case CPU_IMPL_ULTRASPARCIIIi:
288	case CPU_IMPL_ULTRASPARCIIIip:
289		return ("portid");
290	case CPU_IMPL_ULTRASPARCIV:
291	case CPU_IMPL_ULTRASPARCIVp:
292		return ("cpuid");
293	default:
294		return ("");
295	}
296}
297
298uint32_t
299cpu_get_mid(u_int cpu_impl)
300{
301
302	switch (cpu_impl) {
303	case CPU_IMPL_SPARC64:
304	case CPU_IMPL_SPARC64V:
305	case CPU_IMPL_ULTRASPARCI:
306	case CPU_IMPL_ULTRASPARCII:
307	case CPU_IMPL_ULTRASPARCIIi:
308	case CPU_IMPL_ULTRASPARCIIe:
309		return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG)));
310	case CPU_IMPL_ULTRASPARCIII:
311	case CPU_IMPL_ULTRASPARCIIIp:
312		return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG,
313		    ASI_FIREPLANE_CONFIG_REG)));
314	case CPU_IMPL_ULTRASPARCIIIi:
315	case CPU_IMPL_ULTRASPARCIIIip:
316		return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG)));
317	case CPU_IMPL_ULTRASPARCIV:
318	case CPU_IMPL_ULTRASPARCIVp:
319		return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID)));
320	default:
321		return (0);
322	}
323}
324
325void
326sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
327{
328	char *env;
329	struct pcpu *pc;
330	vm_offset_t end;
331	vm_offset_t va;
332	caddr_t kmdp;
333	phandle_t root;
334	u_int cpu_impl;
335
336	end = 0;
337	kmdp = NULL;
338
339	/*
340	 * Find out what kind of CPU we have first, for anything that changes
341	 * behaviour.
342	 */
343	cpu_impl = VER_IMPL(rdpr(ver));
344
345	/*
346	 * Do CPU-specific initialization.
347	 */
348	if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
349		cheetah_init(cpu_impl);
350	else if (cpu_impl == CPU_IMPL_SPARC64V)
351		zeus_init(cpu_impl);
352
353	/*
354	 * Clear (S)TICK timer (including NPT).
355	 */
356	tick_clear(cpu_impl);
357
358	/*
359	 * UltraSparc II[e,i] based systems come up with the tick interrupt
360	 * enabled and a handler that resets the tick counter, causing DELAY()
361	 * to not work properly when used early in boot.
362	 * UltraSPARC III based systems come up with the system tick interrupt
363	 * enabled, causing an interrupt storm on startup since they are not
364	 * handled.
365	 */
366	tick_stop(cpu_impl);
367
368	/*
369	 * Set up Open Firmware entry points.
370	 */
371	ofw_tba = rdpr(tba);
372	ofw_vec = (u_long)vec;
373
374	/*
375	 * Parse metadata if present and fetch parameters.  Must be before the
376	 * console is inited so cninit() gets the right value of boothowto.
377	 */
378	if (mdp != NULL) {
379		preload_metadata = mdp;
380		kmdp = preload_search_by_type("elf kernel");
381		if (kmdp != NULL) {
382			boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
383			init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *),
384			    0);
385			end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
386			kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
387			    int);
388			kernel_tlbs = (void *)preload_search_info(kmdp,
389			    MODINFO_METADATA | MODINFOMD_DTLB);
390		}
391	}
392
393	init_param1();
394
395	/*
396	 * Initialize Open Firmware (needed for console).
397	 */
398	OF_install(OFW_STD_DIRECT, 0);
399	OF_init(ofw_entry);
400
401	/*
402	 * Prime our per-CPU data page for use.  Note, we are using it for
403	 * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
404	 * or it'll zero it out from under us.
405	 */
406	pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
407	pcpu_init(pc, 0, sizeof(struct pcpu));
408	pc->pc_addr = (vm_offset_t)pcpu0;
409	pc->pc_impl = cpu_impl;
410	pc->pc_mid = cpu_get_mid(cpu_impl);
411	pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
412	pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
413	pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
414
415	/*
416	 * Determine the OFW node and frequency of the BSP (and ensure the
417	 * BSP is in the device tree in the first place).
418	 */
419	root = OF_peer(0);
420	pc->pc_node = find_bsp(root, pc->pc_mid, cpu_impl);
421	if (pc->pc_node == 0)
422		OF_panic("%s: cannot find boot CPU node", __func__);
423	if (OF_getprop(pc->pc_node, "clock-frequency", &pc->pc_clock,
424	    sizeof(pc->pc_clock)) <= 0)
425		OF_panic("%s: cannot determine boot CPU clock", __func__);
426
427	/*
428	 * Panic if there is no metadata.  Most likely the kernel was booted
429	 * directly, instead of through loader(8).
430	 */
431	if (mdp == NULL || kmdp == NULL || end == 0 ||
432	    kernel_tlb_slots == 0 || kernel_tlbs == NULL)
433		OF_panic("%s: missing loader metadata.\nThis probably means "
434		    "you are not using loader(8).", __func__);
435
436	/*
437	 * Work around the broken loader behavior of not demapping no
438	 * longer used kernel TLB slots when unloading the kernel or
439	 * modules.
440	 */
441	for (va = KERNBASE + (kernel_tlb_slots - 1) * PAGE_SIZE_4M;
442	    va >= roundup2(end, PAGE_SIZE_4M); va -= PAGE_SIZE_4M) {
443		if (bootverbose)
444			OF_printf("demapping unused kernel TLB slot "
445			    "(va %#lx - %#lx)\n", va, va + PAGE_SIZE_4M - 1);
446		stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
447		    ASI_DMMU_DEMAP, 0);
448		stxa(TLB_DEMAP_VA(va) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE,
449		    ASI_IMMU_DEMAP, 0);
450		flush(KERNBASE);
451		kernel_tlb_slots--;
452	}
453
454	/*
455	 * Determine the TLB slot maxima, which are expected to be
456	 * equal across all CPUs.
457	 * NB: for cheetah-class CPUs, these properties only refer
458	 * to the t16s.
459	 */
460	if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
461	    sizeof(dtlb_slots)) == -1)
462		OF_panic("%s: cannot determine number of dTLB slots",
463		    __func__);
464	if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
465	    sizeof(itlb_slots)) == -1)
466		OF_panic("%s: cannot determine number of iTLB slots",
467		    __func__);
468
469	/*
470	 * Initialize and enable the caches.  Note that this may include
471	 * applying workarounds.
472	 */
473	cache_init(pc);
474	cache_enable(cpu_impl);
475	uma_set_align(pc->pc_cache.dc_linesize - 1);
476
477	cpu_block_copy = bcopy;
478	cpu_block_zero = bzero;
479	getenv_int("machdep.use_vis", &cpu_use_vis);
480	if (cpu_use_vis) {
481		switch (cpu_impl) {
482		case CPU_IMPL_SPARC64:
483		case CPU_IMPL_ULTRASPARCI:
484		case CPU_IMPL_ULTRASPARCII:
485		case CPU_IMPL_ULTRASPARCIIi:
486		case CPU_IMPL_ULTRASPARCIIe:
487		case CPU_IMPL_ULTRASPARCIII:	/* NB: we've disabled P$. */
488		case CPU_IMPL_ULTRASPARCIIIp:
489		case CPU_IMPL_ULTRASPARCIIIi:
490		case CPU_IMPL_ULTRASPARCIV:
491		case CPU_IMPL_ULTRASPARCIVp:
492		case CPU_IMPL_ULTRASPARCIIIip:
493			cpu_block_copy = spitfire_block_copy;
494			cpu_block_zero = spitfire_block_zero;
495			break;
496		case CPU_IMPL_SPARC64V:
497			cpu_block_copy = zeus_block_copy;
498			cpu_block_zero = zeus_block_zero;
499			break;
500		}
501	}
502
503#ifdef SMP
504	mp_init();
505#endif
506
507	/*
508	 * Initialize virtual memory and calculate physmem.
509	 */
510	pmap_bootstrap(cpu_impl);
511
512	/*
513	 * Initialize tunables.
514	 */
515	init_param2(physmem);
516	env = kern_getenv("kernelname");
517	if (env != NULL) {
518		strlcpy(kernelname, env, sizeof(kernelname));
519		freeenv(env);
520	}
521
522	/*
523	 * Initialize the interrupt tables.
524	 */
525	intr_init1();
526
527	/*
528	 * Initialize proc0, set kstack0, frame0, curthread and curpcb.
529	 */
530	proc_linkup0(&proc0, &thread0);
531	proc0.p_md.md_sigtramp = NULL;
532	proc0.p_md.md_utrap = NULL;
533	thread0.td_kstack = kstack0;
534	thread0.td_kstack_pages = KSTACK_PAGES;
535	thread0.td_pcb = (struct pcb *)
536	    (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
537	frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
538	thread0.td_frame = &frame0;
539	pc->pc_curthread = &thread0;
540	pc->pc_curpcb = thread0.td_pcb;
541
542	/*
543	 * Initialize global registers.
544	 */
545	cpu_setregs(pc);
546
547	/*
548	 * Take over the trap table via the PROM.  Using the PROM for this
549	 * is necessary in order to set obp-control-relinquished to true
550	 * within the PROM so obtaining /virtual-memory/translations doesn't
551	 * trigger a fatal reset error or worse things further down the road.
552	 * XXX it should be possible to use this solely instead of writing
553	 * %tba in cpu_setregs().  Doing so causes a hang however.
554	 *
555	 * NB: the low-level console drivers require a working DELAY() and
556	 * some compiler optimizations may cause the curthread accesses of
557	 * mutex(9) to be factored out even if the latter aren't actually
558	 * called.  Both of these require PCPU_REG to be set.  However, we
559	 * can't set PCPU_REG without also taking over the trap table or the
560	 * firmware will overwrite it.
561	 */
562	sun4u_set_traptable(tl0_base);
563
564	/*
565	 * Initialize the dynamic per-CPU area for the BSP and the message
566	 * buffer (after setting the trap table).
567	 */
568	dpcpu_init(dpcpu0, 0);
569	msgbufinit(msgbufp, msgbufsize);
570
571	/*
572	 * Initialize mutexes.
573	 */
574	mutex_init();
575
576	/*
577	 * Initialize console now that we have a reasonable set of system
578	 * services.
579	 */
580	cninit();
581
582	/*
583	 * Finish the interrupt initialization now that mutexes work and
584	 * enable them.
585	 */
586	intr_init2();
587	wrpr(pil, 0, 0);
588	wrpr(pstate, 0, PSTATE_KERNEL);
589
590	OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
591
592	kdb_init();
593
594#ifdef KDB
595	if (boothowto & RB_KDB)
596		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
597#endif
598}
599
600void
601sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
602{
603	struct trapframe *tf;
604	struct sigframe *sfp;
605	struct sigacts *psp;
606	struct sigframe sf;
607	struct thread *td;
608	struct frame *fp;
609	struct proc *p;
610	u_long sp;
611	int oonstack;
612	int sig;
613
614	oonstack = 0;
615	td = curthread;
616	p = td->td_proc;
617	PROC_LOCK_ASSERT(p, MA_OWNED);
618	sig = ksi->ksi_signo;
619	psp = p->p_sigacts;
620	mtx_assert(&psp->ps_mtx, MA_OWNED);
621	tf = td->td_frame;
622	sp = tf->tf_sp + SPOFF;
623	oonstack = sigonstack(sp);
624
625	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
626	    catcher, sig);
627
628	/* Make sure we have a signal trampoline to return to. */
629	if (p->p_md.md_sigtramp == NULL) {
630		/*
631		 * No signal trampoline... kill the process.
632		 */
633		CTR0(KTR_SIG, "sendsig: no sigtramp");
634		printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
635		sigexit(td, sig);
636		/* NOTREACHED */
637	}
638
639	/* Save user context. */
640	bzero(&sf, sizeof(sf));
641	get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
642	sf.sf_uc.uc_sigmask = *mask;
643	sf.sf_uc.uc_stack = td->td_sigstk;
644	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
645	    ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
646
647	/* Allocate and validate space for the signal handler context. */
648	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
649	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
650		sfp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
651		    td->td_sigstk.ss_size - sizeof(struct sigframe));
652	} else
653		sfp = (struct sigframe *)sp - 1;
654	mtx_unlock(&psp->ps_mtx);
655	PROC_UNLOCK(p);
656
657	fp = (struct frame *)sfp - 1;
658
659	/* Build the argument list for the signal handler. */
660	tf->tf_out[0] = sig;
661	tf->tf_out[2] = (register_t)&sfp->sf_uc;
662	tf->tf_out[4] = (register_t)catcher;
663	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
664		/* Signal handler installed with SA_SIGINFO. */
665		tf->tf_out[1] = (register_t)&sfp->sf_si;
666
667		/* Fill in POSIX parts. */
668		sf.sf_si = ksi->ksi_info;
669		sf.sf_si.si_signo = sig; /* maybe a translated signal */
670	} else {
671		/* Old FreeBSD-style arguments. */
672		tf->tf_out[1] = ksi->ksi_code;
673		tf->tf_out[3] = (register_t)ksi->ksi_addr;
674	}
675
676	/* Copy the sigframe out to the user's stack. */
677	if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
678	    suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
679		/*
680		 * Something is wrong with the stack pointer.
681		 * ...Kill the process.
682		 */
683		CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
684		PROC_LOCK(p);
685		sigexit(td, SIGILL);
686		/* NOTREACHED */
687	}
688
689	tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
690	tf->tf_tnpc = tf->tf_tpc + 4;
691	tf->tf_sp = (u_long)fp - SPOFF;
692
693	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
694	    tf->tf_sp);
695
696	PROC_LOCK(p);
697	mtx_lock(&psp->ps_mtx);
698}
699
700#ifndef	_SYS_SYSPROTO_H_
701struct sigreturn_args {
702	ucontext_t *ucp;
703};
704#endif
705
706/*
707 * MPSAFE
708 */
709int
710sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
711{
712	struct proc *p;
713	mcontext_t *mc;
714	ucontext_t uc;
715	int error;
716
717	p = td->td_proc;
718	if (rwindow_save(td)) {
719		PROC_LOCK(p);
720		sigexit(td, SIGILL);
721	}
722
723	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
724	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
725		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
726		return (EFAULT);
727	}
728
729	mc = &uc.uc_mcontext;
730	error = set_mcontext(td, mc);
731	if (error != 0)
732		return (error);
733
734	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
735
736	CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
737	    td, mc->_mc_tpc, mc->_mc_sp, mc->_mc_tstate);
738	return (EJUSTRETURN);
739}
740
741/*
742 * Construct a PCB from a trapframe. This is called from kdb_trap() where
743 * we want to start a backtrace from the function that caused us to enter
744 * the debugger. We have the context in the trapframe, but base the trace
745 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
746 * enough for a backtrace.
747 */
748void
749makectx(struct trapframe *tf, struct pcb *pcb)
750{
751
752	pcb->pcb_pc = tf->tf_tpc;
753	pcb->pcb_sp = tf->tf_sp;
754}
755
756int
757get_mcontext(struct thread *td, mcontext_t *mc, int flags)
758{
759	struct trapframe *tf;
760	struct pcb *pcb;
761
762	tf = td->td_frame;
763	pcb = td->td_pcb;
764	/*
765	 * Copy the registers which will be restored by tl0_ret() from the
766	 * trapframe.
767	 * Note that we skip %g7 which is used as the userland TLS register
768	 * and %wstate.
769	 */
770	mc->_mc_flags = _MC_VERSION;
771	mc->mc_global[1] = tf->tf_global[1];
772	mc->mc_global[2] = tf->tf_global[2];
773	mc->mc_global[3] = tf->tf_global[3];
774	mc->mc_global[4] = tf->tf_global[4];
775	mc->mc_global[5] = tf->tf_global[5];
776	mc->mc_global[6] = tf->tf_global[6];
777	if (flags & GET_MC_CLEAR_RET) {
778		mc->mc_out[0] = 0;
779		mc->mc_out[1] = 0;
780	} else {
781		mc->mc_out[0] = tf->tf_out[0];
782		mc->mc_out[1] = tf->tf_out[1];
783	}
784	mc->mc_out[2] = tf->tf_out[2];
785	mc->mc_out[3] = tf->tf_out[3];
786	mc->mc_out[4] = tf->tf_out[4];
787	mc->mc_out[5] = tf->tf_out[5];
788	mc->mc_out[6] = tf->tf_out[6];
789	mc->mc_out[7] = tf->tf_out[7];
790	mc->_mc_fprs = tf->tf_fprs;
791	mc->_mc_fsr = tf->tf_fsr;
792	mc->_mc_gsr = tf->tf_gsr;
793	mc->_mc_tnpc = tf->tf_tnpc;
794	mc->_mc_tpc = tf->tf_tpc;
795	mc->_mc_tstate = tf->tf_tstate;
796	mc->_mc_y = tf->tf_y;
797	critical_enter();
798	if ((tf->tf_fprs & FPRS_FEF) != 0) {
799		savefpctx(pcb->pcb_ufp);
800		tf->tf_fprs &= ~FPRS_FEF;
801		pcb->pcb_flags |= PCB_FEF;
802	}
803	if ((pcb->pcb_flags & PCB_FEF) != 0) {
804		bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
805		mc->_mc_fprs |= FPRS_FEF;
806	}
807	critical_exit();
808	return (0);
809}
810
811int
812set_mcontext(struct thread *td, mcontext_t *mc)
813{
814	struct trapframe *tf;
815	struct pcb *pcb;
816
817	if (!TSTATE_SECURE(mc->_mc_tstate) ||
818	    (mc->_mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
819		return (EINVAL);
820	tf = td->td_frame;
821	pcb = td->td_pcb;
822	/* Make sure the windows are spilled first. */
823	flushw();
824	/*
825	 * Copy the registers which will be restored by tl0_ret() to the
826	 * trapframe.
827	 * Note that we skip %g7 which is used as the userland TLS register
828	 * and %wstate.
829	 */
830	tf->tf_global[1] = mc->mc_global[1];
831	tf->tf_global[2] = mc->mc_global[2];
832	tf->tf_global[3] = mc->mc_global[3];
833	tf->tf_global[4] = mc->mc_global[4];
834	tf->tf_global[5] = mc->mc_global[5];
835	tf->tf_global[6] = mc->mc_global[6];
836	tf->tf_out[0] = mc->mc_out[0];
837	tf->tf_out[1] = mc->mc_out[1];
838	tf->tf_out[2] = mc->mc_out[2];
839	tf->tf_out[3] = mc->mc_out[3];
840	tf->tf_out[4] = mc->mc_out[4];
841	tf->tf_out[5] = mc->mc_out[5];
842	tf->tf_out[6] = mc->mc_out[6];
843	tf->tf_out[7] = mc->mc_out[7];
844	tf->tf_fprs = mc->_mc_fprs;
845	tf->tf_fsr = mc->_mc_fsr;
846	tf->tf_gsr = mc->_mc_gsr;
847	tf->tf_tnpc = mc->_mc_tnpc;
848	tf->tf_tpc = mc->_mc_tpc;
849	tf->tf_tstate = mc->_mc_tstate;
850	tf->tf_y = mc->_mc_y;
851	if ((mc->_mc_fprs & FPRS_FEF) != 0) {
852		tf->tf_fprs = 0;
853		bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
854		pcb->pcb_flags |= PCB_FEF;
855	}
856	return (0);
857}
858
859/*
860 * Exit the kernel and execute a firmware call that will not return, as
861 * specified by the arguments.
862 */
863void
864cpu_shutdown(void *args)
865{
866
867#ifdef SMP
868	cpu_mp_shutdown();
869#endif
870	ofw_exit(args);
871}
872
873/*
874 * Flush the D-cache for non-DMA I/O so that the I-cache can
875 * be made coherent later.
876 */
877void
878cpu_flush_dcache(void *ptr, size_t len)
879{
880
881	/* TBD */
882}
883
884/* Get current clock frequency for the given CPU ID. */
885int
886cpu_est_clockrate(int cpu_id, uint64_t *rate)
887{
888	struct pcpu *pc;
889
890	pc = pcpu_find(cpu_id);
891	if (pc == NULL || rate == NULL)
892		return (EINVAL);
893	*rate = pc->pc_clock;
894	return (0);
895}
896
897/*
898 * Duplicate OF_exit() with a different firmware call function that restores
899 * the trap table, otherwise a RED state exception is triggered in at least
900 * some firmware versions.
901 */
902void
903cpu_halt(void)
904{
905	static struct {
906		cell_t name;
907		cell_t nargs;
908		cell_t nreturns;
909	} args = {
910		(cell_t)"exit",
911		0,
912		0
913	};
914
915	cpu_shutdown(&args);
916}
917
918static void
919sparc64_shutdown_final(void *dummy, int howto)
920{
921	static struct {
922		cell_t name;
923		cell_t nargs;
924		cell_t nreturns;
925	} args = {
926		(cell_t)"SUNW,power-off",
927		0,
928		0
929	};
930
931	/* Turn the power off? */
932	if ((howto & RB_POWEROFF) != 0)
933		cpu_shutdown(&args);
934	/* In case of halt, return to the firmware. */
935	if ((howto & RB_HALT) != 0)
936		cpu_halt();
937}
938
939void
940cpu_idle(int busy)
941{
942
943	/* Insert code to halt (until next interrupt) for the idle loop. */
944}
945
946int
947cpu_idle_wakeup(int cpu)
948{
949
950	return (1);
951}
952
953int
954ptrace_set_pc(struct thread *td, u_long addr)
955{
956
957	td->td_frame->tf_tpc = addr;
958	td->td_frame->tf_tnpc = addr + 4;
959	return (0);
960}
961
962int
963ptrace_single_step(struct thread *td)
964{
965
966	/* TODO; */
967	return (0);
968}
969
970int
971ptrace_clear_single_step(struct thread *td)
972{
973
974	/* TODO; */
975	return (0);
976}
977
978void
979exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
980{
981	struct trapframe *tf;
982	struct pcb *pcb;
983	struct proc *p;
984	u_long sp;
985
986	/* XXX no cpu_exec */
987	p = td->td_proc;
988	p->p_md.md_sigtramp = NULL;
989	if (p->p_md.md_utrap != NULL) {
990		utrap_free(p->p_md.md_utrap);
991		p->p_md.md_utrap = NULL;
992	}
993
994	pcb = td->td_pcb;
995	tf = td->td_frame;
996	sp = rounddown(stack, 16);
997	bzero(pcb, sizeof(*pcb));
998	bzero(tf, sizeof(*tf));
999	tf->tf_out[0] = stack;
1000	tf->tf_out[3] = p->p_sysent->sv_psstrings;
1001	tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
1002	tf->tf_tnpc = imgp->entry_addr + 4;
1003	tf->tf_tpc = imgp->entry_addr;
1004	/*
1005	 * While we could adhere to the memory model indicated in the ELF
1006	 * header, it turns out that just always using TSO performs best.
1007	 */
1008	tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
1009
1010	td->td_retval[0] = tf->tf_out[0];
1011	td->td_retval[1] = tf->tf_out[1];
1012}
1013
1014int
1015fill_regs(struct thread *td, struct reg *regs)
1016{
1017
1018	bcopy(td->td_frame, regs, sizeof(*regs));
1019	return (0);
1020}
1021
1022int
1023set_regs(struct thread *td, struct reg *regs)
1024{
1025	struct trapframe *tf;
1026
1027	if (!TSTATE_SECURE(regs->r_tstate))
1028		return (EINVAL);
1029	tf = td->td_frame;
1030	regs->r_wstate = tf->tf_wstate;
1031	bcopy(regs, tf, sizeof(*regs));
1032	return (0);
1033}
1034
1035int
1036fill_dbregs(struct thread *td, struct dbreg *dbregs)
1037{
1038
1039	return (ENOSYS);
1040}
1041
1042int
1043set_dbregs(struct thread *td, struct dbreg *dbregs)
1044{
1045
1046	return (ENOSYS);
1047}
1048
1049int
1050fill_fpregs(struct thread *td, struct fpreg *fpregs)
1051{
1052	struct trapframe *tf;
1053	struct pcb *pcb;
1054
1055	pcb = td->td_pcb;
1056	tf = td->td_frame;
1057	bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
1058	fpregs->fr_fsr = tf->tf_fsr;
1059	fpregs->fr_gsr = tf->tf_gsr;
1060	fpregs->fr_pad[0] = 0;
1061	return (0);
1062}
1063
1064int
1065set_fpregs(struct thread *td, struct fpreg *fpregs)
1066{
1067	struct trapframe *tf;
1068	struct pcb *pcb;
1069
1070	pcb = td->td_pcb;
1071	tf = td->td_frame;
1072	tf->tf_fprs &= ~FPRS_FEF;
1073	bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
1074	tf->tf_fsr = fpregs->fr_fsr;
1075	tf->tf_gsr = fpregs->fr_gsr;
1076	return (0);
1077}
1078
1079struct md_utrap *
1080utrap_alloc(void)
1081{
1082	struct md_utrap *ut;
1083
1084	ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
1085	ut->ut_refcnt = 1;
1086	return (ut);
1087}
1088
1089void
1090utrap_free(struct md_utrap *ut)
1091{
1092	int refcnt;
1093
1094	if (ut == NULL)
1095		return;
1096	mtx_pool_lock(mtxpool_sleep, ut);
1097	ut->ut_refcnt--;
1098	refcnt = ut->ut_refcnt;
1099	mtx_pool_unlock(mtxpool_sleep, ut);
1100	if (refcnt == 0)
1101		free(ut, M_SUBPROC);
1102}
1103
1104struct md_utrap *
1105utrap_hold(struct md_utrap *ut)
1106{
1107
1108	if (ut == NULL)
1109		return (NULL);
1110	mtx_pool_lock(mtxpool_sleep, ut);
1111	ut->ut_refcnt++;
1112	mtx_pool_unlock(mtxpool_sleep, ut);
1113	return (ut);
1114}
1115