machdep.c revision 186682
1/*-
2 * Copyright (c) 2001 Jake Burkholder.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
35 *	from: FreeBSD: src/sys/i386/i386/machdep.c,v 1.477 2001/08/27
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/sparc64/sparc64/machdep.c 186682 2009-01-01 14:01:21Z marius $");
40
41#include "opt_compat.h"
42#include "opt_ddb.h"
43#include "opt_kstack_pages.h"
44#include "opt_msgbuf.h"
45
46#include <sys/param.h>
47#include <sys/malloc.h>
48#include <sys/proc.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/bus.h>
53#include <sys/cpu.h>
54#include <sys/cons.h>
55#include <sys/eventhandler.h>
56#include <sys/exec.h>
57#include <sys/imgact.h>
58#include <sys/interrupt.h>
59#include <sys/kdb.h>
60#include <sys/kernel.h>
61#include <sys/ktr.h>
62#include <sys/linker.h>
63#include <sys/lock.h>
64#include <sys/msgbuf.h>
65#include <sys/mutex.h>
66#include <sys/pcpu.h>
67#include <sys/ptrace.h>
68#include <sys/reboot.h>
69#include <sys/signalvar.h>
70#include <sys/smp.h>
71#include <sys/sysent.h>
72#include <sys/sysproto.h>
73#include <sys/timetc.h>
74#include <sys/ucontext.h>
75
76#include <dev/ofw/openfirm.h>
77
78#include <vm/vm.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_kern.h>
81#include <vm/vm_page.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_pager.h>
85#include <vm/vm_param.h>
86
87#include <ddb/ddb.h>
88
89#include <machine/bus.h>
90#include <machine/cache.h>
91#include <machine/clock.h>
92#include <machine/cpu.h>
93#include <machine/fp.h>
94#include <machine/fsr.h>
95#include <machine/intr_machdep.h>
96#include <machine/md_var.h>
97#include <machine/metadata.h>
98#include <machine/ofw_machdep.h>
99#include <machine/ofw_mem.h>
100#include <machine/pcb.h>
101#include <machine/pmap.h>
102#include <machine/pstate.h>
103#include <machine/reg.h>
104#include <machine/sigframe.h>
105#include <machine/smp.h>
106#include <machine/tick.h>
107#include <machine/tlb.h>
108#include <machine/tstate.h>
109#include <machine/upa.h>
110#include <machine/ver.h>
111
112typedef int ofw_vec_t(void *);
113
114#ifdef DDB
115extern vm_offset_t ksym_start, ksym_end;
116#endif
117
118int dtlb_slots;
119int itlb_slots;
120struct tlb_entry *kernel_tlbs;
121int kernel_tlb_slots;
122
123int cold = 1;
124long Maxmem;
125long realmem;
126
127char pcpu0[PCPU_PAGES * PAGE_SIZE];
128struct trapframe frame0;
129
130vm_offset_t kstack0;
131vm_paddr_t kstack0_phys;
132
133struct kva_md_info kmi;
134
135u_long ofw_vec;
136u_long ofw_tba;
137
138char sparc64_model[32];
139
140static int cpu_use_vis = 1;
141
142cpu_block_copy_t *cpu_block_copy;
143cpu_block_zero_t *cpu_block_zero;
144
145void sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3,
146    ofw_vec_t *vec);
147void sparc64_shutdown_final(void *dummy, int howto);
148
149static void cpu_startup(void *);
150SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
151
152CTASSERT((1 << INT_SHIFT) == sizeof(int));
153CTASSERT((1 << PTR_SHIFT) == sizeof(char *));
154
155CTASSERT(sizeof(struct reg) == 256);
156CTASSERT(sizeof(struct fpreg) == 272);
157CTASSERT(sizeof(struct __mcontext) == 512);
158
159CTASSERT((sizeof(struct pcb) & (64 - 1)) == 0);
160CTASSERT((offsetof(struct pcb, pcb_kfp) & (64 - 1)) == 0);
161CTASSERT((offsetof(struct pcb, pcb_ufp) & (64 - 1)) == 0);
162CTASSERT(sizeof(struct pcb) <= ((KSTACK_PAGES * PAGE_SIZE) / 8));
163
164CTASSERT(sizeof(struct pcpu) <= ((PCPU_PAGES * PAGE_SIZE) / 2));
165
166static void
167cpu_startup(void *arg)
168{
169	vm_paddr_t physsz;
170	int i;
171
172	physsz = 0;
173	for (i = 0; i < sparc64_nmemreg; i++)
174		physsz += sparc64_memreg[i].mr_size;
175	printf("real memory  = %lu (%lu MB)\n", physsz,
176	    physsz / (1024 * 1024));
177	realmem = (long)physsz / PAGE_SIZE;
178
179	vm_ksubmap_init(&kmi);
180
181	bufinit();
182	vm_pager_bufferinit();
183
184	EVENTHANDLER_REGISTER(shutdown_final, sparc64_shutdown_final, NULL,
185	    SHUTDOWN_PRI_LAST);
186
187	printf("avail memory = %lu (%lu MB)\n", cnt.v_free_count * PAGE_SIZE,
188	    cnt.v_free_count / ((1024 * 1024) / PAGE_SIZE));
189
190	if (bootverbose)
191		printf("machine: %s\n", sparc64_model);
192
193	cpu_identify(rdpr(ver), PCPU_GET(clock), curcpu);
194}
195
196void
197cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
198{
199	struct intr_request *ir;
200	int i;
201
202	pcpu->pc_irtail = &pcpu->pc_irhead;
203	for (i = 0; i < IR_FREE; i++) {
204		ir = &pcpu->pc_irpool[i];
205		ir->ir_next = pcpu->pc_irfree;
206		pcpu->pc_irfree = ir;
207	}
208}
209
210void
211spinlock_enter(void)
212{
213	struct thread *td;
214	register_t pil;
215
216	td = curthread;
217	if (td->td_md.md_spinlock_count == 0) {
218		pil = rdpr(pil);
219		wrpr(pil, 0, PIL_TICK);
220		td->td_md.md_saved_pil = pil;
221	}
222	td->td_md.md_spinlock_count++;
223	critical_enter();
224}
225
226void
227spinlock_exit(void)
228{
229	struct thread *td;
230
231	td = curthread;
232	critical_exit();
233	td->td_md.md_spinlock_count--;
234	if (td->td_md.md_spinlock_count == 0)
235		wrpr(pil, td->td_md.md_saved_pil, 0);
236}
237
238void
239sparc64_init(caddr_t mdp, u_long o1, u_long o2, u_long o3, ofw_vec_t *vec)
240{
241	char type[8];
242	char *env;
243	struct pcpu *pc;
244	vm_offset_t end;
245	caddr_t kmdp;
246	phandle_t child;
247	phandle_t root;
248	uint32_t portid;
249
250	end = 0;
251	kmdp = NULL;
252
253	/*
254	 * Find out what kind of CPU we have first, for anything that changes
255	 * behaviour.
256	 */
257	cpu_impl = VER_IMPL(rdpr(ver));
258
259	/*
260	 * Do CPU-specific Initialization.
261	 */
262	if (cpu_impl >= CPU_IMPL_ULTRASPARCIII)
263		cheetah_init();
264
265	/*
266	 * Clear (S)TICK timer (including NPT).
267	 */
268	tick_clear();
269
270	/*
271	 * UltraSparc II[e,i] based systems come up with the tick interrupt
272	 * enabled and a handler that resets the tick counter, causing DELAY()
273	 * to not work properly when used early in boot.
274	 * UltraSPARC III based systems come up with the system tick interrupt
275	 * enabled, causing an interrupt storm on startup since they are not
276	 * handled.
277	 */
278	tick_stop();
279
280	/*
281	 * Set up Open Firmware entry points.
282	 */
283	ofw_tba = rdpr(tba);
284	ofw_vec = (u_long)vec;
285
286	/*
287	 * Parse metadata if present and fetch parameters.  Must be before the
288	 * console is inited so cninit gets the right value of boothowto.
289	 */
290	if (mdp != NULL) {
291		preload_metadata = mdp;
292		kmdp = preload_search_by_type("elf kernel");
293		if (kmdp != NULL) {
294			boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
295			kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
296			end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
297			kernel_tlb_slots = MD_FETCH(kmdp, MODINFOMD_DTLB_SLOTS,
298			    int);
299			kernel_tlbs = (void *)preload_search_info(kmdp,
300			    MODINFO_METADATA | MODINFOMD_DTLB);
301		}
302	}
303
304	init_param1();
305
306	/*
307	 * Initialize Open Firmware (needed for console).
308	 */
309	OF_install(OFW_STD_DIRECT, 0);
310	OF_init(ofw_entry);
311
312	/*
313	 * Prime our per-CPU data page for use.  Note, we are using it for
314	 * our stack, so don't pass the real size (PAGE_SIZE) to pcpu_init
315	 * or it'll zero it out from under us.
316	 */
317	pc = (struct pcpu *)(pcpu0 + (PCPU_PAGES * PAGE_SIZE)) - 1;
318	pcpu_init(pc, 0, sizeof(struct pcpu));
319	pc->pc_addr = (vm_offset_t)pcpu0;
320	pc->pc_mid = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
321	pc->pc_tlb_ctx = TLB_CTX_USER_MIN;
322	pc->pc_tlb_ctx_min = TLB_CTX_USER_MIN;
323	pc->pc_tlb_ctx_max = TLB_CTX_USER_MAX;
324
325	/*
326	 * Determine the OFW node and frequency of the BSP (and ensure the
327	 * BSP is in the device tree in the first place).
328	 */
329	pc->pc_node = 0;
330	root = OF_peer(0);
331	for (child = OF_child(root); child != 0; child = OF_peer(child)) {
332		if (OF_getprop(child, "device_type", type, sizeof(type)) <= 0)
333			continue;
334		if (strcmp(type, "cpu") != 0)
335			continue;
336		if (OF_getprop(child, cpu_impl < CPU_IMPL_ULTRASPARCIII ?
337		    "upa-portid" : "portid", &portid, sizeof(portid)) <= 0)
338			continue;
339		if (portid == pc->pc_mid) {
340			pc->pc_node = child;
341			break;
342		}
343	}
344	if (pc->pc_node == 0)
345		OF_exit();
346	if (OF_getprop(child, "clock-frequency", &pc->pc_clock,
347	    sizeof(pc->pc_clock)) <= 0)
348		OF_exit();
349
350	/*
351	 * Provide a DELAY() that works before PCPU_REG is set.  We can't
352	 * set PCPU_REG without also taking over the trap table or the
353	 * firmware will overwrite it.  Unfortunately, it's way to early
354	 * to also take over the trap table at this point.
355	 */
356	clock_boot = pc->pc_clock;
357	delay_func = delay_boot;
358
359	/*
360	 * Initialize the console before printing anything.
361	 * NB: the low-level console drivers require a working DELAY() at
362	 * this point.
363	 */
364	cninit();
365
366	/*
367	 * Panic if there is no metadata.  Most likely the kernel was booted
368	 * directly, instead of through loader(8).
369	 */
370	if (mdp == NULL || kmdp == NULL) {
371		printf("sparc64_init: no loader metadata.\n"
372		    "This probably means you are not using loader(8).\n");
373		panic("sparc64_init");
374	}
375
376	/*
377	 * Sanity check the kernel end, which is important.
378	 */
379	if (end == 0) {
380		printf("sparc64_init: warning, kernel end not specified.\n"
381		    "Attempting to continue anyway.\n");
382		end = (vm_offset_t)_end;
383	}
384
385	/*
386	 * Determine the TLB slot maxima, which are expected to be
387	 * equal across all CPUs.
388	 * NB: for Cheetah-class CPUs, these properties only refer
389	 * to the t16s.
390	 */
391	if (OF_getprop(pc->pc_node, "#dtlb-entries", &dtlb_slots,
392	    sizeof(dtlb_slots)) == -1)
393		panic("sparc64_init: cannot determine number of dTLB slots");
394	if (OF_getprop(pc->pc_node, "#itlb-entries", &itlb_slots,
395	    sizeof(itlb_slots)) == -1)
396		panic("sparc64_init: cannot determine number of iTLB slots");
397
398	cache_init(pc);
399	cache_enable();
400	uma_set_align(pc->pc_cache.dc_linesize - 1);
401
402	cpu_block_copy = bcopy;
403	cpu_block_zero = bzero;
404	getenv_int("machdep.use_vis", &cpu_use_vis);
405	if (cpu_use_vis) {
406		switch (cpu_impl) {
407		case CPU_IMPL_SPARC64:
408		case CPU_IMPL_ULTRASPARCI:
409		case CPU_IMPL_ULTRASPARCII:
410		case CPU_IMPL_ULTRASPARCIIi:
411		case CPU_IMPL_ULTRASPARCIIe:
412		case CPU_IMPL_ULTRASPARCIII:	/* NB: we've disabled P$. */
413		case CPU_IMPL_ULTRASPARCIIIp:
414		case CPU_IMPL_ULTRASPARCIIIi:
415		case CPU_IMPL_ULTRASPARCIV:
416		case CPU_IMPL_ULTRASPARCIVp:
417		case CPU_IMPL_ULTRASPARCIIIip:
418			cpu_block_copy = spitfire_block_copy;
419			cpu_block_zero = spitfire_block_zero;
420			break;
421		}
422	}
423
424#ifdef SMP
425	mp_init();
426#endif
427
428	/*
429	 * Initialize virtual memory and calculate physmem.
430	 */
431	pmap_bootstrap(end);
432
433	/*
434	 * Initialize tunables.
435	 */
436	init_param2(physmem);
437	env = getenv("kernelname");
438	if (env != NULL) {
439		strlcpy(kernelname, env, sizeof(kernelname));
440		freeenv(env);
441	}
442
443	/*
444	 * Initialize the interrupt tables.
445	 */
446	intr_init1();
447
448	/*
449	 * Initialize proc0, set kstack0, frame0, curthread and curpcb.
450	 */
451	proc_linkup0(&proc0, &thread0);
452	proc0.p_md.md_sigtramp = NULL;
453	proc0.p_md.md_utrap = NULL;
454	thread0.td_kstack = kstack0;
455	thread0.td_pcb = (struct pcb *)
456	    (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
457	frame0.tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_PRIV;
458	thread0.td_frame = &frame0;
459	pc->pc_curthread = &thread0;
460	pc->pc_curpcb = thread0.td_pcb;
461
462	/*
463	 * Initialize global registers.
464	 */
465	cpu_setregs(pc);
466
467	/*
468	 * Take over the trap table via the PROM.  Using the PROM for this
469	 * is necessary in order to set obp-control-relinquished to true
470	 * within the PROM so obtaining /virtual-memory/translations doesn't
471	 * trigger a fatal reset error or worse things further down the road.
472	 * XXX it should be possible to use this soley instead of writing
473	 * %tba in cpu_setregs().  Doing so causes a hang however.
474	 */
475	sun4u_set_traptable(tl0_base);
476
477	/*
478	 * It's now safe to use the real DELAY().
479	 */
480	delay_func = delay_tick;
481
482	/*
483	 * Initialize the message buffer (after setting trap table).
484	 */
485	msgbufinit(msgbufp, MSGBUF_SIZE);
486
487	mutex_init();
488	intr_init2();
489
490	/*
491	 * Finish pmap initialization now that we're ready for mutexes.
492	 */
493	PMAP_LOCK_INIT(kernel_pmap);
494
495	OF_getprop(root, "name", sparc64_model, sizeof(sparc64_model) - 1);
496
497	kdb_init();
498
499#ifdef KDB
500	if (boothowto & RB_KDB)
501		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
502#endif
503}
504
505void
506sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
507{
508	struct trapframe *tf;
509	struct sigframe *sfp;
510	struct sigacts *psp;
511	struct sigframe sf;
512	struct thread *td;
513	struct frame *fp;
514	struct proc *p;
515	u_long sp;
516	int oonstack;
517	int sig;
518
519	oonstack = 0;
520	td = curthread;
521	p = td->td_proc;
522	PROC_LOCK_ASSERT(p, MA_OWNED);
523	sig = ksi->ksi_signo;
524	psp = p->p_sigacts;
525	mtx_assert(&psp->ps_mtx, MA_OWNED);
526	tf = td->td_frame;
527	sp = tf->tf_sp + SPOFF;
528	oonstack = sigonstack(sp);
529
530	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
531	    catcher, sig);
532
533	/* Make sure we have a signal trampoline to return to. */
534	if (p->p_md.md_sigtramp == NULL) {
535		/*
536		 * No signal trampoline... kill the process.
537		 */
538		CTR0(KTR_SIG, "sendsig: no sigtramp");
539		printf("sendsig: %s is too old, rebuild it\n", p->p_comm);
540		sigexit(td, sig);
541		/* NOTREACHED */
542	}
543
544	/* Save user context. */
545	bzero(&sf, sizeof(sf));
546	get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
547	sf.sf_uc.uc_sigmask = *mask;
548	sf.sf_uc.uc_stack = td->td_sigstk;
549	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ?
550	    ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
551
552	/* Allocate and validate space for the signal handler context. */
553	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
554	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
555		sfp = (struct sigframe *)(td->td_sigstk.ss_sp +
556		    td->td_sigstk.ss_size - sizeof(struct sigframe));
557	} else
558		sfp = (struct sigframe *)sp - 1;
559	mtx_unlock(&psp->ps_mtx);
560	PROC_UNLOCK(p);
561
562	fp = (struct frame *)sfp - 1;
563
564	/* Translate the signal if appropriate. */
565	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
566		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
567
568	/* Build the argument list for the signal handler. */
569	tf->tf_out[0] = sig;
570	tf->tf_out[2] = (register_t)&sfp->sf_uc;
571	tf->tf_out[4] = (register_t)catcher;
572	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
573		/* Signal handler installed with SA_SIGINFO. */
574		tf->tf_out[1] = (register_t)&sfp->sf_si;
575
576		/* Fill in POSIX parts. */
577		sf.sf_si = ksi->ksi_info;
578		sf.sf_si.si_signo = sig; /* maybe a translated signal */
579	} else {
580		/* Old FreeBSD-style arguments. */
581		tf->tf_out[1] = ksi->ksi_code;
582		tf->tf_out[3] = (register_t)ksi->ksi_addr;
583	}
584
585	/* Copy the sigframe out to the user's stack. */
586	if (rwindow_save(td) != 0 || copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
587	    suword(&fp->fr_in[6], tf->tf_out[6]) != 0) {
588		/*
589		 * Something is wrong with the stack pointer.
590		 * ...Kill the process.
591		 */
592		CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
593		PROC_LOCK(p);
594		sigexit(td, SIGILL);
595		/* NOTREACHED */
596	}
597
598	tf->tf_tpc = (u_long)p->p_md.md_sigtramp;
599	tf->tf_tnpc = tf->tf_tpc + 4;
600	tf->tf_sp = (u_long)fp - SPOFF;
601
602	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#lx sp=%#lx", td, tf->tf_tpc,
603	    tf->tf_sp);
604
605	PROC_LOCK(p);
606	mtx_lock(&psp->ps_mtx);
607}
608
609#ifndef	_SYS_SYSPROTO_H_
610struct sigreturn_args {
611	ucontext_t *ucp;
612};
613#endif
614
615/*
616 * MPSAFE
617 */
618int
619sigreturn(struct thread *td, struct sigreturn_args *uap)
620{
621	struct proc *p;
622	mcontext_t *mc;
623	ucontext_t uc;
624	int error;
625
626	p = td->td_proc;
627	if (rwindow_save(td)) {
628		PROC_LOCK(p);
629		sigexit(td, SIGILL);
630	}
631
632	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
633	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
634		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
635		return (EFAULT);
636	}
637
638	mc = &uc.uc_mcontext;
639	error = set_mcontext(td, mc);
640	if (error != 0)
641		return (error);
642
643	PROC_LOCK(p);
644	td->td_sigmask = uc.uc_sigmask;
645	SIG_CANTMASK(td->td_sigmask);
646	signotify(td);
647	PROC_UNLOCK(p);
648
649	CTR4(KTR_SIG, "sigreturn: return td=%p pc=%#lx sp=%#lx tstate=%#lx",
650	    td, mc->mc_tpc, mc->mc_sp, mc->mc_tstate);
651	return (EJUSTRETURN);
652}
653
654#ifdef COMPAT_FREEBSD4
655int
656freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
657{
658
659	return sigreturn(td, (struct sigreturn_args *)uap);
660}
661#endif
662
663/*
664 * Construct a PCB from a trapframe. This is called from kdb_trap() where
665 * we want to start a backtrace from the function that caused us to enter
666 * the debugger. We have the context in the trapframe, but base the trace
667 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
668 * enough for a backtrace.
669 */
670void
671makectx(struct trapframe *tf, struct pcb *pcb)
672{
673
674	pcb->pcb_pc = tf->tf_tpc;
675	pcb->pcb_sp = tf->tf_sp;
676}
677
678int
679get_mcontext(struct thread *td, mcontext_t *mc, int flags)
680{
681	struct trapframe *tf;
682	struct pcb *pcb;
683
684	tf = td->td_frame;
685	pcb = td->td_pcb;
686	bcopy(tf, mc, sizeof(*tf));
687	if (flags & GET_MC_CLEAR_RET) {
688		mc->mc_out[0] = 0;
689		mc->mc_out[1] = 0;
690	}
691	mc->mc_flags = _MC_VERSION;
692	critical_enter();
693	if ((tf->tf_fprs & FPRS_FEF) != 0) {
694		savefpctx(pcb->pcb_ufp);
695		tf->tf_fprs &= ~FPRS_FEF;
696		pcb->pcb_flags |= PCB_FEF;
697	}
698	if ((pcb->pcb_flags & PCB_FEF) != 0) {
699		bcopy(pcb->pcb_ufp, mc->mc_fp, sizeof(mc->mc_fp));
700		mc->mc_fprs |= FPRS_FEF;
701	}
702	critical_exit();
703	return (0);
704}
705
706int
707set_mcontext(struct thread *td, const mcontext_t *mc)
708{
709	struct trapframe *tf;
710	struct pcb *pcb;
711	uint64_t wstate;
712
713	if (!TSTATE_SECURE(mc->mc_tstate) ||
714	    (mc->mc_flags & ((1L << _MC_VERSION_BITS) - 1)) != _MC_VERSION)
715		return (EINVAL);
716	tf = td->td_frame;
717	pcb = td->td_pcb;
718	/* Make sure the windows are spilled first. */
719	flushw();
720	wstate = tf->tf_wstate;
721	bcopy(mc, tf, sizeof(*tf));
722	tf->tf_wstate = wstate;
723	if ((mc->mc_fprs & FPRS_FEF) != 0) {
724		tf->tf_fprs = 0;
725		bcopy(mc->mc_fp, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
726		pcb->pcb_flags |= PCB_FEF;
727	}
728	return (0);
729}
730
731/*
732 * Exit the kernel and execute a firmware call that will not return, as
733 * specified by the arguments.
734 */
735void
736cpu_shutdown(void *args)
737{
738
739#ifdef SMP
740	cpu_mp_shutdown();
741#endif
742	ofw_exit(args);
743}
744
745/* Get current clock frequency for the given CPU ID. */
746int
747cpu_est_clockrate(int cpu_id, uint64_t *rate)
748{
749	struct pcpu *pc;
750
751	pc = pcpu_find(cpu_id);
752	if (pc == NULL || rate == NULL)
753		return (EINVAL);
754	*rate = pc->pc_clock;
755	return (0);
756}
757
758/*
759 * Duplicate OF_exit() with a different firmware call function that restores
760 * the trap table, otherwise a RED state exception is triggered in at least
761 * some firmware versions.
762 */
763void
764cpu_halt(void)
765{
766	static struct {
767		cell_t name;
768		cell_t nargs;
769		cell_t nreturns;
770	} args = {
771		(cell_t)"exit",
772		0,
773		0
774	};
775
776	cpu_shutdown(&args);
777}
778
779void
780sparc64_shutdown_final(void *dummy, int howto)
781{
782	static struct {
783		cell_t name;
784		cell_t nargs;
785		cell_t nreturns;
786	} args = {
787		(cell_t)"SUNW,power-off",
788		0,
789		0
790	};
791
792	/* Turn the power off? */
793	if ((howto & RB_POWEROFF) != 0)
794		cpu_shutdown(&args);
795	/* In case of halt, return to the firmware. */
796	if ((howto & RB_HALT) != 0)
797		cpu_halt();
798}
799
800void
801cpu_idle(int busy)
802{
803
804	/* Insert code to halt (until next interrupt) for the idle loop. */
805}
806
807int
808cpu_idle_wakeup(int cpu)
809{
810
811	return (0);
812}
813
814int
815ptrace_set_pc(struct thread *td, u_long addr)
816{
817
818	td->td_frame->tf_tpc = addr;
819	td->td_frame->tf_tnpc = addr + 4;
820	return (0);
821}
822
823int
824ptrace_single_step(struct thread *td)
825{
826
827	/* TODO; */
828	return (0);
829}
830
831int
832ptrace_clear_single_step(struct thread *td)
833{
834
835	/* TODO; */
836	return (0);
837}
838
839void
840exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
841{
842	struct trapframe *tf;
843	struct pcb *pcb;
844	struct proc *p;
845	u_long sp;
846
847	/* XXX no cpu_exec */
848	p = td->td_proc;
849	p->p_md.md_sigtramp = NULL;
850	if (p->p_md.md_utrap != NULL) {
851		utrap_free(p->p_md.md_utrap);
852		p->p_md.md_utrap = NULL;
853	}
854
855	pcb = td->td_pcb;
856	tf = td->td_frame;
857	sp = rounddown(stack, 16);
858	bzero(pcb, sizeof(*pcb));
859	bzero(tf, sizeof(*tf));
860	tf->tf_out[0] = stack;
861	tf->tf_out[3] = p->p_sysent->sv_psstrings;
862	tf->tf_out[6] = sp - SPOFF - sizeof(struct frame);
863	tf->tf_tnpc = entry + 4;
864	tf->tf_tpc = entry;
865	tf->tf_tstate = TSTATE_IE | TSTATE_PEF | TSTATE_MM_TSO;
866
867	td->td_retval[0] = tf->tf_out[0];
868	td->td_retval[1] = tf->tf_out[1];
869}
870
871int
872fill_regs(struct thread *td, struct reg *regs)
873{
874
875	bcopy(td->td_frame, regs, sizeof(*regs));
876	return (0);
877}
878
879int
880set_regs(struct thread *td, struct reg *regs)
881{
882	struct trapframe *tf;
883
884	if (!TSTATE_SECURE(regs->r_tstate))
885		return (EINVAL);
886	tf = td->td_frame;
887	regs->r_wstate = tf->tf_wstate;
888	bcopy(regs, tf, sizeof(*regs));
889	return (0);
890}
891
892int
893fill_dbregs(struct thread *td, struct dbreg *dbregs)
894{
895
896	return (ENOSYS);
897}
898
899int
900set_dbregs(struct thread *td, struct dbreg *dbregs)
901{
902
903	return (ENOSYS);
904}
905
906int
907fill_fpregs(struct thread *td, struct fpreg *fpregs)
908{
909	struct trapframe *tf;
910	struct pcb *pcb;
911
912	pcb = td->td_pcb;
913	tf = td->td_frame;
914	bcopy(pcb->pcb_ufp, fpregs->fr_regs, sizeof(fpregs->fr_regs));
915	fpregs->fr_fsr = tf->tf_fsr;
916	fpregs->fr_gsr = tf->tf_gsr;
917	return (0);
918}
919
920int
921set_fpregs(struct thread *td, struct fpreg *fpregs)
922{
923	struct trapframe *tf;
924	struct pcb *pcb;
925
926	pcb = td->td_pcb;
927	tf = td->td_frame;
928	tf->tf_fprs &= ~FPRS_FEF;
929	bcopy(fpregs->fr_regs, pcb->pcb_ufp, sizeof(pcb->pcb_ufp));
930	tf->tf_fsr = fpregs->fr_fsr;
931	tf->tf_gsr = fpregs->fr_gsr;
932	return (0);
933}
934
935struct md_utrap *
936utrap_alloc(void)
937{
938	struct md_utrap *ut;
939
940	ut = malloc(sizeof(struct md_utrap), M_SUBPROC, M_WAITOK | M_ZERO);
941	ut->ut_refcnt = 1;
942	return (ut);
943}
944
945void
946utrap_free(struct md_utrap *ut)
947{
948	int refcnt;
949
950	if (ut == NULL)
951		return;
952	mtx_pool_lock(mtxpool_sleep, ut);
953	ut->ut_refcnt--;
954	refcnt = ut->ut_refcnt;
955	mtx_pool_unlock(mtxpool_sleep, ut);
956	if (refcnt == 0)
957		free(ut, M_SUBPROC);
958}
959
960struct md_utrap *
961utrap_hold(struct md_utrap *ut)
962{
963
964	if (ut == NULL)
965		return (NULL);
966	mtx_pool_lock(mtxpool_sleep, ut);
967	ut->ut_refcnt++;
968	mtx_pool_unlock(mtxpool_sleep, ut);
969	return (ut);
970}
971