1/*-
2 * Copyright (c) 1999-2005 Apple Inc.
3 * Copyright (c) 2006-2007 Robert N. M. Watson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1.  Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 * 2.  Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 * 3.  Neither the name of Apple Inc. ("Apple") nor the names of
15 *     its contributors may be used to endorse or promote products derived
16 *     from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/sys/security/audit/audit.c 327409 2017-12-31 03:35:34Z mjg $");
33
34#include <sys/param.h>
35#include <sys/condvar.h>
36#include <sys/conf.h>
37#include <sys/file.h>
38#include <sys/filedesc.h>
39#include <sys/fcntl.h>
40#include <sys/ipc.h>
41#include <sys/jail.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/malloc.h>
45#include <sys/mount.h>
46#include <sys/namei.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/queue.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/protosw.h>
53#include <sys/domain.h>
54#include <sys/sysctl.h>
55#include <sys/sysproto.h>
56#include <sys/sysent.h>
57#include <sys/systm.h>
58#include <sys/ucred.h>
59#include <sys/uio.h>
60#include <sys/un.h>
61#include <sys/unistd.h>
62#include <sys/vnode.h>
63
64#include <bsm/audit.h>
65#include <bsm/audit_internal.h>
66#include <bsm/audit_kevents.h>
67
68#include <netinet/in.h>
69#include <netinet/in_pcb.h>
70
71#include <security/audit/audit.h>
72#include <security/audit/audit_private.h>
73
74#include <vm/uma.h>
75
76FEATURE(audit, "BSM audit support");
77
78static uma_zone_t	audit_record_zone;
79static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
80MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
81MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
82MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
83MALLOC_DEFINE(M_AUDITGIDSET, "audit_gidset", "Audit GID set storage");
84
85static SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0,
86    "TrustedBSD audit controls");
87
88/*
89 * Audit control settings that are set/read by system calls and are hence
90 * non-static.
91 *
92 * Define the audit control flags.
93 */
94int __read_frequently	audit_enabled;
95int			audit_suspended;
96
97/*
98 * Flags controlling behavior in low storage situations.  Should we panic if
99 * a write fails?  Should we fail stop if we're out of disk space?
100 */
101int			audit_panic_on_write_fail;
102int			audit_fail_stop;
103int			audit_argv;
104int			audit_arge;
105
106/*
107 * Are we currently "failing stop" due to out of disk space?
108 */
109int			audit_in_failure;
110
111/*
112 * Global audit statistics.
113 */
114struct audit_fstat	audit_fstat;
115
116/*
117 * Preselection mask for non-attributable events.
118 */
119struct au_mask		audit_nae_mask;
120
121/*
122 * Mutex to protect global variables shared between various threads and
123 * processes.
124 */
125struct mtx		audit_mtx;
126
127/*
128 * Queue of audit records ready for delivery to disk.  We insert new records
129 * at the tail, and remove records from the head.  Also, a count of the
130 * number of records used for checking queue depth.  In addition, a counter
131 * of records that we have allocated but are not yet in the queue, which is
132 * needed to estimate the total size of the combined set of records
133 * outstanding in the system.
134 */
135struct kaudit_queue	audit_q;
136int			audit_q_len;
137int			audit_pre_q_len;
138
139/*
140 * Audit queue control settings (minimum free, low/high water marks, etc.)
141 */
142struct au_qctrl		audit_qctrl;
143
144/*
145 * Condition variable to signal to the worker that it has work to do: either
146 * new records are in the queue, or a log replacement is taking place.
147 */
148struct cv		audit_worker_cv;
149
150/*
151 * Condition variable to flag when crossing the low watermark, meaning that
152 * threads blocked due to hitting the high watermark can wake up and continue
153 * to commit records.
154 */
155struct cv		audit_watermark_cv;
156
157/*
158 * Condition variable for  auditing threads wait on when in fail-stop mode.
159 * Threads wait on this CV forever (and ever), never seeing the light of day
160 * again.
161 */
162static struct cv	audit_fail_cv;
163
164/*
165 * Kernel audit information.  This will store the current audit address
166 * or host information that the kernel will use when it's generating
167 * audit records.  This data is modified by the A_GET{SET}KAUDIT auditon(2)
168 * command.
169 */
170static struct auditinfo_addr	audit_kinfo;
171static struct rwlock		audit_kinfo_lock;
172
173#define	KINFO_LOCK_INIT()	rw_init(&audit_kinfo_lock, \
174				    "audit_kinfo_lock")
175#define	KINFO_RLOCK()		rw_rlock(&audit_kinfo_lock)
176#define	KINFO_WLOCK()		rw_wlock(&audit_kinfo_lock)
177#define	KINFO_RUNLOCK()		rw_runlock(&audit_kinfo_lock)
178#define	KINFO_WUNLOCK()		rw_wunlock(&audit_kinfo_lock)
179
180void
181audit_set_kinfo(struct auditinfo_addr *ak)
182{
183
184	KASSERT(ak->ai_termid.at_type == AU_IPv4 ||
185	    ak->ai_termid.at_type == AU_IPv6,
186	    ("audit_set_kinfo: invalid address type"));
187
188	KINFO_WLOCK();
189	audit_kinfo = *ak;
190	KINFO_WUNLOCK();
191}
192
193void
194audit_get_kinfo(struct auditinfo_addr *ak)
195{
196
197	KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 ||
198	    audit_kinfo.ai_termid.at_type == AU_IPv6,
199	    ("audit_set_kinfo: invalid address type"));
200
201	KINFO_RLOCK();
202	*ak = audit_kinfo;
203	KINFO_RUNLOCK();
204}
205
206/*
207 * Construct an audit record for the passed thread.
208 */
209static int
210audit_record_ctor(void *mem, int size, void *arg, int flags)
211{
212	struct kaudit_record *ar;
213	struct thread *td;
214	struct ucred *cred;
215	struct prison *pr;
216
217	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
218
219	td = arg;
220	ar = mem;
221	bzero(ar, sizeof(*ar));
222	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
223	nanotime(&ar->k_ar.ar_starttime);
224
225	/*
226	 * Export the subject credential.
227	 */
228	cred = td->td_ucred;
229	cru2x(cred, &ar->k_ar.ar_subj_cred);
230	ar->k_ar.ar_subj_ruid = cred->cr_ruid;
231	ar->k_ar.ar_subj_rgid = cred->cr_rgid;
232	ar->k_ar.ar_subj_egid = cred->cr_groups[0];
233	ar->k_ar.ar_subj_auid = cred->cr_audit.ai_auid;
234	ar->k_ar.ar_subj_asid = cred->cr_audit.ai_asid;
235	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
236	ar->k_ar.ar_subj_amask = cred->cr_audit.ai_mask;
237	ar->k_ar.ar_subj_term_addr = cred->cr_audit.ai_termid;
238	/*
239	 * If this process is jailed, make sure we capture the name of the
240	 * jail so we can use it to generate a zonename token when we covert
241	 * this record to BSM.
242	 */
243	if (jailed(cred)) {
244		pr = cred->cr_prison;
245		(void) strlcpy(ar->k_ar.ar_jailname, pr->pr_name,
246		    sizeof(ar->k_ar.ar_jailname));
247	} else
248		ar->k_ar.ar_jailname[0] = '\0';
249	return (0);
250}
251
252static void
253audit_record_dtor(void *mem, int size, void *arg)
254{
255	struct kaudit_record *ar;
256
257	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
258
259	ar = mem;
260	if (ar->k_ar.ar_arg_upath1 != NULL)
261		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
262	if (ar->k_ar.ar_arg_upath2 != NULL)
263		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
264	if (ar->k_ar.ar_arg_text != NULL)
265		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
266	if (ar->k_udata != NULL)
267		free(ar->k_udata, M_AUDITDATA);
268	if (ar->k_ar.ar_arg_argv != NULL)
269		free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
270	if (ar->k_ar.ar_arg_envv != NULL)
271		free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
272	if (ar->k_ar.ar_arg_groups.gidset != NULL)
273		free(ar->k_ar.ar_arg_groups.gidset, M_AUDITGIDSET);
274}
275
276/*
277 * Initialize the Audit subsystem: configuration state, work queue,
278 * synchronization primitives, worker thread, and trigger device node.  Also
279 * call into the BSM assembly code to initialize it.
280 */
281static void
282audit_init(void)
283{
284
285	audit_enabled = 0;
286	audit_suspended = 0;
287	audit_panic_on_write_fail = 0;
288	audit_fail_stop = 0;
289	audit_in_failure = 0;
290	audit_argv = 0;
291	audit_arge = 0;
292
293	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded. */
294	audit_fstat.af_currsz = 0;
295	audit_nae_mask.am_success = 0;
296	audit_nae_mask.am_failure = 0;
297
298	TAILQ_INIT(&audit_q);
299	audit_q_len = 0;
300	audit_pre_q_len = 0;
301	audit_qctrl.aq_hiwater = AQ_HIWATER;
302	audit_qctrl.aq_lowater = AQ_LOWATER;
303	audit_qctrl.aq_bufsz = AQ_BUFSZ;
304	audit_qctrl.aq_minfree = AU_FS_MINFREE;
305
306	audit_kinfo.ai_termid.at_type = AU_IPv4;
307	audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY;
308
309	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
310	KINFO_LOCK_INIT();
311	cv_init(&audit_worker_cv, "audit_worker_cv");
312	cv_init(&audit_watermark_cv, "audit_watermark_cv");
313	cv_init(&audit_fail_cv, "audit_fail_cv");
314
315	audit_record_zone = uma_zcreate("audit_record",
316	    sizeof(struct kaudit_record), audit_record_ctor,
317	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
318
319	/* Initialize the BSM audit subsystem. */
320	kau_init();
321
322	audit_trigger_init();
323
324	/* Register shutdown handler. */
325	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
326	    SHUTDOWN_PRI_FIRST);
327
328	/* Start audit worker thread. */
329	audit_worker_init();
330}
331
332SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
333
334/*
335 * Drain the audit queue and close the log at shutdown.  Note that this can
336 * be called both from the system shutdown path and also from audit
337 * configuration syscalls, so 'arg' and 'howto' are ignored.
338 *
339 * XXXRW: In FreeBSD 7.x and 8.x, this fails to wait for the record queue to
340 * drain before returning, which could lead to lost records on shutdown.
341 */
342void
343audit_shutdown(void *arg, int howto)
344{
345
346	audit_rotate_vnode(NULL, NULL);
347}
348
349/*
350 * Return the current thread's audit record, if any.
351 */
352struct kaudit_record *
353currecord(void)
354{
355
356	return (curthread->td_ar);
357}
358
359/*
360 * XXXAUDIT: There are a number of races present in the code below due to
361 * release and re-grab of the mutex.  The code should be revised to become
362 * slightly less racy.
363 *
364 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
365 * pre_q space, suspending the system call until there is room?
366 */
367struct kaudit_record *
368audit_new(int event, struct thread *td)
369{
370	struct kaudit_record *ar;
371	int no_record;
372
373	mtx_lock(&audit_mtx);
374	no_record = (audit_suspended || !audit_enabled);
375	mtx_unlock(&audit_mtx);
376	if (no_record)
377		return (NULL);
378
379	/*
380	 * Note: the number of outstanding uncommitted audit records is
381	 * limited to the number of concurrent threads servicing system calls
382	 * in the kernel.
383	 */
384	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
385	ar->k_ar.ar_event = event;
386
387	mtx_lock(&audit_mtx);
388	audit_pre_q_len++;
389	mtx_unlock(&audit_mtx);
390
391	return (ar);
392}
393
394void
395audit_free(struct kaudit_record *ar)
396{
397
398	uma_zfree(audit_record_zone, ar);
399}
400
401void
402audit_commit(struct kaudit_record *ar, int error, int retval)
403{
404	au_event_t event;
405	au_class_t class;
406	au_id_t auid;
407	int sorf;
408	struct au_mask *aumask;
409
410	if (ar == NULL)
411		return;
412
413	/*
414	 * Decide whether to commit the audit record by checking the error
415	 * value from the system call and using the appropriate audit mask.
416	 */
417	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
418		aumask = &audit_nae_mask;
419	else
420		aumask = &ar->k_ar.ar_subj_amask;
421
422	if (error)
423		sorf = AU_PRS_FAILURE;
424	else
425		sorf = AU_PRS_SUCCESS;
426
427	/*
428	 * syscalls.master sometimes contains a prototype event number, which
429	 * we will transform into a more specific event number now that we
430	 * have more complete information gathered during the system call.
431	 */
432	switch(ar->k_ar.ar_event) {
433	case AUE_OPEN_RWTC:
434		ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
435		    ar->k_ar.ar_arg_fflags, error);
436		break;
437
438	case AUE_OPENAT_RWTC:
439		ar->k_ar.ar_event = audit_flags_and_error_to_openatevent(
440		    ar->k_ar.ar_arg_fflags, error);
441		break;
442
443	case AUE_SYSCTL:
444		ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
445		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
446		break;
447
448	case AUE_AUDITON:
449		/* Convert the auditon() command to an event. */
450		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
451		break;
452	}
453
454	auid = ar->k_ar.ar_subj_auid;
455	event = ar->k_ar.ar_event;
456	class = au_event_class(event);
457
458	ar->k_ar_commit |= AR_COMMIT_KERNEL;
459	if (au_preselect(event, class, aumask, sorf) != 0)
460		ar->k_ar_commit |= AR_PRESELECT_TRAIL;
461	if (audit_pipe_preselect(auid, event, class, sorf,
462	    ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
463		ar->k_ar_commit |= AR_PRESELECT_PIPE;
464	if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
465	    AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) {
466		mtx_lock(&audit_mtx);
467		audit_pre_q_len--;
468		mtx_unlock(&audit_mtx);
469		audit_free(ar);
470		return;
471	}
472
473	ar->k_ar.ar_errno = error;
474	ar->k_ar.ar_retval = retval;
475	nanotime(&ar->k_ar.ar_endtime);
476
477	/*
478	 * Note: it could be that some records initiated while audit was
479	 * enabled should still be committed?
480	 */
481	mtx_lock(&audit_mtx);
482	if (audit_suspended || !audit_enabled) {
483		audit_pre_q_len--;
484		mtx_unlock(&audit_mtx);
485		audit_free(ar);
486		return;
487	}
488
489	/*
490	 * Constrain the number of committed audit records based on the
491	 * configurable parameter.
492	 */
493	while (audit_q_len >= audit_qctrl.aq_hiwater)
494		cv_wait(&audit_watermark_cv, &audit_mtx);
495
496	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
497	audit_q_len++;
498	audit_pre_q_len--;
499	cv_signal(&audit_worker_cv);
500	mtx_unlock(&audit_mtx);
501}
502
503/*
504 * audit_syscall_enter() is called on entry to each system call.  It is
505 * responsible for deciding whether or not to audit the call (preselection),
506 * and if so, allocating a per-thread audit record.  audit_new() will fill in
507 * basic thread/credential properties.
508 */
509void
510audit_syscall_enter(unsigned short code, struct thread *td)
511{
512	struct au_mask *aumask;
513	au_class_t class;
514	au_event_t event;
515	au_id_t auid;
516
517	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
518	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
519	    ("audit_syscall_enter: TDP_AUDITREC set"));
520
521	/*
522	 * In FreeBSD, each ABI has its own system call table, and hence
523	 * mapping of system call codes to audit events.  Convert the code to
524	 * an audit event identifier using the process system call table
525	 * reference.  In Darwin, there's only one, so we use the global
526	 * symbol for the system call table.  No audit record is generated
527	 * for bad system calls, as no operation has been performed.
528	 */
529	if (code >= td->td_proc->p_sysent->sv_size)
530		return;
531
532	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
533	if (event == AUE_NULL)
534		return;
535
536	/*
537	 * Check which audit mask to use; either the kernel non-attributable
538	 * event mask or the process audit mask.
539	 */
540	auid = td->td_ucred->cr_audit.ai_auid;
541	if (auid == AU_DEFAUDITID)
542		aumask = &audit_nae_mask;
543	else
544		aumask = &td->td_ucred->cr_audit.ai_mask;
545
546	/*
547	 * Allocate an audit record, if preselection allows it, and store in
548	 * the thread for later use.
549	 */
550	class = au_event_class(event);
551	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
552		/*
553		 * If we're out of space and need to suspend unprivileged
554		 * processes, do that here rather than trying to allocate
555		 * another audit record.
556		 *
557		 * Note: we might wish to be able to continue here in the
558		 * future, if the system recovers.  That should be possible
559		 * by means of checking the condition in a loop around
560		 * cv_wait().  It might be desirable to reevaluate whether an
561		 * audit record is still required for this event by
562		 * re-calling au_preselect().
563		 */
564		if (audit_in_failure &&
565		    priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
566			cv_wait(&audit_fail_cv, &audit_mtx);
567			panic("audit_failing_stop: thread continued");
568		}
569		td->td_ar = audit_new(event, td);
570		if (td->td_ar != NULL)
571			td->td_pflags |= TDP_AUDITREC;
572	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
573		td->td_ar = audit_new(event, td);
574		if (td->td_ar != NULL)
575			td->td_pflags |= TDP_AUDITREC;
576	} else
577		td->td_ar = NULL;
578}
579
580/*
581 * audit_syscall_exit() is called from the return of every system call, or in
582 * the event of exit1(), during the execution of exit1().  It is responsible
583 * for committing the audit record, if any, along with return condition.
584 */
585void
586audit_syscall_exit(int error, struct thread *td)
587{
588	int retval;
589
590	/*
591	 * Commit the audit record as desired; once we pass the record into
592	 * audit_commit(), the memory is owned by the audit subsystem.  The
593	 * return value from the system call is stored on the user thread.
594	 * If there was an error, the return value is set to -1, imitating
595	 * the behavior of the cerror routine.
596	 */
597	if (error)
598		retval = -1;
599	else
600		retval = td->td_retval[0];
601
602	audit_commit(td->td_ar, error, retval);
603	td->td_ar = NULL;
604	td->td_pflags &= ~TDP_AUDITREC;
605}
606
607void
608audit_cred_copy(struct ucred *src, struct ucred *dest)
609{
610
611	bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
612}
613
614void
615audit_cred_destroy(struct ucred *cred)
616{
617
618}
619
620void
621audit_cred_init(struct ucred *cred)
622{
623
624	bzero(&cred->cr_audit, sizeof(cred->cr_audit));
625}
626
627/*
628 * Initialize audit information for the first kernel process (proc 0) and for
629 * the first user process (init).
630 */
631void
632audit_cred_kproc0(struct ucred *cred)
633{
634
635	cred->cr_audit.ai_auid = AU_DEFAUDITID;
636	cred->cr_audit.ai_termid.at_type = AU_IPv4;
637}
638
639void
640audit_cred_proc1(struct ucred *cred)
641{
642
643	cred->cr_audit.ai_auid = AU_DEFAUDITID;
644	cred->cr_audit.ai_termid.at_type = AU_IPv4;
645}
646
647void
648audit_thread_alloc(struct thread *td)
649{
650
651	td->td_ar = NULL;
652}
653
654void
655audit_thread_free(struct thread *td)
656{
657
658	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
659	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
660	    ("audit_thread_free: TDP_AUDITREC set"));
661}
662
663void
664audit_proc_coredump(struct thread *td, char *path, int errcode)
665{
666	struct kaudit_record *ar;
667	struct au_mask *aumask;
668	struct ucred *cred;
669	au_class_t class;
670	int ret, sorf;
671	char **pathp;
672	au_id_t auid;
673
674	ret = 0;
675
676	/*
677	 * Make sure we are using the correct preselection mask.
678	 */
679	cred = td->td_ucred;
680	auid = cred->cr_audit.ai_auid;
681	if (auid == AU_DEFAUDITID)
682		aumask = &audit_nae_mask;
683	else
684		aumask = &cred->cr_audit.ai_mask;
685	/*
686	 * It's possible for coredump(9) generation to fail.  Make sure that
687	 * we handle this case correctly for preselection.
688	 */
689	if (errcode != 0)
690		sorf = AU_PRS_FAILURE;
691	else
692		sorf = AU_PRS_SUCCESS;
693	class = au_event_class(AUE_CORE);
694	if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 &&
695	    audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0)
696		return;
697
698	/*
699	 * If we are interested in seeing this audit record, allocate it.
700	 * Where possible coredump records should contain a pathname and arg32
701	 * (signal) tokens.
702	 */
703	ar = audit_new(AUE_CORE, td);
704	if (ar == NULL)
705		return;
706	if (path != NULL) {
707		pathp = &ar->k_ar.ar_arg_upath1;
708		*pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
709		audit_canon_path(td, AT_FDCWD, path, *pathp);
710		ARG_SET_VALID(ar, ARG_UPATH1);
711	}
712	ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
713	ARG_SET_VALID(ar, ARG_SIGNUM);
714	if (errcode != 0)
715		ret = 1;
716	audit_commit(ar, errcode, ret);
717}
718