xform_cml.c revision 158703
1/*	$OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $	*/
2/*-
3 * The authors of this code are John Ioannidis (ji@tla.org),
4 * Angelos D. Keromytis (kermit@csd.uch.gr) and
5 * Niels Provos (provos@physnet.uni-hamburg.de).
6 *
7 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
8 * in November 1995.
9 *
10 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
11 * by Angelos D. Keromytis.
12 *
13 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
14 * and Niels Provos.
15 *
16 * Additional features in 1999 by Angelos D. Keromytis.
17 *
18 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
19 * Angelos D. Keromytis and Niels Provos.
20 *
21 * Copyright (C) 2001, Angelos D. Keromytis.
22 *
23 * Permission to use, copy, and modify this software with or without fee
24 * is hereby granted, provided that this entire notice is included in
25 * all copies of any software which is or includes a copy or
26 * modification of this software.
27 * You may use this code under the GNU public license if you so wish. Please
28 * contribute changes back to the authors under this freer than GPL license
29 * so that we may further the use of strong encryption without limitations to
30 * all.
31 *
32 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
34 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
35 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
36 * PURPOSE.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: head/sys/opencrypto/xform.c 158703 2006-05-17 18:24:17Z pjd $");
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#include <sys/sysctl.h>
46#include <sys/errno.h>
47#include <sys/time.h>
48#include <sys/kernel.h>
49#include <machine/cpu.h>
50
51#include <crypto/blowfish/blowfish.h>
52#include <crypto/des/des.h>
53#include <crypto/rijndael/rijndael.h>
54#include <crypto/sha1.h>
55
56#include <opencrypto/cast.h>
57#include <opencrypto/deflate.h>
58#include <opencrypto/rmd160.h>
59#include <opencrypto/skipjack.h>
60
61#include <sys/md5.h>
62
63#include <opencrypto/cryptodev.h>
64#include <opencrypto/xform.h>
65
66static void null_encrypt(caddr_t, u_int8_t *);
67static void null_decrypt(caddr_t, u_int8_t *);
68static int null_setkey(u_int8_t **, u_int8_t *, int);
69static void null_zerokey(u_int8_t **);
70
71static	int des1_setkey(u_int8_t **, u_int8_t *, int);
72static	int des3_setkey(u_int8_t **, u_int8_t *, int);
73static	int blf_setkey(u_int8_t **, u_int8_t *, int);
74static	int cast5_setkey(u_int8_t **, u_int8_t *, int);
75static	int skipjack_setkey(u_int8_t **, u_int8_t *, int);
76static	int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
77static	void des1_encrypt(caddr_t, u_int8_t *);
78static	void des3_encrypt(caddr_t, u_int8_t *);
79static	void blf_encrypt(caddr_t, u_int8_t *);
80static	void cast5_encrypt(caddr_t, u_int8_t *);
81static	void skipjack_encrypt(caddr_t, u_int8_t *);
82static	void rijndael128_encrypt(caddr_t, u_int8_t *);
83static	void des1_decrypt(caddr_t, u_int8_t *);
84static	void des3_decrypt(caddr_t, u_int8_t *);
85static	void blf_decrypt(caddr_t, u_int8_t *);
86static	void cast5_decrypt(caddr_t, u_int8_t *);
87static	void skipjack_decrypt(caddr_t, u_int8_t *);
88static	void rijndael128_decrypt(caddr_t, u_int8_t *);
89static	void des1_zerokey(u_int8_t **);
90static	void des3_zerokey(u_int8_t **);
91static	void blf_zerokey(u_int8_t **);
92static	void cast5_zerokey(u_int8_t **);
93static	void skipjack_zerokey(u_int8_t **);
94static	void rijndael128_zerokey(u_int8_t **);
95
96static	void null_init(void *);
97static	int null_update(void *, u_int8_t *, u_int16_t);
98static	void null_final(u_int8_t *, void *);
99static	int MD5Update_int(void *, u_int8_t *, u_int16_t);
100static	void SHA1Init_int(void *);
101static	int SHA1Update_int(void *, u_int8_t *, u_int16_t);
102static	void SHA1Final_int(u_int8_t *, void *);
103static	int RMD160Update_int(void *, u_int8_t *, u_int16_t);
104static	int SHA256Update_int(void *, u_int8_t *, u_int16_t);
105static	int SHA384Update_int(void *, u_int8_t *, u_int16_t);
106static	int SHA512Update_int(void *, u_int8_t *, u_int16_t);
107
108static	u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
109static	u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
110
111MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
112
113/* Encryption instances */
114struct enc_xform enc_xform_null = {
115	CRYPTO_NULL_CBC, "NULL",
116	/* NB: blocksize of 4 is to generate a properly aligned ESP header */
117	4, 0, 256, /* 2048 bits, max key */
118	null_encrypt,
119	null_decrypt,
120	null_setkey,
121	null_zerokey,
122};
123
124struct enc_xform enc_xform_des = {
125	CRYPTO_DES_CBC, "DES",
126	8, 8, 8,
127	des1_encrypt,
128	des1_decrypt,
129	des1_setkey,
130	des1_zerokey,
131};
132
133struct enc_xform enc_xform_3des = {
134	CRYPTO_3DES_CBC, "3DES",
135	8, 24, 24,
136	des3_encrypt,
137	des3_decrypt,
138	des3_setkey,
139	des3_zerokey
140};
141
142struct enc_xform enc_xform_blf = {
143	CRYPTO_BLF_CBC, "Blowfish",
144	8, 5, 56 /* 448 bits, max key */,
145	blf_encrypt,
146	blf_decrypt,
147	blf_setkey,
148	blf_zerokey
149};
150
151struct enc_xform enc_xform_cast5 = {
152	CRYPTO_CAST_CBC, "CAST-128",
153	8, 5, 16,
154	cast5_encrypt,
155	cast5_decrypt,
156	cast5_setkey,
157	cast5_zerokey
158};
159
160struct enc_xform enc_xform_skipjack = {
161	CRYPTO_SKIPJACK_CBC, "Skipjack",
162	8, 10, 10,
163	skipjack_encrypt,
164	skipjack_decrypt,
165	skipjack_setkey,
166	skipjack_zerokey
167};
168
169struct enc_xform enc_xform_rijndael128 = {
170	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
171	16, 8, 32,
172	rijndael128_encrypt,
173	rijndael128_decrypt,
174	rijndael128_setkey,
175	rijndael128_zerokey,
176};
177
178struct enc_xform enc_xform_arc4 = {
179	CRYPTO_ARC4, "ARC4",
180	1, 1, 32,
181	NULL,
182	NULL,
183	NULL,
184	NULL,
185};
186
187/* Authentication instances */
188struct auth_hash auth_hash_null = {
189	CRYPTO_NULL_HMAC, "NULL-HMAC",
190	0, 16, 64, sizeof(int),			/* NB: context isn't used */
191	null_init, null_update, null_final
192};
193
194struct auth_hash auth_hash_hmac_md5 = {
195	CRYPTO_MD5_HMAC, "HMAC-MD5",
196	16, 16, 64, sizeof(MD5_CTX),
197	(void (*) (void *)) MD5Init, MD5Update_int,
198	(void (*) (u_int8_t *, void *)) MD5Final
199};
200
201struct auth_hash auth_hash_hmac_sha1 = {
202	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
203	20, 20, 64, sizeof(SHA1_CTX),
204	SHA1Init_int, SHA1Update_int, SHA1Final_int
205};
206
207struct auth_hash auth_hash_hmac_ripemd_160 = {
208	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
209	20, 20, 64, sizeof(RMD160_CTX),
210	(void (*)(void *)) RMD160Init, RMD160Update_int,
211	(void (*)(u_int8_t *, void *)) RMD160Final
212};
213
214struct auth_hash auth_hash_key_md5 = {
215	CRYPTO_MD5_KPDK, "Keyed MD5",
216	0, 16, 0, sizeof(MD5_CTX),
217	(void (*)(void *)) MD5Init, MD5Update_int,
218	(void (*)(u_int8_t *, void *)) MD5Final
219};
220
221struct auth_hash auth_hash_key_sha1 = {
222	CRYPTO_SHA1_KPDK, "Keyed SHA1",
223	0, 20, 0, sizeof(SHA1_CTX),
224	SHA1Init_int, SHA1Update_int, SHA1Final_int
225};
226
227struct auth_hash auth_hash_hmac_sha2_256 = {
228	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
229	32, 32, 64, sizeof(SHA256_CTX),
230	(void (*)(void *)) SHA256_Init, SHA256Update_int,
231	(void (*)(u_int8_t *, void *)) SHA256_Final
232};
233
234struct auth_hash auth_hash_hmac_sha2_384 = {
235	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
236	48, 48, 128, sizeof(SHA384_CTX),
237	(void (*)(void *)) SHA384_Init, SHA384Update_int,
238	(void (*)(u_int8_t *, void *)) SHA384_Final
239};
240
241struct auth_hash auth_hash_hmac_sha2_512 = {
242	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
243	64, 64, 128, sizeof(SHA512_CTX),
244	(void (*)(void *)) SHA512_Init, SHA512Update_int,
245	(void (*)(u_int8_t *, void *)) SHA512_Final
246};
247
248/* Compression instance */
249struct comp_algo comp_algo_deflate = {
250	CRYPTO_DEFLATE_COMP, "Deflate",
251	90, deflate_compress,
252	deflate_decompress
253};
254
255/*
256 * Encryption wrapper routines.
257 */
258static void
259null_encrypt(caddr_t key, u_int8_t *blk)
260{
261}
262static void
263null_decrypt(caddr_t key, u_int8_t *blk)
264{
265}
266static int
267null_setkey(u_int8_t **sched, u_int8_t *key, int len)
268{
269	*sched = NULL;
270	return 0;
271}
272static void
273null_zerokey(u_int8_t **sched)
274{
275	*sched = NULL;
276}
277
278static void
279des1_encrypt(caddr_t key, u_int8_t *blk)
280{
281	des_cblock *cb = (des_cblock *) blk;
282	des_key_schedule *p = (des_key_schedule *) key;
283
284	des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
285}
286
287static void
288des1_decrypt(caddr_t key, u_int8_t *blk)
289{
290	des_cblock *cb = (des_cblock *) blk;
291	des_key_schedule *p = (des_key_schedule *) key;
292
293	des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
294}
295
296static int
297des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
298{
299	des_key_schedule *p;
300	int err;
301
302	MALLOC(p, des_key_schedule *, sizeof (des_key_schedule),
303		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
304	if (p != NULL) {
305		des_set_key((des_cblock *) key, p[0]);
306		err = 0;
307	} else
308		err = ENOMEM;
309	*sched = (u_int8_t *) p;
310	return err;
311}
312
313static void
314des1_zerokey(u_int8_t **sched)
315{
316	bzero(*sched, sizeof (des_key_schedule));
317	FREE(*sched, M_CRYPTO_DATA);
318	*sched = NULL;
319}
320
321static void
322des3_encrypt(caddr_t key, u_int8_t *blk)
323{
324	des_cblock *cb = (des_cblock *) blk;
325	des_key_schedule *p = (des_key_schedule *) key;
326
327	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
328}
329
330static void
331des3_decrypt(caddr_t key, u_int8_t *blk)
332{
333	des_cblock *cb = (des_cblock *) blk;
334	des_key_schedule *p = (des_key_schedule *) key;
335
336	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
337}
338
339static int
340des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
341{
342	des_key_schedule *p;
343	int err;
344
345	MALLOC(p, des_key_schedule *, 3*sizeof (des_key_schedule),
346		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
347	if (p != NULL) {
348		des_set_key((des_cblock *)(key +  0), p[0]);
349		des_set_key((des_cblock *)(key +  8), p[1]);
350		des_set_key((des_cblock *)(key + 16), p[2]);
351		err = 0;
352	} else
353		err = ENOMEM;
354	*sched = (u_int8_t *) p;
355	return err;
356}
357
358static void
359des3_zerokey(u_int8_t **sched)
360{
361	bzero(*sched, 3*sizeof (des_key_schedule));
362	FREE(*sched, M_CRYPTO_DATA);
363	*sched = NULL;
364}
365
366static void
367blf_encrypt(caddr_t key, u_int8_t *blk)
368{
369	BF_LONG t[2];
370
371	memcpy(t, blk, sizeof (t));
372	t[0] = ntohl(t[0]);
373	t[1] = ntohl(t[1]);
374	/* NB: BF_encrypt expects the block in host order! */
375	BF_encrypt(t, (BF_KEY *) key);
376	t[0] = htonl(t[0]);
377	t[1] = htonl(t[1]);
378	memcpy(blk, t, sizeof (t));
379}
380
381static void
382blf_decrypt(caddr_t key, u_int8_t *blk)
383{
384	BF_LONG t[2];
385
386	memcpy(t, blk, sizeof (t));
387	t[0] = ntohl(t[0]);
388	t[1] = ntohl(t[1]);
389	/* NB: BF_decrypt expects the block in host order! */
390	BF_decrypt(t, (BF_KEY *) key);
391	t[0] = htonl(t[0]);
392	t[1] = htonl(t[1]);
393	memcpy(blk, t, sizeof (t));
394}
395
396static int
397blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
398{
399	int err;
400
401	MALLOC(*sched, u_int8_t *, sizeof(BF_KEY),
402		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
403	if (*sched != NULL) {
404		BF_set_key((BF_KEY *) *sched, len, key);
405		err = 0;
406	} else
407		err = ENOMEM;
408	return err;
409}
410
411static void
412blf_zerokey(u_int8_t **sched)
413{
414	bzero(*sched, sizeof(BF_KEY));
415	FREE(*sched, M_CRYPTO_DATA);
416	*sched = NULL;
417}
418
419static void
420cast5_encrypt(caddr_t key, u_int8_t *blk)
421{
422	cast_encrypt((cast_key *) key, blk, blk);
423}
424
425static void
426cast5_decrypt(caddr_t key, u_int8_t *blk)
427{
428	cast_decrypt((cast_key *) key, blk, blk);
429}
430
431static int
432cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
433{
434	int err;
435
436	MALLOC(*sched, u_int8_t *, sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
437	if (*sched != NULL) {
438		cast_setkey((cast_key *)*sched, key, len);
439		err = 0;
440	} else
441		err = ENOMEM;
442	return err;
443}
444
445static void
446cast5_zerokey(u_int8_t **sched)
447{
448	bzero(*sched, sizeof(cast_key));
449	FREE(*sched, M_CRYPTO_DATA);
450	*sched = NULL;
451}
452
453static void
454skipjack_encrypt(caddr_t key, u_int8_t *blk)
455{
456	skipjack_forwards(blk, blk, (u_int8_t **) key);
457}
458
459static void
460skipjack_decrypt(caddr_t key, u_int8_t *blk)
461{
462	skipjack_backwards(blk, blk, (u_int8_t **) key);
463}
464
465static int
466skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
467{
468	int err;
469
470	/* NB: allocate all the memory that's needed at once */
471	MALLOC(*sched, u_int8_t *, 10 * (sizeof(u_int8_t *) + 0x100),
472		M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
473	if (*sched != NULL) {
474		u_int8_t** key_tables = (u_int8_t**) *sched;
475		u_int8_t* table = (u_int8_t*) &key_tables[10];
476		int k;
477
478		for (k = 0; k < 10; k++) {
479			key_tables[k] = table;
480			table += 0x100;
481		}
482		subkey_table_gen(key, (u_int8_t **) *sched);
483		err = 0;
484	} else
485		err = ENOMEM;
486	return err;
487}
488
489static void
490skipjack_zerokey(u_int8_t **sched)
491{
492	bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
493	FREE(*sched, M_CRYPTO_DATA);
494	*sched = NULL;
495}
496
497static void
498rijndael128_encrypt(caddr_t key, u_int8_t *blk)
499{
500	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
501}
502
503static void
504rijndael128_decrypt(caddr_t key, u_int8_t *blk)
505{
506	rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
507	    (u_char *) blk);
508}
509
510static int
511rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
512{
513	int err;
514
515	if (len != 16 && len != 24 && len != 32)
516		return (EINVAL);
517	MALLOC(*sched, u_int8_t *, sizeof(rijndael_ctx), M_CRYPTO_DATA,
518	    M_NOWAIT|M_ZERO);
519	if (*sched != NULL) {
520		rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
521		    len * 8);
522		err = 0;
523	} else
524		err = ENOMEM;
525	return err;
526}
527
528static void
529rijndael128_zerokey(u_int8_t **sched)
530{
531	bzero(*sched, sizeof(rijndael_ctx));
532	FREE(*sched, M_CRYPTO_DATA);
533	*sched = NULL;
534}
535
536/*
537 * And now for auth.
538 */
539
540static void
541null_init(void *ctx)
542{
543}
544
545static int
546null_update(void *ctx, u_int8_t *buf, u_int16_t len)
547{
548	return 0;
549}
550
551static void
552null_final(u_int8_t *buf, void *ctx)
553{
554	if (buf != (u_int8_t *) 0)
555		bzero(buf, 12);
556}
557
558static int
559RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
560{
561	RMD160Update(ctx, buf, len);
562	return 0;
563}
564
565static int
566MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
567{
568	MD5Update(ctx, buf, len);
569	return 0;
570}
571
572static void
573SHA1Init_int(void *ctx)
574{
575	SHA1Init(ctx);
576}
577
578static int
579SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
580{
581	SHA1Update(ctx, buf, len);
582	return 0;
583}
584
585static void
586SHA1Final_int(u_int8_t *blk, void *ctx)
587{
588	SHA1Final(blk, ctx);
589}
590
591static int
592SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
593{
594	SHA256_Update(ctx, buf, len);
595	return 0;
596}
597
598static int
599SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
600{
601	SHA384_Update(ctx, buf, len);
602	return 0;
603}
604
605static int
606SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
607{
608	SHA512_Update(ctx, buf, len);
609	return 0;
610}
611
612/*
613 * And compression
614 */
615
616static u_int32_t
617deflate_compress(data, size, out)
618	u_int8_t *data;
619	u_int32_t size;
620	u_int8_t **out;
621{
622	return deflate_global(data, size, 0, out);
623}
624
625static u_int32_t
626deflate_decompress(data, size, out)
627	u_int8_t *data;
628	u_int32_t size;
629	u_int8_t **out;
630{
631	return deflate_global(data, size, 1, out);
632}
633