1/*-
2 * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25#include <sys/cdefs.h>
26__FBSDID("$FreeBSD: stable/11/sys/opencrypto/crypto.c 329099 2018-02-10 04:37:44Z kevans $");
27
28/*
29 * Cryptographic Subsystem.
30 *
31 * This code is derived from the Openbsd Cryptographic Framework (OCF)
32 * that has the copyright shown below.  Very little of the original
33 * code remains.
34 */
35
36/*-
37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38 *
39 * This code was written by Angelos D. Keromytis in Athens, Greece, in
40 * February 2000. Network Security Technologies Inc. (NSTI) kindly
41 * supported the development of this code.
42 *
43 * Copyright (c) 2000, 2001 Angelos D. Keromytis
44 *
45 * Permission to use, copy, and modify this software with or without fee
46 * is hereby granted, provided that this entire notice is included in
47 * all source code copies of any software which is or includes a copy or
48 * modification of this software.
49 *
50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54 * PURPOSE.
55 */
56
57#define	CRYPTO_TIMING				/* enable timing support */
58
59#include "opt_ddb.h"
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/eventhandler.h>
64#include <sys/kernel.h>
65#include <sys/kthread.h>
66#include <sys/linker.h>
67#include <sys/lock.h>
68#include <sys/module.h>
69#include <sys/mutex.h>
70#include <sys/malloc.h>
71#include <sys/proc.h>
72#include <sys/sdt.h>
73#include <sys/sysctl.h>
74
75#include <ddb/ddb.h>
76
77#include <vm/uma.h>
78#include <crypto/intake.h>
79#include <opencrypto/cryptodev.h>
80#include <opencrypto/xform.h>			/* XXX for M_XDATA */
81
82#include <sys/kobj.h>
83#include <sys/bus.h>
84#include "cryptodev_if.h"
85
86#if defined(__i386__) || defined(__amd64__)
87#include <machine/pcb.h>
88#endif
89#include <machine/metadata.h>
90
91SDT_PROVIDER_DEFINE(opencrypto);
92
93/*
94 * Crypto drivers register themselves by allocating a slot in the
95 * crypto_drivers table with crypto_get_driverid() and then registering
96 * each algorithm they support with crypto_register() and crypto_kregister().
97 */
98static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
99#define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
100#define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
101#define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
102
103/*
104 * Crypto device/driver capabilities structure.
105 *
106 * Synchronization:
107 * (d) - protected by CRYPTO_DRIVER_LOCK()
108 * (q) - protected by CRYPTO_Q_LOCK()
109 * Not tagged fields are read-only.
110 */
111struct cryptocap {
112	device_t	cc_dev;			/* (d) device/driver */
113	u_int32_t	cc_sessions;		/* (d) # of sessions */
114	u_int32_t	cc_koperations;		/* (d) # os asym operations */
115	/*
116	 * Largest possible operator length (in bits) for each type of
117	 * encryption algorithm. XXX not used
118	 */
119	u_int16_t	cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
120	u_int8_t	cc_alg[CRYPTO_ALGORITHM_MAX + 1];
121	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
122
123	int		cc_flags;		/* (d) flags */
124#define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
125	int		cc_qblocked;		/* (q) symmetric q blocked */
126	int		cc_kqblocked;		/* (q) asymmetric q blocked */
127};
128static	struct cryptocap *crypto_drivers = NULL;
129static	int crypto_drivers_num = 0;
130
131/*
132 * There are two queues for crypto requests; one for symmetric (e.g.
133 * cipher) operations and one for asymmetric (e.g. MOD)operations.
134 * A single mutex is used to lock access to both queues.  We could
135 * have one per-queue but having one simplifies handling of block/unblock
136 * operations.
137 */
138static	int crp_sleep = 0;
139static	TAILQ_HEAD(,cryptop) crp_q;		/* request queues */
140static	TAILQ_HEAD(,cryptkop) crp_kq;
141static	struct mtx crypto_q_mtx;
142#define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
143#define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
144
145/*
146 * There are two queues for processing completed crypto requests; one
147 * for the symmetric and one for the asymmetric ops.  We only need one
148 * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
149 * mutex is used to lock access to both queues.  Note that this lock
150 * must be separate from the lock on request queues to insure driver
151 * callbacks don't generate lock order reversals.
152 */
153static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
154static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
155static	struct mtx crypto_ret_q_mtx;
156#define	CRYPTO_RETQ_LOCK()	mtx_lock(&crypto_ret_q_mtx)
157#define	CRYPTO_RETQ_UNLOCK()	mtx_unlock(&crypto_ret_q_mtx)
158#define	CRYPTO_RETQ_EMPTY()	(TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
159
160static	uma_zone_t cryptop_zone;
161static	uma_zone_t cryptodesc_zone;
162
163int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
164SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
165	   &crypto_userasymcrypto, 0,
166	   "Enable/disable user-mode access to asymmetric crypto support");
167int	crypto_devallowsoft = 0;	/* only use hardware crypto */
168SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
169	   &crypto_devallowsoft, 0,
170	   "Enable/disable use of software crypto by /dev/crypto");
171
172MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
173
174static	void crypto_proc(void);
175static	struct proc *cryptoproc;
176static	void crypto_ret_proc(void);
177static	struct proc *cryptoretproc;
178static	void crypto_destroy(void);
179static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
180static	int crypto_kinvoke(struct cryptkop *krp, int flags);
181
182static	struct cryptostats cryptostats;
183SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
184	    cryptostats, "Crypto system statistics");
185
186#ifdef CRYPTO_TIMING
187static	int crypto_timing = 0;
188SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
189	   &crypto_timing, 0, "Enable/disable crypto timing support");
190#endif
191
192/* Try to avoid directly exposing the key buffer as a symbol */
193static struct keybuf *keybuf;
194
195static struct keybuf empty_keybuf = {
196        .kb_nents = 0
197};
198
199/* Obtain the key buffer from boot metadata */
200static void
201keybuf_init(void)
202{
203	caddr_t kmdp;
204
205	kmdp = preload_search_by_type("elf kernel");
206
207	if (kmdp == NULL)
208		kmdp = preload_search_by_type("elf64 kernel");
209
210	keybuf = (struct keybuf *)preload_search_info(kmdp,
211	    MODINFO_METADATA | MODINFOMD_KEYBUF);
212
213        if (keybuf == NULL)
214                keybuf = &empty_keybuf;
215}
216
217/* It'd be nice if we could store these in some kind of secure memory... */
218struct keybuf * get_keybuf(void) {
219
220        return (keybuf);
221}
222
223static int
224crypto_init(void)
225{
226	int error;
227
228	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
229		MTX_DEF|MTX_QUIET);
230
231	TAILQ_INIT(&crp_q);
232	TAILQ_INIT(&crp_kq);
233	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
234
235	TAILQ_INIT(&crp_ret_q);
236	TAILQ_INIT(&crp_ret_kq);
237	mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
238
239	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
240				    0, 0, 0, 0,
241				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
242	cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
243				    0, 0, 0, 0,
244				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
245	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
246		printf("crypto_init: cannot setup crypto zones\n");
247		error = ENOMEM;
248		goto bad;
249	}
250
251	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
252	crypto_drivers = malloc(crypto_drivers_num *
253	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
254	if (crypto_drivers == NULL) {
255		printf("crypto_init: cannot setup crypto drivers\n");
256		error = ENOMEM;
257		goto bad;
258	}
259
260	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
261		    &cryptoproc, 0, 0, "crypto");
262	if (error) {
263		printf("crypto_init: cannot start crypto thread; error %d",
264			error);
265		goto bad;
266	}
267
268	error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
269		    &cryptoretproc, 0, 0, "crypto returns");
270	if (error) {
271		printf("crypto_init: cannot start cryptoret thread; error %d",
272			error);
273		goto bad;
274	}
275
276        keybuf_init();
277
278	return 0;
279bad:
280	crypto_destroy();
281	return error;
282}
283
284/*
285 * Signal a crypto thread to terminate.  We use the driver
286 * table lock to synchronize the sleep/wakeups so that we
287 * are sure the threads have terminated before we release
288 * the data structures they use.  See crypto_finis below
289 * for the other half of this song-and-dance.
290 */
291static void
292crypto_terminate(struct proc **pp, void *q)
293{
294	struct proc *p;
295
296	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
297	p = *pp;
298	*pp = NULL;
299	if (p) {
300		wakeup_one(q);
301		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
302		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
303		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
304		PROC_UNLOCK(p);
305		CRYPTO_DRIVER_LOCK();
306	}
307}
308
309static void
310crypto_destroy(void)
311{
312	/*
313	 * Terminate any crypto threads.
314	 */
315	CRYPTO_DRIVER_LOCK();
316	crypto_terminate(&cryptoproc, &crp_q);
317	crypto_terminate(&cryptoretproc, &crp_ret_q);
318	CRYPTO_DRIVER_UNLOCK();
319
320	/* XXX flush queues??? */
321
322	/*
323	 * Reclaim dynamically allocated resources.
324	 */
325	if (crypto_drivers != NULL)
326		free(crypto_drivers, M_CRYPTO_DATA);
327
328	if (cryptodesc_zone != NULL)
329		uma_zdestroy(cryptodesc_zone);
330	if (cryptop_zone != NULL)
331		uma_zdestroy(cryptop_zone);
332	mtx_destroy(&crypto_q_mtx);
333	mtx_destroy(&crypto_ret_q_mtx);
334	mtx_destroy(&crypto_drivers_mtx);
335}
336
337static struct cryptocap *
338crypto_checkdriver(u_int32_t hid)
339{
340	if (crypto_drivers == NULL)
341		return NULL;
342	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
343}
344
345/*
346 * Compare a driver's list of supported algorithms against another
347 * list; return non-zero if all algorithms are supported.
348 */
349static int
350driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
351{
352	const struct cryptoini *cr;
353
354	/* See if all the algorithms are supported. */
355	for (cr = cri; cr; cr = cr->cri_next)
356		if (cap->cc_alg[cr->cri_alg] == 0)
357			return 0;
358	return 1;
359}
360
361/*
362 * Select a driver for a new session that supports the specified
363 * algorithms and, optionally, is constrained according to the flags.
364 * The algorithm we use here is pretty stupid; just use the
365 * first driver that supports all the algorithms we need. If there
366 * are multiple drivers we choose the driver with the fewest active
367 * sessions.  We prefer hardware-backed drivers to software ones.
368 *
369 * XXX We need more smarts here (in real life too, but that's
370 * XXX another story altogether).
371 */
372static struct cryptocap *
373crypto_select_driver(const struct cryptoini *cri, int flags)
374{
375	struct cryptocap *cap, *best;
376	int match, hid;
377
378	CRYPTO_DRIVER_ASSERT();
379
380	/*
381	 * Look first for hardware crypto devices if permitted.
382	 */
383	if (flags & CRYPTOCAP_F_HARDWARE)
384		match = CRYPTOCAP_F_HARDWARE;
385	else
386		match = CRYPTOCAP_F_SOFTWARE;
387	best = NULL;
388again:
389	for (hid = 0; hid < crypto_drivers_num; hid++) {
390		cap = &crypto_drivers[hid];
391		/*
392		 * If it's not initialized, is in the process of
393		 * going away, or is not appropriate (hardware
394		 * or software based on match), then skip.
395		 */
396		if (cap->cc_dev == NULL ||
397		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
398		    (cap->cc_flags & match) == 0)
399			continue;
400
401		/* verify all the algorithms are supported. */
402		if (driver_suitable(cap, cri)) {
403			if (best == NULL ||
404			    cap->cc_sessions < best->cc_sessions)
405				best = cap;
406		}
407	}
408	if (best == NULL && match == CRYPTOCAP_F_HARDWARE &&
409	    (flags & CRYPTOCAP_F_SOFTWARE)) {
410		/* sort of an Algol 68-style for loop */
411		match = CRYPTOCAP_F_SOFTWARE;
412		goto again;
413	}
414	return best;
415}
416
417/*
418 * Create a new session.  The crid argument specifies a crypto
419 * driver to use or constraints on a driver to select (hardware
420 * only, software only, either).  Whatever driver is selected
421 * must be capable of the requested crypto algorithms.
422 */
423int
424crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
425{
426	struct cryptocap *cap;
427	u_int32_t hid, lid;
428	int err;
429
430	CRYPTO_DRIVER_LOCK();
431	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
432		/*
433		 * Use specified driver; verify it is capable.
434		 */
435		cap = crypto_checkdriver(crid);
436		if (cap != NULL && !driver_suitable(cap, cri))
437			cap = NULL;
438	} else {
439		/*
440		 * No requested driver; select based on crid flags.
441		 */
442		cap = crypto_select_driver(cri, crid);
443		/*
444		 * if NULL then can't do everything in one session.
445		 * XXX Fix this. We need to inject a "virtual" session
446		 * XXX layer right about here.
447		 */
448	}
449	if (cap != NULL) {
450		/* Call the driver initialization routine. */
451		hid = cap - crypto_drivers;
452		lid = hid;		/* Pass the driver ID. */
453		err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
454		if (err == 0) {
455			(*sid) = (cap->cc_flags & 0xff000000)
456			       | (hid & 0x00ffffff);
457			(*sid) <<= 32;
458			(*sid) |= (lid & 0xffffffff);
459			cap->cc_sessions++;
460		} else
461			CRYPTDEB("dev newsession failed");
462	} else {
463		CRYPTDEB("no driver");
464		err = EINVAL;
465	}
466	CRYPTO_DRIVER_UNLOCK();
467	return err;
468}
469
470static void
471crypto_remove(struct cryptocap *cap)
472{
473
474	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
475	if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
476		bzero(cap, sizeof(*cap));
477}
478
479/*
480 * Delete an existing session (or a reserved session on an unregistered
481 * driver).
482 */
483int
484crypto_freesession(u_int64_t sid)
485{
486	struct cryptocap *cap;
487	u_int32_t hid;
488	int err;
489
490	CRYPTO_DRIVER_LOCK();
491
492	if (crypto_drivers == NULL) {
493		err = EINVAL;
494		goto done;
495	}
496
497	/* Determine two IDs. */
498	hid = CRYPTO_SESID2HID(sid);
499
500	if (hid >= crypto_drivers_num) {
501		err = ENOENT;
502		goto done;
503	}
504	cap = &crypto_drivers[hid];
505
506	if (cap->cc_sessions)
507		cap->cc_sessions--;
508
509	/* Call the driver cleanup routine, if available. */
510	err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
511
512	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
513		crypto_remove(cap);
514
515done:
516	CRYPTO_DRIVER_UNLOCK();
517	return err;
518}
519
520/*
521 * Return an unused driver id.  Used by drivers prior to registering
522 * support for the algorithms they handle.
523 */
524int32_t
525crypto_get_driverid(device_t dev, int flags)
526{
527	struct cryptocap *newdrv;
528	int i;
529
530	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
531		printf("%s: no flags specified when registering driver\n",
532		    device_get_nameunit(dev));
533		return -1;
534	}
535
536	CRYPTO_DRIVER_LOCK();
537
538	for (i = 0; i < crypto_drivers_num; i++) {
539		if (crypto_drivers[i].cc_dev == NULL &&
540		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
541			break;
542		}
543	}
544
545	/* Out of entries, allocate some more. */
546	if (i == crypto_drivers_num) {
547		/* Be careful about wrap-around. */
548		if (2 * crypto_drivers_num <= crypto_drivers_num) {
549			CRYPTO_DRIVER_UNLOCK();
550			printf("crypto: driver count wraparound!\n");
551			return -1;
552		}
553
554		newdrv = malloc(2 * crypto_drivers_num *
555		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
556		if (newdrv == NULL) {
557			CRYPTO_DRIVER_UNLOCK();
558			printf("crypto: no space to expand driver table!\n");
559			return -1;
560		}
561
562		bcopy(crypto_drivers, newdrv,
563		    crypto_drivers_num * sizeof(struct cryptocap));
564
565		crypto_drivers_num *= 2;
566
567		free(crypto_drivers, M_CRYPTO_DATA);
568		crypto_drivers = newdrv;
569	}
570
571	/* NB: state is zero'd on free */
572	crypto_drivers[i].cc_sessions = 1;	/* Mark */
573	crypto_drivers[i].cc_dev = dev;
574	crypto_drivers[i].cc_flags = flags;
575	if (bootverbose)
576		printf("crypto: assign %s driver id %u, flags %u\n",
577		    device_get_nameunit(dev), i, flags);
578
579	CRYPTO_DRIVER_UNLOCK();
580
581	return i;
582}
583
584/*
585 * Lookup a driver by name.  We match against the full device
586 * name and unit, and against just the name.  The latter gives
587 * us a simple widlcarding by device name.  On success return the
588 * driver/hardware identifier; otherwise return -1.
589 */
590int
591crypto_find_driver(const char *match)
592{
593	int i, len = strlen(match);
594
595	CRYPTO_DRIVER_LOCK();
596	for (i = 0; i < crypto_drivers_num; i++) {
597		device_t dev = crypto_drivers[i].cc_dev;
598		if (dev == NULL ||
599		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
600			continue;
601		if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
602		    strncmp(match, device_get_name(dev), len) == 0)
603			break;
604	}
605	CRYPTO_DRIVER_UNLOCK();
606	return i < crypto_drivers_num ? i : -1;
607}
608
609/*
610 * Return the device_t for the specified driver or NULL
611 * if the driver identifier is invalid.
612 */
613device_t
614crypto_find_device_byhid(int hid)
615{
616	struct cryptocap *cap = crypto_checkdriver(hid);
617	return cap != NULL ? cap->cc_dev : NULL;
618}
619
620/*
621 * Return the device/driver capabilities.
622 */
623int
624crypto_getcaps(int hid)
625{
626	struct cryptocap *cap = crypto_checkdriver(hid);
627	return cap != NULL ? cap->cc_flags : 0;
628}
629
630/*
631 * Register support for a key-related algorithm.  This routine
632 * is called once for each algorithm supported a driver.
633 */
634int
635crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
636{
637	struct cryptocap *cap;
638	int err;
639
640	CRYPTO_DRIVER_LOCK();
641
642	cap = crypto_checkdriver(driverid);
643	if (cap != NULL &&
644	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
645		/*
646		 * XXX Do some performance testing to determine placing.
647		 * XXX We probably need an auxiliary data structure that
648		 * XXX describes relative performances.
649		 */
650
651		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
652		if (bootverbose)
653			printf("crypto: %s registers key alg %u flags %u\n"
654				, device_get_nameunit(cap->cc_dev)
655				, kalg
656				, flags
657			);
658		err = 0;
659	} else
660		err = EINVAL;
661
662	CRYPTO_DRIVER_UNLOCK();
663	return err;
664}
665
666/*
667 * Register support for a non-key-related algorithm.  This routine
668 * is called once for each such algorithm supported by a driver.
669 */
670int
671crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
672    u_int32_t flags)
673{
674	struct cryptocap *cap;
675	int err;
676
677	CRYPTO_DRIVER_LOCK();
678
679	cap = crypto_checkdriver(driverid);
680	/* NB: algorithms are in the range [1..max] */
681	if (cap != NULL &&
682	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
683		/*
684		 * XXX Do some performance testing to determine placing.
685		 * XXX We probably need an auxiliary data structure that
686		 * XXX describes relative performances.
687		 */
688
689		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
690		cap->cc_max_op_len[alg] = maxoplen;
691		if (bootverbose)
692			printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
693				, device_get_nameunit(cap->cc_dev)
694				, alg
695				, flags
696				, maxoplen
697			);
698		cap->cc_sessions = 0;		/* Unmark */
699		err = 0;
700	} else
701		err = EINVAL;
702
703	CRYPTO_DRIVER_UNLOCK();
704	return err;
705}
706
707static void
708driver_finis(struct cryptocap *cap)
709{
710	u_int32_t ses, kops;
711
712	CRYPTO_DRIVER_ASSERT();
713
714	ses = cap->cc_sessions;
715	kops = cap->cc_koperations;
716	bzero(cap, sizeof(*cap));
717	if (ses != 0 || kops != 0) {
718		/*
719		 * If there are pending sessions,
720		 * just mark as invalid.
721		 */
722		cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
723		cap->cc_sessions = ses;
724		cap->cc_koperations = kops;
725	}
726}
727
728/*
729 * Unregister a crypto driver. If there are pending sessions using it,
730 * leave enough information around so that subsequent calls using those
731 * sessions will correctly detect the driver has been unregistered and
732 * reroute requests.
733 */
734int
735crypto_unregister(u_int32_t driverid, int alg)
736{
737	struct cryptocap *cap;
738	int i, err;
739
740	CRYPTO_DRIVER_LOCK();
741	cap = crypto_checkdriver(driverid);
742	if (cap != NULL &&
743	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
744	    cap->cc_alg[alg] != 0) {
745		cap->cc_alg[alg] = 0;
746		cap->cc_max_op_len[alg] = 0;
747
748		/* Was this the last algorithm ? */
749		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
750			if (cap->cc_alg[i] != 0)
751				break;
752
753		if (i == CRYPTO_ALGORITHM_MAX + 1)
754			driver_finis(cap);
755		err = 0;
756	} else
757		err = EINVAL;
758	CRYPTO_DRIVER_UNLOCK();
759
760	return err;
761}
762
763/*
764 * Unregister all algorithms associated with a crypto driver.
765 * If there are pending sessions using it, leave enough information
766 * around so that subsequent calls using those sessions will
767 * correctly detect the driver has been unregistered and reroute
768 * requests.
769 */
770int
771crypto_unregister_all(u_int32_t driverid)
772{
773	struct cryptocap *cap;
774	int err;
775
776	CRYPTO_DRIVER_LOCK();
777	cap = crypto_checkdriver(driverid);
778	if (cap != NULL) {
779		driver_finis(cap);
780		err = 0;
781	} else
782		err = EINVAL;
783	CRYPTO_DRIVER_UNLOCK();
784
785	return err;
786}
787
788/*
789 * Clear blockage on a driver.  The what parameter indicates whether
790 * the driver is now ready for cryptop's and/or cryptokop's.
791 */
792int
793crypto_unblock(u_int32_t driverid, int what)
794{
795	struct cryptocap *cap;
796	int err;
797
798	CRYPTO_Q_LOCK();
799	cap = crypto_checkdriver(driverid);
800	if (cap != NULL) {
801		if (what & CRYPTO_SYMQ)
802			cap->cc_qblocked = 0;
803		if (what & CRYPTO_ASYMQ)
804			cap->cc_kqblocked = 0;
805		if (crp_sleep)
806			wakeup_one(&crp_q);
807		err = 0;
808	} else
809		err = EINVAL;
810	CRYPTO_Q_UNLOCK();
811
812	return err;
813}
814
815/*
816 * Add a crypto request to a queue, to be processed by the kernel thread.
817 */
818int
819crypto_dispatch(struct cryptop *crp)
820{
821	struct cryptocap *cap;
822	u_int32_t hid;
823	int result;
824
825	cryptostats.cs_ops++;
826
827#ifdef CRYPTO_TIMING
828	if (crypto_timing)
829		binuptime(&crp->crp_tstamp);
830#endif
831
832	hid = CRYPTO_SESID2HID(crp->crp_sid);
833
834	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
835		/*
836		 * Caller marked the request to be processed
837		 * immediately; dispatch it directly to the
838		 * driver unless the driver is currently blocked.
839		 */
840		cap = crypto_checkdriver(hid);
841		/* Driver cannot disappeared when there is an active session. */
842		KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
843		if (!cap->cc_qblocked) {
844			result = crypto_invoke(cap, crp, 0);
845			if (result != ERESTART)
846				return (result);
847			/*
848			 * The driver ran out of resources, put the request on
849			 * the queue.
850			 */
851		}
852	}
853	CRYPTO_Q_LOCK();
854	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
855	if (crp_sleep)
856		wakeup_one(&crp_q);
857	CRYPTO_Q_UNLOCK();
858	return 0;
859}
860
861/*
862 * Add an asymetric crypto request to a queue,
863 * to be processed by the kernel thread.
864 */
865int
866crypto_kdispatch(struct cryptkop *krp)
867{
868	int error;
869
870	cryptostats.cs_kops++;
871
872	error = crypto_kinvoke(krp, krp->krp_crid);
873	if (error == ERESTART) {
874		CRYPTO_Q_LOCK();
875		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
876		if (crp_sleep)
877			wakeup_one(&crp_q);
878		CRYPTO_Q_UNLOCK();
879		error = 0;
880	}
881	return error;
882}
883
884/*
885 * Verify a driver is suitable for the specified operation.
886 */
887static __inline int
888kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
889{
890	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
891}
892
893/*
894 * Select a driver for an asym operation.  The driver must
895 * support the necessary algorithm.  The caller can constrain
896 * which device is selected with the flags parameter.  The
897 * algorithm we use here is pretty stupid; just use the first
898 * driver that supports the algorithms we need. If there are
899 * multiple suitable drivers we choose the driver with the
900 * fewest active operations.  We prefer hardware-backed
901 * drivers to software ones when either may be used.
902 */
903static struct cryptocap *
904crypto_select_kdriver(const struct cryptkop *krp, int flags)
905{
906	struct cryptocap *cap, *best, *blocked;
907	int match, hid;
908
909	CRYPTO_DRIVER_ASSERT();
910
911	/*
912	 * Look first for hardware crypto devices if permitted.
913	 */
914	if (flags & CRYPTOCAP_F_HARDWARE)
915		match = CRYPTOCAP_F_HARDWARE;
916	else
917		match = CRYPTOCAP_F_SOFTWARE;
918	best = NULL;
919	blocked = NULL;
920again:
921	for (hid = 0; hid < crypto_drivers_num; hid++) {
922		cap = &crypto_drivers[hid];
923		/*
924		 * If it's not initialized, is in the process of
925		 * going away, or is not appropriate (hardware
926		 * or software based on match), then skip.
927		 */
928		if (cap->cc_dev == NULL ||
929		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
930		    (cap->cc_flags & match) == 0)
931			continue;
932
933		/* verify all the algorithms are supported. */
934		if (kdriver_suitable(cap, krp)) {
935			if (best == NULL ||
936			    cap->cc_koperations < best->cc_koperations)
937				best = cap;
938		}
939	}
940	if (best != NULL)
941		return best;
942	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
943		/* sort of an Algol 68-style for loop */
944		match = CRYPTOCAP_F_SOFTWARE;
945		goto again;
946	}
947	return best;
948}
949
950/*
951 * Dispatch an asymmetric crypto request.
952 */
953static int
954crypto_kinvoke(struct cryptkop *krp, int crid)
955{
956	struct cryptocap *cap = NULL;
957	int error;
958
959	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
960	KASSERT(krp->krp_callback != NULL,
961	    ("%s: krp->crp_callback == NULL", __func__));
962
963	CRYPTO_DRIVER_LOCK();
964	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
965		cap = crypto_checkdriver(crid);
966		if (cap != NULL) {
967			/*
968			 * Driver present, it must support the necessary
969			 * algorithm and, if s/w drivers are excluded,
970			 * it must be registered as hardware-backed.
971			 */
972			if (!kdriver_suitable(cap, krp) ||
973			    (!crypto_devallowsoft &&
974			     (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
975				cap = NULL;
976		}
977	} else {
978		/*
979		 * No requested driver; select based on crid flags.
980		 */
981		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
982			crid &= ~CRYPTOCAP_F_SOFTWARE;
983		cap = crypto_select_kdriver(krp, crid);
984	}
985	if (cap != NULL && !cap->cc_kqblocked) {
986		krp->krp_hid = cap - crypto_drivers;
987		cap->cc_koperations++;
988		CRYPTO_DRIVER_UNLOCK();
989		error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
990		CRYPTO_DRIVER_LOCK();
991		if (error == ERESTART) {
992			cap->cc_koperations--;
993			CRYPTO_DRIVER_UNLOCK();
994			return (error);
995		}
996	} else {
997		/*
998		 * NB: cap is !NULL if device is blocked; in
999		 *     that case return ERESTART so the operation
1000		 *     is resubmitted if possible.
1001		 */
1002		error = (cap == NULL) ? ENODEV : ERESTART;
1003	}
1004	CRYPTO_DRIVER_UNLOCK();
1005
1006	if (error) {
1007		krp->krp_status = error;
1008		crypto_kdone(krp);
1009	}
1010	return 0;
1011}
1012
1013#ifdef CRYPTO_TIMING
1014static void
1015crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
1016{
1017	struct bintime now, delta;
1018	struct timespec t;
1019	uint64_t u;
1020
1021	binuptime(&now);
1022	u = now.frac;
1023	delta.frac = now.frac - bt->frac;
1024	delta.sec = now.sec - bt->sec;
1025	if (u < delta.frac)
1026		delta.sec--;
1027	bintime2timespec(&delta, &t);
1028	timespecadd(&ts->acc, &t);
1029	if (timespeccmp(&t, &ts->min, <))
1030		ts->min = t;
1031	if (timespeccmp(&t, &ts->max, >))
1032		ts->max = t;
1033	ts->count++;
1034
1035	*bt = now;
1036}
1037#endif
1038
1039/*
1040 * Dispatch a crypto request to the appropriate crypto devices.
1041 */
1042static int
1043crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1044{
1045
1046	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1047	KASSERT(crp->crp_callback != NULL,
1048	    ("%s: crp->crp_callback == NULL", __func__));
1049	KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1050
1051#ifdef CRYPTO_TIMING
1052	if (crypto_timing)
1053		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1054#endif
1055	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1056		struct cryptodesc *crd;
1057		u_int64_t nid;
1058
1059		/*
1060		 * Driver has unregistered; migrate the session and return
1061		 * an error to the caller so they'll resubmit the op.
1062		 *
1063		 * XXX: What if there are more already queued requests for this
1064		 *      session?
1065		 */
1066		crypto_freesession(crp->crp_sid);
1067
1068		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1069			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1070
1071		/* XXX propagate flags from initial session? */
1072		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1073		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1074			crp->crp_sid = nid;
1075
1076		crp->crp_etype = EAGAIN;
1077		crypto_done(crp);
1078		return 0;
1079	} else {
1080		/*
1081		 * Invoke the driver to process the request.
1082		 */
1083		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1084	}
1085}
1086
1087/*
1088 * Release a set of crypto descriptors.
1089 */
1090void
1091crypto_freereq(struct cryptop *crp)
1092{
1093	struct cryptodesc *crd;
1094
1095	if (crp == NULL)
1096		return;
1097
1098#ifdef DIAGNOSTIC
1099	{
1100		struct cryptop *crp2;
1101
1102		CRYPTO_Q_LOCK();
1103		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1104			KASSERT(crp2 != crp,
1105			    ("Freeing cryptop from the crypto queue (%p).",
1106			    crp));
1107		}
1108		CRYPTO_Q_UNLOCK();
1109		CRYPTO_RETQ_LOCK();
1110		TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1111			KASSERT(crp2 != crp,
1112			    ("Freeing cryptop from the return queue (%p).",
1113			    crp));
1114		}
1115		CRYPTO_RETQ_UNLOCK();
1116	}
1117#endif
1118
1119	while ((crd = crp->crp_desc) != NULL) {
1120		crp->crp_desc = crd->crd_next;
1121		uma_zfree(cryptodesc_zone, crd);
1122	}
1123	uma_zfree(cryptop_zone, crp);
1124}
1125
1126/*
1127 * Acquire a set of crypto descriptors.
1128 */
1129struct cryptop *
1130crypto_getreq(int num)
1131{
1132	struct cryptodesc *crd;
1133	struct cryptop *crp;
1134
1135	crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
1136	if (crp != NULL) {
1137		while (num--) {
1138			crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
1139			if (crd == NULL) {
1140				crypto_freereq(crp);
1141				return NULL;
1142			}
1143
1144			crd->crd_next = crp->crp_desc;
1145			crp->crp_desc = crd;
1146		}
1147	}
1148	return crp;
1149}
1150
1151/*
1152 * Invoke the callback on behalf of the driver.
1153 */
1154void
1155crypto_done(struct cryptop *crp)
1156{
1157	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1158		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1159	crp->crp_flags |= CRYPTO_F_DONE;
1160	if (crp->crp_etype != 0)
1161		cryptostats.cs_errs++;
1162#ifdef CRYPTO_TIMING
1163	if (crypto_timing)
1164		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1165#endif
1166	/*
1167	 * CBIMM means unconditionally do the callback immediately;
1168	 * CBIFSYNC means do the callback immediately only if the
1169	 * operation was done synchronously.  Both are used to avoid
1170	 * doing extraneous context switches; the latter is mostly
1171	 * used with the software crypto driver.
1172	 */
1173	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1174	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1175	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1176		/*
1177		 * Do the callback directly.  This is ok when the
1178		 * callback routine does very little (e.g. the
1179		 * /dev/crypto callback method just does a wakeup).
1180		 */
1181#ifdef CRYPTO_TIMING
1182		if (crypto_timing) {
1183			/*
1184			 * NB: We must copy the timestamp before
1185			 * doing the callback as the cryptop is
1186			 * likely to be reclaimed.
1187			 */
1188			struct bintime t = crp->crp_tstamp;
1189			crypto_tstat(&cryptostats.cs_cb, &t);
1190			crp->crp_callback(crp);
1191			crypto_tstat(&cryptostats.cs_finis, &t);
1192		} else
1193#endif
1194			crp->crp_callback(crp);
1195	} else {
1196		/*
1197		 * Normal case; queue the callback for the thread.
1198		 */
1199		CRYPTO_RETQ_LOCK();
1200		if (CRYPTO_RETQ_EMPTY())
1201			wakeup_one(&crp_ret_q);	/* shared wait channel */
1202		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1203		CRYPTO_RETQ_UNLOCK();
1204	}
1205}
1206
1207/*
1208 * Invoke the callback on behalf of the driver.
1209 */
1210void
1211crypto_kdone(struct cryptkop *krp)
1212{
1213	struct cryptocap *cap;
1214
1215	if (krp->krp_status != 0)
1216		cryptostats.cs_kerrs++;
1217	CRYPTO_DRIVER_LOCK();
1218	/* XXX: What if driver is loaded in the meantime? */
1219	if (krp->krp_hid < crypto_drivers_num) {
1220		cap = &crypto_drivers[krp->krp_hid];
1221		KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1222		cap->cc_koperations--;
1223		if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1224			crypto_remove(cap);
1225	}
1226	CRYPTO_DRIVER_UNLOCK();
1227	CRYPTO_RETQ_LOCK();
1228	if (CRYPTO_RETQ_EMPTY())
1229		wakeup_one(&crp_ret_q);		/* shared wait channel */
1230	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1231	CRYPTO_RETQ_UNLOCK();
1232}
1233
1234int
1235crypto_getfeat(int *featp)
1236{
1237	int hid, kalg, feat = 0;
1238
1239	CRYPTO_DRIVER_LOCK();
1240	for (hid = 0; hid < crypto_drivers_num; hid++) {
1241		const struct cryptocap *cap = &crypto_drivers[hid];
1242
1243		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1244		    !crypto_devallowsoft) {
1245			continue;
1246		}
1247		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1248			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1249				feat |=  1 << kalg;
1250	}
1251	CRYPTO_DRIVER_UNLOCK();
1252	*featp = feat;
1253	return (0);
1254}
1255
1256/*
1257 * Terminate a thread at module unload.  The process that
1258 * initiated this is waiting for us to signal that we're gone;
1259 * wake it up and exit.  We use the driver table lock to insure
1260 * we don't do the wakeup before they're waiting.  There is no
1261 * race here because the waiter sleeps on the proc lock for the
1262 * thread so it gets notified at the right time because of an
1263 * extra wakeup that's done in exit1().
1264 */
1265static void
1266crypto_finis(void *chan)
1267{
1268	CRYPTO_DRIVER_LOCK();
1269	wakeup_one(chan);
1270	CRYPTO_DRIVER_UNLOCK();
1271	kproc_exit(0);
1272}
1273
1274/*
1275 * Crypto thread, dispatches crypto requests.
1276 */
1277static void
1278crypto_proc(void)
1279{
1280	struct cryptop *crp, *submit;
1281	struct cryptkop *krp;
1282	struct cryptocap *cap;
1283	u_int32_t hid;
1284	int result, hint;
1285
1286#if defined(__i386__) || defined(__amd64__)
1287	fpu_kern_thread(FPU_KERN_NORMAL);
1288#endif
1289
1290	CRYPTO_Q_LOCK();
1291	for (;;) {
1292		/*
1293		 * Find the first element in the queue that can be
1294		 * processed and look-ahead to see if multiple ops
1295		 * are ready for the same driver.
1296		 */
1297		submit = NULL;
1298		hint = 0;
1299		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1300			hid = CRYPTO_SESID2HID(crp->crp_sid);
1301			cap = crypto_checkdriver(hid);
1302			/*
1303			 * Driver cannot disappeared when there is an active
1304			 * session.
1305			 */
1306			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1307			    __func__, __LINE__));
1308			if (cap == NULL || cap->cc_dev == NULL) {
1309				/* Op needs to be migrated, process it. */
1310				if (submit == NULL)
1311					submit = crp;
1312				break;
1313			}
1314			if (!cap->cc_qblocked) {
1315				if (submit != NULL) {
1316					/*
1317					 * We stop on finding another op,
1318					 * regardless whether its for the same
1319					 * driver or not.  We could keep
1320					 * searching the queue but it might be
1321					 * better to just use a per-driver
1322					 * queue instead.
1323					 */
1324					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1325						hint = CRYPTO_HINT_MORE;
1326					break;
1327				} else {
1328					submit = crp;
1329					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1330						break;
1331					/* keep scanning for more are q'd */
1332				}
1333			}
1334		}
1335		if (submit != NULL) {
1336			TAILQ_REMOVE(&crp_q, submit, crp_next);
1337			hid = CRYPTO_SESID2HID(submit->crp_sid);
1338			cap = crypto_checkdriver(hid);
1339			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1340			    __func__, __LINE__));
1341			result = crypto_invoke(cap, submit, hint);
1342			if (result == ERESTART) {
1343				/*
1344				 * The driver ran out of resources, mark the
1345				 * driver ``blocked'' for cryptop's and put
1346				 * the request back in the queue.  It would
1347				 * best to put the request back where we got
1348				 * it but that's hard so for now we put it
1349				 * at the front.  This should be ok; putting
1350				 * it at the end does not work.
1351				 */
1352				/* XXX validate sid again? */
1353				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1354				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1355				cryptostats.cs_blocks++;
1356			}
1357		}
1358
1359		/* As above, but for key ops */
1360		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1361			cap = crypto_checkdriver(krp->krp_hid);
1362			if (cap == NULL || cap->cc_dev == NULL) {
1363				/*
1364				 * Operation needs to be migrated, invalidate
1365				 * the assigned device so it will reselect a
1366				 * new one below.  Propagate the original
1367				 * crid selection flags if supplied.
1368				 */
1369				krp->krp_hid = krp->krp_crid &
1370				    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1371				if (krp->krp_hid == 0)
1372					krp->krp_hid =
1373				    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1374				break;
1375			}
1376			if (!cap->cc_kqblocked)
1377				break;
1378		}
1379		if (krp != NULL) {
1380			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1381			result = crypto_kinvoke(krp, krp->krp_hid);
1382			if (result == ERESTART) {
1383				/*
1384				 * The driver ran out of resources, mark the
1385				 * driver ``blocked'' for cryptkop's and put
1386				 * the request back in the queue.  It would
1387				 * best to put the request back where we got
1388				 * it but that's hard so for now we put it
1389				 * at the front.  This should be ok; putting
1390				 * it at the end does not work.
1391				 */
1392				/* XXX validate sid again? */
1393				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1394				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1395				cryptostats.cs_kblocks++;
1396			}
1397		}
1398
1399		if (submit == NULL && krp == NULL) {
1400			/*
1401			 * Nothing more to be processed.  Sleep until we're
1402			 * woken because there are more ops to process.
1403			 * This happens either by submission or by a driver
1404			 * becoming unblocked and notifying us through
1405			 * crypto_unblock.  Note that when we wakeup we
1406			 * start processing each queue again from the
1407			 * front. It's not clear that it's important to
1408			 * preserve this ordering since ops may finish
1409			 * out of order if dispatched to different devices
1410			 * and some become blocked while others do not.
1411			 */
1412			crp_sleep = 1;
1413			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1414			crp_sleep = 0;
1415			if (cryptoproc == NULL)
1416				break;
1417			cryptostats.cs_intrs++;
1418		}
1419	}
1420	CRYPTO_Q_UNLOCK();
1421
1422	crypto_finis(&crp_q);
1423}
1424
1425/*
1426 * Crypto returns thread, does callbacks for processed crypto requests.
1427 * Callbacks are done here, rather than in the crypto drivers, because
1428 * callbacks typically are expensive and would slow interrupt handling.
1429 */
1430static void
1431crypto_ret_proc(void)
1432{
1433	struct cryptop *crpt;
1434	struct cryptkop *krpt;
1435
1436	CRYPTO_RETQ_LOCK();
1437	for (;;) {
1438		/* Harvest return q's for completed ops */
1439		crpt = TAILQ_FIRST(&crp_ret_q);
1440		if (crpt != NULL)
1441			TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1442
1443		krpt = TAILQ_FIRST(&crp_ret_kq);
1444		if (krpt != NULL)
1445			TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1446
1447		if (crpt != NULL || krpt != NULL) {
1448			CRYPTO_RETQ_UNLOCK();
1449			/*
1450			 * Run callbacks unlocked.
1451			 */
1452			if (crpt != NULL) {
1453#ifdef CRYPTO_TIMING
1454				if (crypto_timing) {
1455					/*
1456					 * NB: We must copy the timestamp before
1457					 * doing the callback as the cryptop is
1458					 * likely to be reclaimed.
1459					 */
1460					struct bintime t = crpt->crp_tstamp;
1461					crypto_tstat(&cryptostats.cs_cb, &t);
1462					crpt->crp_callback(crpt);
1463					crypto_tstat(&cryptostats.cs_finis, &t);
1464				} else
1465#endif
1466					crpt->crp_callback(crpt);
1467			}
1468			if (krpt != NULL)
1469				krpt->krp_callback(krpt);
1470			CRYPTO_RETQ_LOCK();
1471		} else {
1472			/*
1473			 * Nothing more to be processed.  Sleep until we're
1474			 * woken because there are more returns to process.
1475			 */
1476			msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
1477				"crypto_ret_wait", 0);
1478			if (cryptoretproc == NULL)
1479				break;
1480			cryptostats.cs_rets++;
1481		}
1482	}
1483	CRYPTO_RETQ_UNLOCK();
1484
1485	crypto_finis(&crp_ret_q);
1486}
1487
1488#ifdef DDB
1489static void
1490db_show_drivers(void)
1491{
1492	int hid;
1493
1494	db_printf("%12s %4s %4s %8s %2s %2s\n"
1495		, "Device"
1496		, "Ses"
1497		, "Kops"
1498		, "Flags"
1499		, "QB"
1500		, "KB"
1501	);
1502	for (hid = 0; hid < crypto_drivers_num; hid++) {
1503		const struct cryptocap *cap = &crypto_drivers[hid];
1504		if (cap->cc_dev == NULL)
1505			continue;
1506		db_printf("%-12s %4u %4u %08x %2u %2u\n"
1507		    , device_get_nameunit(cap->cc_dev)
1508		    , cap->cc_sessions
1509		    , cap->cc_koperations
1510		    , cap->cc_flags
1511		    , cap->cc_qblocked
1512		    , cap->cc_kqblocked
1513		);
1514	}
1515}
1516
1517DB_SHOW_COMMAND(crypto, db_show_crypto)
1518{
1519	struct cryptop *crp;
1520
1521	db_show_drivers();
1522	db_printf("\n");
1523
1524	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1525	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1526	    "Desc", "Callback");
1527	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1528		db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1529		    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1530		    , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1531		    , crp->crp_ilen, crp->crp_olen
1532		    , crp->crp_etype
1533		    , crp->crp_flags
1534		    , crp->crp_desc
1535		    , crp->crp_callback
1536		);
1537	}
1538	if (!TAILQ_EMPTY(&crp_ret_q)) {
1539		db_printf("\n%4s %4s %4s %8s\n",
1540		    "HID", "Etype", "Flags", "Callback");
1541		TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1542			db_printf("%4u %4u %04x %8p\n"
1543			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1544			    , crp->crp_etype
1545			    , crp->crp_flags
1546			    , crp->crp_callback
1547			);
1548		}
1549	}
1550}
1551
1552DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1553{
1554	struct cryptkop *krp;
1555
1556	db_show_drivers();
1557	db_printf("\n");
1558
1559	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1560	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1561	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1562		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1563		    , krp->krp_op
1564		    , krp->krp_status
1565		    , krp->krp_iparams, krp->krp_oparams
1566		    , krp->krp_crid, krp->krp_hid
1567		    , krp->krp_callback
1568		);
1569	}
1570	if (!TAILQ_EMPTY(&crp_ret_q)) {
1571		db_printf("%4s %5s %8s %4s %8s\n",
1572		    "Op", "Status", "CRID", "HID", "Callback");
1573		TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1574			db_printf("%4u %5u %08x %4u %8p\n"
1575			    , krp->krp_op
1576			    , krp->krp_status
1577			    , krp->krp_crid, krp->krp_hid
1578			    , krp->krp_callback
1579			);
1580		}
1581	}
1582}
1583#endif
1584
1585int crypto_modevent(module_t mod, int type, void *unused);
1586
1587/*
1588 * Initialization code, both for static and dynamic loading.
1589 * Note this is not invoked with the usual MODULE_DECLARE
1590 * mechanism but instead is listed as a dependency by the
1591 * cryptosoft driver.  This guarantees proper ordering of
1592 * calls on module load/unload.
1593 */
1594int
1595crypto_modevent(module_t mod, int type, void *unused)
1596{
1597	int error = EINVAL;
1598
1599	switch (type) {
1600	case MOD_LOAD:
1601		error = crypto_init();
1602		if (error == 0 && bootverbose)
1603			printf("crypto: <crypto core>\n");
1604		break;
1605	case MOD_UNLOAD:
1606		/*XXX disallow if active sessions */
1607		error = 0;
1608		crypto_destroy();
1609		return 0;
1610	}
1611	return error;
1612}
1613MODULE_VERSION(crypto, 1);
1614MODULE_DEPEND(crypto, zlib, 1, 1, 1);
1615