1/*-
2 * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3 * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/11/sys/netpfil/pf/pf_norm.c 344707 2019-03-01 18:12:07Z kp $");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_pf.h"
35
36#include <sys/param.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mbuf.h>
40#include <sys/mutex.h>
41#include <sys/refcount.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/vnet.h>
46#include <net/pfvar.h>
47#include <net/if_pflog.h>
48
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip_var.h>
52#include <netinet6/ip6_var.h>
53#include <netinet/tcp.h>
54#include <netinet/tcp_fsm.h>
55#include <netinet/tcp_seq.h>
56
57#ifdef INET6
58#include <netinet/ip6.h>
59#endif /* INET6 */
60
61struct pf_frent {
62	TAILQ_ENTRY(pf_frent)	fr_next;
63	struct mbuf	*fe_m;
64	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
65					   ipv6, extension, fragment header */
66	uint16_t	fe_extoff;	/* last extension header offset or 0 */
67	uint16_t	fe_len;		/* fragment length */
68	uint16_t	fe_off;		/* fragment offset */
69	uint16_t	fe_mff;		/* more fragment flag */
70};
71
72struct pf_fragment_cmp {
73	struct pf_addr	frc_src;
74	struct pf_addr	frc_dst;
75	uint32_t	frc_id;
76	sa_family_t	frc_af;
77	uint8_t		frc_proto;
78};
79
80struct pf_fragment {
81	struct pf_fragment_cmp	fr_key;
82#define fr_src	fr_key.frc_src
83#define fr_dst	fr_key.frc_dst
84#define fr_id	fr_key.frc_id
85#define fr_af	fr_key.frc_af
86#define fr_proto	fr_key.frc_proto
87
88	RB_ENTRY(pf_fragment) fr_entry;
89	TAILQ_ENTRY(pf_fragment) frag_next;
90	uint32_t	fr_timeout;
91	uint16_t	fr_maxlen;	/* maximum length of single fragment */
92	uint16_t	fr_entries;	/* Total number of pf_fragment entries */
93	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
94};
95#define PF_MAX_FRENT_PER_FRAGMENT	64
96
97struct pf_fragment_tag {
98	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
99	uint16_t	ft_extoff;	/* last extension header offset or 0 */
100	uint16_t	ft_maxlen;	/* maximum fragment payload length */
101	uint32_t	ft_id;		/* fragment id */
102};
103
104static struct mtx pf_frag_mtx;
105MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
106#define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
107#define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
108#define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
109
110VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
111
112static VNET_DEFINE(uma_zone_t, pf_frent_z);
113#define	V_pf_frent_z	VNET(pf_frent_z)
114static VNET_DEFINE(uma_zone_t, pf_frag_z);
115#define	V_pf_frag_z	VNET(pf_frag_z)
116
117TAILQ_HEAD(pf_fragqueue, pf_fragment);
118TAILQ_HEAD(pf_cachequeue, pf_fragment);
119static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
120#define	V_pf_fragqueue			VNET(pf_fragqueue)
121RB_HEAD(pf_frag_tree, pf_fragment);
122static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
123#define	V_pf_frag_tree			VNET(pf_frag_tree)
124static int		 pf_frag_compare(struct pf_fragment *,
125			    struct pf_fragment *);
126static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
127static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
128
129static void	pf_flush_fragments(void);
130static void	pf_free_fragment(struct pf_fragment *);
131static void	pf_remove_fragment(struct pf_fragment *);
132static int	pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
133		    struct tcphdr *, int, sa_family_t);
134static struct pf_frent *pf_create_fragment(u_short *);
135static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
136		    struct pf_frag_tree *tree);
137static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
138		    struct pf_frent *, u_short *);
139static int	pf_isfull_fragment(struct pf_fragment *);
140static struct mbuf *pf_join_fragment(struct pf_fragment *);
141#ifdef INET
142static void	pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
143static int	pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
144#endif	/* INET */
145#ifdef INET6
146static int	pf_reassemble6(struct mbuf **, struct ip6_hdr *,
147		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
148static void	pf_scrub_ip6(struct mbuf **, uint8_t);
149#endif	/* INET6 */
150
151#define	DPFPRINTF(x) do {				\
152	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
153		printf("%s: ", __func__);		\
154		printf x ;				\
155	}						\
156} while(0)
157
158#ifdef INET
159static void
160pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
161{
162
163	key->frc_src.v4 = ip->ip_src;
164	key->frc_dst.v4 = ip->ip_dst;
165	key->frc_af = AF_INET;
166	key->frc_proto = ip->ip_p;
167	key->frc_id = ip->ip_id;
168}
169#endif	/* INET */
170
171void
172pf_normalize_init(void)
173{
174
175	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
176	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
177	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
178	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
179	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
180	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
181	    UMA_ALIGN_PTR, 0);
182
183	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
184	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
185	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
186	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
187
188	TAILQ_INIT(&V_pf_fragqueue);
189}
190
191void
192pf_normalize_cleanup(void)
193{
194
195	uma_zdestroy(V_pf_state_scrub_z);
196	uma_zdestroy(V_pf_frent_z);
197	uma_zdestroy(V_pf_frag_z);
198}
199
200static int
201pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
202{
203	int	diff;
204
205	if ((diff = a->fr_id - b->fr_id) != 0)
206		return (diff);
207	if ((diff = a->fr_proto - b->fr_proto) != 0)
208		return (diff);
209	if ((diff = a->fr_af - b->fr_af) != 0)
210		return (diff);
211	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
212		return (diff);
213	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
214		return (diff);
215	return (0);
216}
217
218void
219pf_purge_expired_fragments(void)
220{
221	struct pf_fragment	*frag;
222	u_int32_t		 expire = time_uptime -
223				    V_pf_default_rule.timeout[PFTM_FRAG];
224
225	PF_FRAG_LOCK();
226	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
227		if (frag->fr_timeout > expire)
228			break;
229
230		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
231		pf_free_fragment(frag);
232	}
233
234	PF_FRAG_UNLOCK();
235}
236
237/*
238 * Try to flush old fragments to make space for new ones
239 */
240static void
241pf_flush_fragments(void)
242{
243	struct pf_fragment	*frag;
244	int			 goal;
245
246	PF_FRAG_ASSERT();
247
248	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
249	DPFPRINTF(("trying to free %d frag entriess\n", goal));
250	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
251		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
252		if (frag)
253			pf_free_fragment(frag);
254		else
255			break;
256	}
257}
258
259/* Frees the fragments and all associated entries */
260static void
261pf_free_fragment(struct pf_fragment *frag)
262{
263	struct pf_frent		*frent;
264
265	PF_FRAG_ASSERT();
266
267	/* Free all fragments */
268	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
269	    frent = TAILQ_FIRST(&frag->fr_queue)) {
270		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
271
272		m_freem(frent->fe_m);
273		uma_zfree(V_pf_frent_z, frent);
274	}
275
276	pf_remove_fragment(frag);
277}
278
279static struct pf_fragment *
280pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
281{
282	struct pf_fragment	*frag;
283
284	PF_FRAG_ASSERT();
285
286	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
287	if (frag != NULL) {
288		/* XXX Are we sure we want to update the timeout? */
289		frag->fr_timeout = time_uptime;
290		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
291		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
292	}
293
294	return (frag);
295}
296
297/* Removes a fragment from the fragment queue and frees the fragment */
298static void
299pf_remove_fragment(struct pf_fragment *frag)
300{
301
302	PF_FRAG_ASSERT();
303
304	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
305	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
306	uma_zfree(V_pf_frag_z, frag);
307}
308
309static struct pf_frent *
310pf_create_fragment(u_short *reason)
311{
312	struct pf_frent *frent;
313
314	PF_FRAG_ASSERT();
315
316	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
317	if (frent == NULL) {
318		pf_flush_fragments();
319		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
320		if (frent == NULL) {
321			REASON_SET(reason, PFRES_MEMORY);
322			return (NULL);
323		}
324	}
325
326	return (frent);
327}
328
329static struct pf_fragment *
330pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
331		u_short *reason)
332{
333	struct pf_frent		*after, *next, *prev;
334	struct pf_fragment	*frag;
335	uint16_t		total;
336
337	PF_FRAG_ASSERT();
338
339	/* No empty fragments. */
340	if (frent->fe_len == 0) {
341		DPFPRINTF(("bad fragment: len 0"));
342		goto bad_fragment;
343	}
344
345	/* All fragments are 8 byte aligned. */
346	if (frent->fe_mff && (frent->fe_len & 0x7)) {
347		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
348		goto bad_fragment;
349	}
350
351	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
352	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
353		DPFPRINTF(("bad fragment: max packet %d",
354		    frent->fe_off + frent->fe_len));
355		goto bad_fragment;
356	}
357
358	DPFPRINTF((key->frc_af == AF_INET ?
359	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
360	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
361
362	/* Fully buffer all of the fragments in this fragment queue. */
363	frag = pf_find_fragment(key, &V_pf_frag_tree);
364
365	/* Create a new reassembly queue for this packet. */
366	if (frag == NULL) {
367		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
368		if (frag == NULL) {
369			pf_flush_fragments();
370			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
371			if (frag == NULL) {
372				REASON_SET(reason, PFRES_MEMORY);
373				goto drop_fragment;
374			}
375		}
376
377		*(struct pf_fragment_cmp *)frag = *key;
378		frag->fr_timeout = time_uptime;
379		frag->fr_maxlen = frent->fe_len;
380		frag->fr_entries = 0;
381		TAILQ_INIT(&frag->fr_queue);
382
383		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
384		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
385
386		/* We do not have a previous fragment. */
387		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
388
389		return (frag);
390	}
391
392	if (frag->fr_entries >= PF_MAX_FRENT_PER_FRAGMENT)
393		goto bad_fragment;
394
395	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
396
397	/* Remember maximum fragment len for refragmentation. */
398	if (frent->fe_len > frag->fr_maxlen)
399		frag->fr_maxlen = frent->fe_len;
400
401	/* Maximum data we have seen already. */
402	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
403		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
404
405	/* Non terminal fragments must have more fragments flag. */
406	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
407		goto bad_fragment;
408
409	/* Check if we saw the last fragment already. */
410	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
411		if (frent->fe_off + frent->fe_len > total ||
412		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
413			goto bad_fragment;
414	} else {
415		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
416			goto bad_fragment;
417	}
418
419	/* Find a fragment after the current one. */
420	prev = NULL;
421	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
422		if (after->fe_off > frent->fe_off)
423			break;
424		prev = after;
425	}
426
427	KASSERT(prev != NULL || after != NULL,
428	    ("prev != NULL || after != NULL"));
429
430	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
431		uint16_t precut;
432
433		precut = prev->fe_off + prev->fe_len - frent->fe_off;
434		if (precut >= frent->fe_len)
435			goto bad_fragment;
436		DPFPRINTF(("overlap -%d", precut));
437		m_adj(frent->fe_m, precut);
438		frent->fe_off += precut;
439		frent->fe_len -= precut;
440	}
441
442	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
443	    after = next) {
444		uint16_t aftercut;
445
446		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
447		DPFPRINTF(("adjust overlap %d", aftercut));
448		if (aftercut < after->fe_len) {
449			m_adj(after->fe_m, aftercut);
450			after->fe_off += aftercut;
451			after->fe_len -= aftercut;
452			break;
453		}
454
455		/* This fragment is completely overlapped, lose it. */
456		next = TAILQ_NEXT(after, fr_next);
457		m_freem(after->fe_m);
458		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
459		uma_zfree(V_pf_frent_z, after);
460	}
461
462	if (prev == NULL)
463		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
464	else
465		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
466
467	frag->fr_entries++;
468
469	return (frag);
470
471bad_fragment:
472	REASON_SET(reason, PFRES_FRAG);
473drop_fragment:
474	uma_zfree(V_pf_frent_z, frent);
475	return (NULL);
476}
477
478static int
479pf_isfull_fragment(struct pf_fragment *frag)
480{
481	struct pf_frent	*frent, *next;
482	uint16_t off, total;
483
484	/* Check if we are completely reassembled */
485	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
486		return (0);
487
488	/* Maximum data we have seen already */
489	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
490		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
491
492	/* Check if we have all the data */
493	off = 0;
494	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
495		next = TAILQ_NEXT(frent, fr_next);
496
497		off += frent->fe_len;
498		if (off < total && (next == NULL || next->fe_off != off)) {
499			DPFPRINTF(("missing fragment at %d, next %d, total %d",
500			    off, next == NULL ? -1 : next->fe_off, total));
501			return (0);
502		}
503	}
504	DPFPRINTF(("%d < %d?", off, total));
505	if (off < total)
506		return (0);
507	KASSERT(off == total, ("off == total"));
508
509	return (1);
510}
511
512static struct mbuf *
513pf_join_fragment(struct pf_fragment *frag)
514{
515	struct mbuf *m, *m2;
516	struct pf_frent	*frent, *next;
517
518	frent = TAILQ_FIRST(&frag->fr_queue);
519	next = TAILQ_NEXT(frent, fr_next);
520
521	m = frent->fe_m;
522	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
523	uma_zfree(V_pf_frent_z, frent);
524	for (frent = next; frent != NULL; frent = next) {
525		next = TAILQ_NEXT(frent, fr_next);
526
527		m2 = frent->fe_m;
528		/* Strip off ip header. */
529		m_adj(m2, frent->fe_hdrlen);
530		/* Strip off any trailing bytes. */
531		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
532
533		uma_zfree(V_pf_frent_z, frent);
534		m_cat(m, m2);
535	}
536
537	/* Remove from fragment queue. */
538	pf_remove_fragment(frag);
539
540	return (m);
541}
542
543#ifdef INET
544static int
545pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
546{
547	struct mbuf		*m = *m0;
548	struct pf_frent		*frent;
549	struct pf_fragment	*frag;
550	struct pf_fragment_cmp	key;
551	uint16_t		total, hdrlen;
552
553	/* Get an entry for the fragment queue */
554	if ((frent = pf_create_fragment(reason)) == NULL)
555		return (PF_DROP);
556
557	frent->fe_m = m;
558	frent->fe_hdrlen = ip->ip_hl << 2;
559	frent->fe_extoff = 0;
560	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
561	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
562	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
563
564	pf_ip2key(ip, dir, &key);
565
566	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
567		return (PF_DROP);
568
569	/* The mbuf is part of the fragment entry, no direct free or access */
570	m = *m0 = NULL;
571
572	if (!pf_isfull_fragment(frag))
573		return (PF_PASS);  /* drop because *m0 is NULL, no error */
574
575	/* We have all the data */
576	frent = TAILQ_FIRST(&frag->fr_queue);
577	KASSERT(frent != NULL, ("frent != NULL"));
578	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
579		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
580	hdrlen = frent->fe_hdrlen;
581
582	m = *m0 = pf_join_fragment(frag);
583	frag = NULL;
584
585	if (m->m_flags & M_PKTHDR) {
586		int plen = 0;
587		for (m = *m0; m; m = m->m_next)
588			plen += m->m_len;
589		m = *m0;
590		m->m_pkthdr.len = plen;
591	}
592
593	ip = mtod(m, struct ip *);
594	ip->ip_len = htons(hdrlen + total);
595	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
596
597	if (hdrlen + total > IP_MAXPACKET) {
598		DPFPRINTF(("drop: too big: %d", total));
599		ip->ip_len = 0;
600		REASON_SET(reason, PFRES_SHORT);
601		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
602		return (PF_DROP);
603	}
604
605	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
606	return (PF_PASS);
607}
608#endif	/* INET */
609
610#ifdef INET6
611static int
612pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
613    uint16_t hdrlen, uint16_t extoff, u_short *reason)
614{
615	struct mbuf		*m = *m0;
616	struct pf_frent		*frent;
617	struct pf_fragment	*frag;
618	struct pf_fragment_cmp	 key;
619	struct m_tag		*mtag;
620	struct pf_fragment_tag	*ftag;
621	int			 off;
622	uint32_t		 frag_id;
623	uint16_t		 total, maxlen;
624	uint8_t			 proto;
625
626	PF_FRAG_LOCK();
627
628	/* Get an entry for the fragment queue. */
629	if ((frent = pf_create_fragment(reason)) == NULL) {
630		PF_FRAG_UNLOCK();
631		return (PF_DROP);
632	}
633
634	frent->fe_m = m;
635	frent->fe_hdrlen = hdrlen;
636	frent->fe_extoff = extoff;
637	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
638	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
639	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
640
641	key.frc_src.v6 = ip6->ip6_src;
642	key.frc_dst.v6 = ip6->ip6_dst;
643	key.frc_af = AF_INET6;
644	/* Only the first fragment's protocol is relevant. */
645	key.frc_proto = 0;
646	key.frc_id = fraghdr->ip6f_ident;
647
648	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
649		PF_FRAG_UNLOCK();
650		return (PF_DROP);
651	}
652
653	/* The mbuf is part of the fragment entry, no direct free or access. */
654	m = *m0 = NULL;
655
656	if (!pf_isfull_fragment(frag)) {
657		PF_FRAG_UNLOCK();
658		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
659	}
660
661	/* We have all the data. */
662	frent = TAILQ_FIRST(&frag->fr_queue);
663	KASSERT(frent != NULL, ("frent != NULL"));
664	extoff = frent->fe_extoff;
665	maxlen = frag->fr_maxlen;
666	frag_id = frag->fr_id;
667	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
668		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
669	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
670
671	m = *m0 = pf_join_fragment(frag);
672	frag = NULL;
673
674	PF_FRAG_UNLOCK();
675
676	/* Take protocol from first fragment header. */
677	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
678	KASSERT(m, ("%s: short mbuf chain", __func__));
679	proto = *(mtod(m, caddr_t) + off);
680	m = *m0;
681
682	/* Delete frag6 header */
683	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
684		goto fail;
685
686	if (m->m_flags & M_PKTHDR) {
687		int plen = 0;
688		for (m = *m0; m; m = m->m_next)
689			plen += m->m_len;
690		m = *m0;
691		m->m_pkthdr.len = plen;
692	}
693
694	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
695	    M_NOWAIT)) == NULL)
696		goto fail;
697	ftag = (struct pf_fragment_tag *)(mtag + 1);
698	ftag->ft_hdrlen = hdrlen;
699	ftag->ft_extoff = extoff;
700	ftag->ft_maxlen = maxlen;
701	ftag->ft_id = frag_id;
702	m_tag_prepend(m, mtag);
703
704	ip6 = mtod(m, struct ip6_hdr *);
705	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
706	if (extoff) {
707		/* Write protocol into next field of last extension header. */
708		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
709		    &off);
710		KASSERT(m, ("%s: short mbuf chain", __func__));
711		*(mtod(m, char *) + off) = proto;
712		m = *m0;
713	} else
714		ip6->ip6_nxt = proto;
715
716	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
717		DPFPRINTF(("drop: too big: %d", total));
718		ip6->ip6_plen = 0;
719		REASON_SET(reason, PFRES_SHORT);
720		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
721		return (PF_DROP);
722	}
723
724	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
725	return (PF_PASS);
726
727fail:
728	REASON_SET(reason, PFRES_MEMORY);
729	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
730	return (PF_DROP);
731}
732#endif	/* INET6 */
733
734#ifdef INET6
735int
736pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
737{
738	struct mbuf		*m = *m0, *t;
739	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
740	struct pf_pdesc		 pd;
741	uint32_t		 frag_id;
742	uint16_t		 hdrlen, extoff, maxlen;
743	uint8_t			 proto;
744	int			 error, action;
745
746	hdrlen = ftag->ft_hdrlen;
747	extoff = ftag->ft_extoff;
748	maxlen = ftag->ft_maxlen;
749	frag_id = ftag->ft_id;
750	m_tag_delete(m, mtag);
751	mtag = NULL;
752	ftag = NULL;
753
754	if (extoff) {
755		int off;
756
757		/* Use protocol from next field of last extension header */
758		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
759		    &off);
760		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
761		proto = *(mtod(m, caddr_t) + off);
762		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
763		m = *m0;
764	} else {
765		struct ip6_hdr *hdr;
766
767		hdr = mtod(m, struct ip6_hdr *);
768		proto = hdr->ip6_nxt;
769		hdr->ip6_nxt = IPPROTO_FRAGMENT;
770	}
771
772	/* The MTU must be a multiple of 8 bytes, or we risk doing the
773	 * fragmentation wrong. */
774	maxlen = maxlen & ~7;
775
776	/*
777	 * Maxlen may be less than 8 if there was only a single
778	 * fragment.  As it was fragmented before, add a fragment
779	 * header also for a single fragment.  If total or maxlen
780	 * is less than 8, ip6_fragment() will return EMSGSIZE and
781	 * we drop the packet.
782	 */
783	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
784	m = (*m0)->m_nextpkt;
785	(*m0)->m_nextpkt = NULL;
786	if (error == 0) {
787		/* The first mbuf contains the unfragmented packet. */
788		m_freem(*m0);
789		*m0 = NULL;
790		action = PF_PASS;
791	} else {
792		/* Drop expects an mbuf to free. */
793		DPFPRINTF(("refragment error %d", error));
794		action = PF_DROP;
795	}
796	for (t = m; m; m = t) {
797		t = m->m_nextpkt;
798		m->m_nextpkt = NULL;
799		m->m_flags |= M_SKIP_FIREWALL;
800		memset(&pd, 0, sizeof(pd));
801		pd.pf_mtag = pf_find_mtag(m);
802		if (error == 0)
803			ip6_forward(m, 0);
804		else
805			m_freem(m);
806	}
807
808	return (action);
809}
810#endif /* INET6 */
811
812#ifdef INET
813int
814pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
815    struct pf_pdesc *pd)
816{
817	struct mbuf		*m = *m0;
818	struct pf_rule		*r;
819	struct ip		*h = mtod(m, struct ip *);
820	int			 mff = (ntohs(h->ip_off) & IP_MF);
821	int			 hlen = h->ip_hl << 2;
822	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
823	u_int16_t		 max;
824	int			 ip_len;
825	int			 ip_off;
826	int			 tag = -1;
827	int			 verdict;
828
829	PF_RULES_RASSERT();
830
831	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
832	while (r != NULL) {
833		r->evaluations++;
834		if (pfi_kif_match(r->kif, kif) == r->ifnot)
835			r = r->skip[PF_SKIP_IFP].ptr;
836		else if (r->direction && r->direction != dir)
837			r = r->skip[PF_SKIP_DIR].ptr;
838		else if (r->af && r->af != AF_INET)
839			r = r->skip[PF_SKIP_AF].ptr;
840		else if (r->proto && r->proto != h->ip_p)
841			r = r->skip[PF_SKIP_PROTO].ptr;
842		else if (PF_MISMATCHAW(&r->src.addr,
843		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
844		    r->src.neg, kif, M_GETFIB(m)))
845			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
846		else if (PF_MISMATCHAW(&r->dst.addr,
847		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
848		    r->dst.neg, NULL, M_GETFIB(m)))
849			r = r->skip[PF_SKIP_DST_ADDR].ptr;
850		else if (r->match_tag && !pf_match_tag(m, r, &tag,
851		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
852			r = TAILQ_NEXT(r, entries);
853		else
854			break;
855	}
856
857	if (r == NULL || r->action == PF_NOSCRUB)
858		return (PF_PASS);
859	else {
860		r->packets[dir == PF_OUT]++;
861		r->bytes[dir == PF_OUT] += pd->tot_len;
862	}
863
864	/* Check for illegal packets */
865	if (hlen < (int)sizeof(struct ip)) {
866		REASON_SET(reason, PFRES_NORM);
867		goto drop;
868	}
869
870	if (hlen > ntohs(h->ip_len)) {
871		REASON_SET(reason, PFRES_NORM);
872		goto drop;
873	}
874
875	/* Clear IP_DF if the rule uses the no-df option */
876	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
877		u_int16_t ip_off = h->ip_off;
878
879		h->ip_off &= htons(~IP_DF);
880		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
881	}
882
883	/* We will need other tests here */
884	if (!fragoff && !mff)
885		goto no_fragment;
886
887	/* We're dealing with a fragment now. Don't allow fragments
888	 * with IP_DF to enter the cache. If the flag was cleared by
889	 * no-df above, fine. Otherwise drop it.
890	 */
891	if (h->ip_off & htons(IP_DF)) {
892		DPFPRINTF(("IP_DF\n"));
893		goto bad;
894	}
895
896	ip_len = ntohs(h->ip_len) - hlen;
897	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
898
899	/* All fragments are 8 byte aligned */
900	if (mff && (ip_len & 0x7)) {
901		DPFPRINTF(("mff and %d\n", ip_len));
902		goto bad;
903	}
904
905	/* Respect maximum length */
906	if (fragoff + ip_len > IP_MAXPACKET) {
907		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
908		goto bad;
909	}
910	max = fragoff + ip_len;
911
912	/* Fully buffer all of the fragments
913	 * Might return a completely reassembled mbuf, or NULL */
914	PF_FRAG_LOCK();
915	DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
916	verdict = pf_reassemble(m0, h, dir, reason);
917	PF_FRAG_UNLOCK();
918
919	if (verdict != PF_PASS)
920		return (PF_DROP);
921
922	m = *m0;
923	if (m == NULL)
924		return (PF_DROP);
925
926	h = mtod(m, struct ip *);
927
928 no_fragment:
929	/* At this point, only IP_DF is allowed in ip_off */
930	if (h->ip_off & ~htons(IP_DF)) {
931		u_int16_t ip_off = h->ip_off;
932
933		h->ip_off &= htons(IP_DF);
934		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
935	}
936
937	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
938
939	return (PF_PASS);
940
941 bad:
942	DPFPRINTF(("dropping bad fragment\n"));
943	REASON_SET(reason, PFRES_FRAG);
944 drop:
945	if (r != NULL && r->log)
946		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
947		    1);
948
949	return (PF_DROP);
950}
951#endif
952
953#ifdef INET6
954int
955pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
956    u_short *reason, struct pf_pdesc *pd)
957{
958	struct mbuf		*m = *m0;
959	struct pf_rule		*r;
960	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
961	int			 extoff;
962	int			 off;
963	struct ip6_ext		 ext;
964	struct ip6_opt		 opt;
965	struct ip6_opt_jumbo	 jumbo;
966	struct ip6_frag		 frag;
967	u_int32_t		 jumbolen = 0, plen;
968	int			 optend;
969	int			 ooff;
970	u_int8_t		 proto;
971	int			 terminal;
972
973	PF_RULES_RASSERT();
974
975	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
976	while (r != NULL) {
977		r->evaluations++;
978		if (pfi_kif_match(r->kif, kif) == r->ifnot)
979			r = r->skip[PF_SKIP_IFP].ptr;
980		else if (r->direction && r->direction != dir)
981			r = r->skip[PF_SKIP_DIR].ptr;
982		else if (r->af && r->af != AF_INET6)
983			r = r->skip[PF_SKIP_AF].ptr;
984#if 0 /* header chain! */
985		else if (r->proto && r->proto != h->ip6_nxt)
986			r = r->skip[PF_SKIP_PROTO].ptr;
987#endif
988		else if (PF_MISMATCHAW(&r->src.addr,
989		    (struct pf_addr *)&h->ip6_src, AF_INET6,
990		    r->src.neg, kif, M_GETFIB(m)))
991			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
992		else if (PF_MISMATCHAW(&r->dst.addr,
993		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
994		    r->dst.neg, NULL, M_GETFIB(m)))
995			r = r->skip[PF_SKIP_DST_ADDR].ptr;
996		else
997			break;
998	}
999
1000	if (r == NULL || r->action == PF_NOSCRUB)
1001		return (PF_PASS);
1002	else {
1003		r->packets[dir == PF_OUT]++;
1004		r->bytes[dir == PF_OUT] += pd->tot_len;
1005	}
1006
1007	/* Check for illegal packets */
1008	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1009		goto drop;
1010
1011	extoff = 0;
1012	off = sizeof(struct ip6_hdr);
1013	proto = h->ip6_nxt;
1014	terminal = 0;
1015	do {
1016		switch (proto) {
1017		case IPPROTO_FRAGMENT:
1018			goto fragment;
1019			break;
1020		case IPPROTO_AH:
1021		case IPPROTO_ROUTING:
1022		case IPPROTO_DSTOPTS:
1023			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1024			    NULL, AF_INET6))
1025				goto shortpkt;
1026			extoff = off;
1027			if (proto == IPPROTO_AH)
1028				off += (ext.ip6e_len + 2) * 4;
1029			else
1030				off += (ext.ip6e_len + 1) * 8;
1031			proto = ext.ip6e_nxt;
1032			break;
1033		case IPPROTO_HOPOPTS:
1034			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1035			    NULL, AF_INET6))
1036				goto shortpkt;
1037			extoff = off;
1038			optend = off + (ext.ip6e_len + 1) * 8;
1039			ooff = off + sizeof(ext);
1040			do {
1041				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1042				    sizeof(opt.ip6o_type), NULL, NULL,
1043				    AF_INET6))
1044					goto shortpkt;
1045				if (opt.ip6o_type == IP6OPT_PAD1) {
1046					ooff++;
1047					continue;
1048				}
1049				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1050				    NULL, NULL, AF_INET6))
1051					goto shortpkt;
1052				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1053					goto drop;
1054				switch (opt.ip6o_type) {
1055				case IP6OPT_JUMBO:
1056					if (h->ip6_plen != 0)
1057						goto drop;
1058					if (!pf_pull_hdr(m, ooff, &jumbo,
1059					    sizeof(jumbo), NULL, NULL,
1060					    AF_INET6))
1061						goto shortpkt;
1062					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1063					    sizeof(jumbolen));
1064					jumbolen = ntohl(jumbolen);
1065					if (jumbolen <= IPV6_MAXPACKET)
1066						goto drop;
1067					if (sizeof(struct ip6_hdr) + jumbolen !=
1068					    m->m_pkthdr.len)
1069						goto drop;
1070					break;
1071				default:
1072					break;
1073				}
1074				ooff += sizeof(opt) + opt.ip6o_len;
1075			} while (ooff < optend);
1076
1077			off = optend;
1078			proto = ext.ip6e_nxt;
1079			break;
1080		default:
1081			terminal = 1;
1082			break;
1083		}
1084	} while (!terminal);
1085
1086	/* jumbo payload option must be present, or plen > 0 */
1087	if (ntohs(h->ip6_plen) == 0)
1088		plen = jumbolen;
1089	else
1090		plen = ntohs(h->ip6_plen);
1091	if (plen == 0)
1092		goto drop;
1093	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1094		goto shortpkt;
1095
1096	pf_scrub_ip6(&m, r->min_ttl);
1097
1098	return (PF_PASS);
1099
1100 fragment:
1101	/* Jumbo payload packets cannot be fragmented. */
1102	plen = ntohs(h->ip6_plen);
1103	if (plen == 0 || jumbolen)
1104		goto drop;
1105	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1106		goto shortpkt;
1107
1108	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1109		goto shortpkt;
1110
1111	/* Offset now points to data portion. */
1112	off += sizeof(frag);
1113
1114	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1115	if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1116		return (PF_DROP);
1117	m = *m0;
1118	if (m == NULL)
1119		return (PF_DROP);
1120
1121	pd->flags |= PFDESC_IP_REAS;
1122	return (PF_PASS);
1123
1124 shortpkt:
1125	REASON_SET(reason, PFRES_SHORT);
1126	if (r != NULL && r->log)
1127		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1128		    1);
1129	return (PF_DROP);
1130
1131 drop:
1132	REASON_SET(reason, PFRES_NORM);
1133	if (r != NULL && r->log)
1134		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1135		    1);
1136	return (PF_DROP);
1137}
1138#endif /* INET6 */
1139
1140int
1141pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1142    int off, void *h, struct pf_pdesc *pd)
1143{
1144	struct pf_rule	*r, *rm = NULL;
1145	struct tcphdr	*th = pd->hdr.tcp;
1146	int		 rewrite = 0;
1147	u_short		 reason;
1148	u_int8_t	 flags;
1149	sa_family_t	 af = pd->af;
1150
1151	PF_RULES_RASSERT();
1152
1153	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1154	while (r != NULL) {
1155		r->evaluations++;
1156		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1157			r = r->skip[PF_SKIP_IFP].ptr;
1158		else if (r->direction && r->direction != dir)
1159			r = r->skip[PF_SKIP_DIR].ptr;
1160		else if (r->af && r->af != af)
1161			r = r->skip[PF_SKIP_AF].ptr;
1162		else if (r->proto && r->proto != pd->proto)
1163			r = r->skip[PF_SKIP_PROTO].ptr;
1164		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1165		    r->src.neg, kif, M_GETFIB(m)))
1166			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1167		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1168			    r->src.port[0], r->src.port[1], th->th_sport))
1169			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1170		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1171		    r->dst.neg, NULL, M_GETFIB(m)))
1172			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1173		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1174			    r->dst.port[0], r->dst.port[1], th->th_dport))
1175			r = r->skip[PF_SKIP_DST_PORT].ptr;
1176		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1177			    pf_osfp_fingerprint(pd, m, off, th),
1178			    r->os_fingerprint))
1179			r = TAILQ_NEXT(r, entries);
1180		else {
1181			rm = r;
1182			break;
1183		}
1184	}
1185
1186	if (rm == NULL || rm->action == PF_NOSCRUB)
1187		return (PF_PASS);
1188	else {
1189		r->packets[dir == PF_OUT]++;
1190		r->bytes[dir == PF_OUT] += pd->tot_len;
1191	}
1192
1193	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1194		pd->flags |= PFDESC_TCP_NORM;
1195
1196	flags = th->th_flags;
1197	if (flags & TH_SYN) {
1198		/* Illegal packet */
1199		if (flags & TH_RST)
1200			goto tcp_drop;
1201
1202		if (flags & TH_FIN)
1203			goto tcp_drop;
1204	} else {
1205		/* Illegal packet */
1206		if (!(flags & (TH_ACK|TH_RST)))
1207			goto tcp_drop;
1208	}
1209
1210	if (!(flags & TH_ACK)) {
1211		/* These flags are only valid if ACK is set */
1212		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1213			goto tcp_drop;
1214	}
1215
1216	/* Check for illegal header length */
1217	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1218		goto tcp_drop;
1219
1220	/* If flags changed, or reserved data set, then adjust */
1221	if (flags != th->th_flags || th->th_x2 != 0) {
1222		u_int16_t	ov, nv;
1223
1224		ov = *(u_int16_t *)(&th->th_ack + 1);
1225		th->th_flags = flags;
1226		th->th_x2 = 0;
1227		nv = *(u_int16_t *)(&th->th_ack + 1);
1228
1229		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1230		rewrite = 1;
1231	}
1232
1233	/* Remove urgent pointer, if TH_URG is not set */
1234	if (!(flags & TH_URG) && th->th_urp) {
1235		th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1236		    0, 0);
1237		th->th_urp = 0;
1238		rewrite = 1;
1239	}
1240
1241	/* Process options */
1242	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1243		rewrite = 1;
1244
1245	/* copy back packet headers if we sanitized */
1246	if (rewrite)
1247		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1248
1249	return (PF_PASS);
1250
1251 tcp_drop:
1252	REASON_SET(&reason, PFRES_NORM);
1253	if (rm != NULL && r->log)
1254		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1255		    1);
1256	return (PF_DROP);
1257}
1258
1259int
1260pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1261    struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1262{
1263	u_int32_t tsval, tsecr;
1264	u_int8_t hdr[60];
1265	u_int8_t *opt;
1266
1267	KASSERT((src->scrub == NULL),
1268	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1269
1270	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1271	if (src->scrub == NULL)
1272		return (1);
1273
1274	switch (pd->af) {
1275#ifdef INET
1276	case AF_INET: {
1277		struct ip *h = mtod(m, struct ip *);
1278		src->scrub->pfss_ttl = h->ip_ttl;
1279		break;
1280	}
1281#endif /* INET */
1282#ifdef INET6
1283	case AF_INET6: {
1284		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1285		src->scrub->pfss_ttl = h->ip6_hlim;
1286		break;
1287	}
1288#endif /* INET6 */
1289	}
1290
1291
1292	/*
1293	 * All normalizations below are only begun if we see the start of
1294	 * the connections.  They must all set an enabled bit in pfss_flags
1295	 */
1296	if ((th->th_flags & TH_SYN) == 0)
1297		return (0);
1298
1299
1300	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1301	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1302		/* Diddle with TCP options */
1303		int hlen;
1304		opt = hdr + sizeof(struct tcphdr);
1305		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1306		while (hlen >= TCPOLEN_TIMESTAMP) {
1307			switch (*opt) {
1308			case TCPOPT_EOL:	/* FALLTHROUGH */
1309			case TCPOPT_NOP:
1310				opt++;
1311				hlen--;
1312				break;
1313			case TCPOPT_TIMESTAMP:
1314				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1315					src->scrub->pfss_flags |=
1316					    PFSS_TIMESTAMP;
1317					src->scrub->pfss_ts_mod =
1318					    htonl(arc4random());
1319
1320					/* note PFSS_PAWS not set yet */
1321					memcpy(&tsval, &opt[2],
1322					    sizeof(u_int32_t));
1323					memcpy(&tsecr, &opt[6],
1324					    sizeof(u_int32_t));
1325					src->scrub->pfss_tsval0 = ntohl(tsval);
1326					src->scrub->pfss_tsval = ntohl(tsval);
1327					src->scrub->pfss_tsecr = ntohl(tsecr);
1328					getmicrouptime(&src->scrub->pfss_last);
1329				}
1330				/* FALLTHROUGH */
1331			default:
1332				hlen -= MAX(opt[1], 2);
1333				opt += MAX(opt[1], 2);
1334				break;
1335			}
1336		}
1337	}
1338
1339	return (0);
1340}
1341
1342void
1343pf_normalize_tcp_cleanup(struct pf_state *state)
1344{
1345	if (state->src.scrub)
1346		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1347	if (state->dst.scrub)
1348		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1349
1350	/* Someday... flush the TCP segment reassembly descriptors. */
1351}
1352
1353int
1354pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1355    u_short *reason, struct tcphdr *th, struct pf_state *state,
1356    struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1357{
1358	struct timeval uptime;
1359	u_int32_t tsval, tsecr;
1360	u_int tsval_from_last;
1361	u_int8_t hdr[60];
1362	u_int8_t *opt;
1363	int copyback = 0;
1364	int got_ts = 0;
1365
1366	KASSERT((src->scrub || dst->scrub),
1367	    ("%s: src->scrub && dst->scrub!", __func__));
1368
1369	/*
1370	 * Enforce the minimum TTL seen for this connection.  Negate a common
1371	 * technique to evade an intrusion detection system and confuse
1372	 * firewall state code.
1373	 */
1374	switch (pd->af) {
1375#ifdef INET
1376	case AF_INET: {
1377		if (src->scrub) {
1378			struct ip *h = mtod(m, struct ip *);
1379			if (h->ip_ttl > src->scrub->pfss_ttl)
1380				src->scrub->pfss_ttl = h->ip_ttl;
1381			h->ip_ttl = src->scrub->pfss_ttl;
1382		}
1383		break;
1384	}
1385#endif /* INET */
1386#ifdef INET6
1387	case AF_INET6: {
1388		if (src->scrub) {
1389			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1390			if (h->ip6_hlim > src->scrub->pfss_ttl)
1391				src->scrub->pfss_ttl = h->ip6_hlim;
1392			h->ip6_hlim = src->scrub->pfss_ttl;
1393		}
1394		break;
1395	}
1396#endif /* INET6 */
1397	}
1398
1399	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1400	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1401	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1402	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1403		/* Diddle with TCP options */
1404		int hlen;
1405		opt = hdr + sizeof(struct tcphdr);
1406		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1407		while (hlen >= TCPOLEN_TIMESTAMP) {
1408			switch (*opt) {
1409			case TCPOPT_EOL:	/* FALLTHROUGH */
1410			case TCPOPT_NOP:
1411				opt++;
1412				hlen--;
1413				break;
1414			case TCPOPT_TIMESTAMP:
1415				/* Modulate the timestamps.  Can be used for
1416				 * NAT detection, OS uptime determination or
1417				 * reboot detection.
1418				 */
1419
1420				if (got_ts) {
1421					/* Huh?  Multiple timestamps!? */
1422					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1423						DPFPRINTF(("multiple TS??"));
1424						pf_print_state(state);
1425						printf("\n");
1426					}
1427					REASON_SET(reason, PFRES_TS);
1428					return (PF_DROP);
1429				}
1430				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1431					memcpy(&tsval, &opt[2],
1432					    sizeof(u_int32_t));
1433					if (tsval && src->scrub &&
1434					    (src->scrub->pfss_flags &
1435					    PFSS_TIMESTAMP)) {
1436						tsval = ntohl(tsval);
1437						pf_change_proto_a(m, &opt[2],
1438						    &th->th_sum,
1439						    htonl(tsval +
1440						    src->scrub->pfss_ts_mod),
1441						    0);
1442						copyback = 1;
1443					}
1444
1445					/* Modulate TS reply iff valid (!0) */
1446					memcpy(&tsecr, &opt[6],
1447					    sizeof(u_int32_t));
1448					if (tsecr && dst->scrub &&
1449					    (dst->scrub->pfss_flags &
1450					    PFSS_TIMESTAMP)) {
1451						tsecr = ntohl(tsecr)
1452						    - dst->scrub->pfss_ts_mod;
1453						pf_change_proto_a(m, &opt[6],
1454						    &th->th_sum, htonl(tsecr),
1455						    0);
1456						copyback = 1;
1457					}
1458					got_ts = 1;
1459				}
1460				/* FALLTHROUGH */
1461			default:
1462				hlen -= MAX(opt[1], 2);
1463				opt += MAX(opt[1], 2);
1464				break;
1465			}
1466		}
1467		if (copyback) {
1468			/* Copyback the options, caller copys back header */
1469			*writeback = 1;
1470			m_copyback(m, off + sizeof(struct tcphdr),
1471			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1472			    sizeof(struct tcphdr));
1473		}
1474	}
1475
1476
1477	/*
1478	 * Must invalidate PAWS checks on connections idle for too long.
1479	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1480	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1481	 * TS echo check only works for the first 12 days of a connection
1482	 * when the TS has exhausted half its 32bit space
1483	 */
1484#define TS_MAX_IDLE	(24*24*60*60)
1485#define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1486
1487	getmicrouptime(&uptime);
1488	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1489	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1490	    time_uptime - state->creation > TS_MAX_CONN))  {
1491		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1492			DPFPRINTF(("src idled out of PAWS\n"));
1493			pf_print_state(state);
1494			printf("\n");
1495		}
1496		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1497		    | PFSS_PAWS_IDLED;
1498	}
1499	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1500	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1501		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1502			DPFPRINTF(("dst idled out of PAWS\n"));
1503			pf_print_state(state);
1504			printf("\n");
1505		}
1506		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1507		    | PFSS_PAWS_IDLED;
1508	}
1509
1510	if (got_ts && src->scrub && dst->scrub &&
1511	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1512	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1513		/* Validate that the timestamps are "in-window".
1514		 * RFC1323 describes TCP Timestamp options that allow
1515		 * measurement of RTT (round trip time) and PAWS
1516		 * (protection against wrapped sequence numbers).  PAWS
1517		 * gives us a set of rules for rejecting packets on
1518		 * long fat pipes (packets that were somehow delayed
1519		 * in transit longer than the time it took to send the
1520		 * full TCP sequence space of 4Gb).  We can use these
1521		 * rules and infer a few others that will let us treat
1522		 * the 32bit timestamp and the 32bit echoed timestamp
1523		 * as sequence numbers to prevent a blind attacker from
1524		 * inserting packets into a connection.
1525		 *
1526		 * RFC1323 tells us:
1527		 *  - The timestamp on this packet must be greater than
1528		 *    or equal to the last value echoed by the other
1529		 *    endpoint.  The RFC says those will be discarded
1530		 *    since it is a dup that has already been acked.
1531		 *    This gives us a lowerbound on the timestamp.
1532		 *        timestamp >= other last echoed timestamp
1533		 *  - The timestamp will be less than or equal to
1534		 *    the last timestamp plus the time between the
1535		 *    last packet and now.  The RFC defines the max
1536		 *    clock rate as 1ms.  We will allow clocks to be
1537		 *    up to 10% fast and will allow a total difference
1538		 *    or 30 seconds due to a route change.  And this
1539		 *    gives us an upperbound on the timestamp.
1540		 *        timestamp <= last timestamp + max ticks
1541		 *    We have to be careful here.  Windows will send an
1542		 *    initial timestamp of zero and then initialize it
1543		 *    to a random value after the 3whs; presumably to
1544		 *    avoid a DoS by having to call an expensive RNG
1545		 *    during a SYN flood.  Proof MS has at least one
1546		 *    good security geek.
1547		 *
1548		 *  - The TCP timestamp option must also echo the other
1549		 *    endpoints timestamp.  The timestamp echoed is the
1550		 *    one carried on the earliest unacknowledged segment
1551		 *    on the left edge of the sequence window.  The RFC
1552		 *    states that the host will reject any echoed
1553		 *    timestamps that were larger than any ever sent.
1554		 *    This gives us an upperbound on the TS echo.
1555		 *        tescr <= largest_tsval
1556		 *  - The lowerbound on the TS echo is a little more
1557		 *    tricky to determine.  The other endpoint's echoed
1558		 *    values will not decrease.  But there may be
1559		 *    network conditions that re-order packets and
1560		 *    cause our view of them to decrease.  For now the
1561		 *    only lowerbound we can safely determine is that
1562		 *    the TS echo will never be less than the original
1563		 *    TS.  XXX There is probably a better lowerbound.
1564		 *    Remove TS_MAX_CONN with better lowerbound check.
1565		 *        tescr >= other original TS
1566		 *
1567		 * It is also important to note that the fastest
1568		 * timestamp clock of 1ms will wrap its 32bit space in
1569		 * 24 days.  So we just disable TS checking after 24
1570		 * days of idle time.  We actually must use a 12d
1571		 * connection limit until we can come up with a better
1572		 * lowerbound to the TS echo check.
1573		 */
1574		struct timeval delta_ts;
1575		int ts_fudge;
1576
1577
1578		/*
1579		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1580		 * a host's timestamp.  This can happen if the previous
1581		 * packet got delayed in transit for much longer than
1582		 * this packet.
1583		 */
1584		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1585			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1586
1587		/* Calculate max ticks since the last timestamp */
1588#define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1589#define TS_MICROSECS	1000000		/* microseconds per second */
1590		delta_ts = uptime;
1591		timevalsub(&delta_ts, &src->scrub->pfss_last);
1592		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1593		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1594
1595		if ((src->state >= TCPS_ESTABLISHED &&
1596		    dst->state >= TCPS_ESTABLISHED) &&
1597		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1598		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1599		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1600		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1601			/* Bad RFC1323 implementation or an insertion attack.
1602			 *
1603			 * - Solaris 2.6 and 2.7 are known to send another ACK
1604			 *   after the FIN,FIN|ACK,ACK closing that carries
1605			 *   an old timestamp.
1606			 */
1607
1608			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1609			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1610			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1611			    tsval_from_last) ? '1' : ' ',
1612			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1613			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1614			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1615			    "idle: %jus %lums\n",
1616			    tsval, tsecr, tsval_from_last,
1617			    (uintmax_t)delta_ts.tv_sec,
1618			    delta_ts.tv_usec / 1000));
1619			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1620			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1621			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1622			    "\n", dst->scrub->pfss_tsval,
1623			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1624			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1625				pf_print_state(state);
1626				pf_print_flags(th->th_flags);
1627				printf("\n");
1628			}
1629			REASON_SET(reason, PFRES_TS);
1630			return (PF_DROP);
1631		}
1632
1633		/* XXX I'd really like to require tsecr but it's optional */
1634
1635	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1636	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1637	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1638	    src->scrub && dst->scrub &&
1639	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1640	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1641		/* Didn't send a timestamp.  Timestamps aren't really useful
1642		 * when:
1643		 *  - connection opening or closing (often not even sent).
1644		 *    but we must not let an attacker to put a FIN on a
1645		 *    data packet to sneak it through our ESTABLISHED check.
1646		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1647		 *  - on an empty ACK.  The TS will not be echoed so it will
1648		 *    probably not help keep the RTT calculation in sync and
1649		 *    there isn't as much danger when the sequence numbers
1650		 *    got wrapped.  So some stacks don't include TS on empty
1651		 *    ACKs :-(
1652		 *
1653		 * To minimize the disruption to mostly RFC1323 conformant
1654		 * stacks, we will only require timestamps on data packets.
1655		 *
1656		 * And what do ya know, we cannot require timestamps on data
1657		 * packets.  There appear to be devices that do legitimate
1658		 * TCP connection hijacking.  There are HTTP devices that allow
1659		 * a 3whs (with timestamps) and then buffer the HTTP request.
1660		 * If the intermediate device has the HTTP response cache, it
1661		 * will spoof the response but not bother timestamping its
1662		 * packets.  So we can look for the presence of a timestamp in
1663		 * the first data packet and if there, require it in all future
1664		 * packets.
1665		 */
1666
1667		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1668			/*
1669			 * Hey!  Someone tried to sneak a packet in.  Or the
1670			 * stack changed its RFC1323 behavior?!?!
1671			 */
1672			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1673				DPFPRINTF(("Did not receive expected RFC1323 "
1674				    "timestamp\n"));
1675				pf_print_state(state);
1676				pf_print_flags(th->th_flags);
1677				printf("\n");
1678			}
1679			REASON_SET(reason, PFRES_TS);
1680			return (PF_DROP);
1681		}
1682	}
1683
1684
1685	/*
1686	 * We will note if a host sends his data packets with or without
1687	 * timestamps.  And require all data packets to contain a timestamp
1688	 * if the first does.  PAWS implicitly requires that all data packets be
1689	 * timestamped.  But I think there are middle-man devices that hijack
1690	 * TCP streams immediately after the 3whs and don't timestamp their
1691	 * packets (seen in a WWW accelerator or cache).
1692	 */
1693	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1694	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1695		if (got_ts)
1696			src->scrub->pfss_flags |= PFSS_DATA_TS;
1697		else {
1698			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1699			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1700			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1701				/* Don't warn if other host rejected RFC1323 */
1702				DPFPRINTF(("Broken RFC1323 stack did not "
1703				    "timestamp data packet. Disabled PAWS "
1704				    "security.\n"));
1705				pf_print_state(state);
1706				pf_print_flags(th->th_flags);
1707				printf("\n");
1708			}
1709		}
1710	}
1711
1712
1713	/*
1714	 * Update PAWS values
1715	 */
1716	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1717	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1718		getmicrouptime(&src->scrub->pfss_last);
1719		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1720		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1721			src->scrub->pfss_tsval = tsval;
1722
1723		if (tsecr) {
1724			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1725			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1726				src->scrub->pfss_tsecr = tsecr;
1727
1728			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1729			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1730			    src->scrub->pfss_tsval0 == 0)) {
1731				/* tsval0 MUST be the lowest timestamp */
1732				src->scrub->pfss_tsval0 = tsval;
1733			}
1734
1735			/* Only fully initialized after a TS gets echoed */
1736			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1737				src->scrub->pfss_flags |= PFSS_PAWS;
1738		}
1739	}
1740
1741	/* I have a dream....  TCP segment reassembly.... */
1742	return (0);
1743}
1744
1745static int
1746pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1747    int off, sa_family_t af)
1748{
1749	u_int16_t	*mss;
1750	int		 thoff;
1751	int		 opt, cnt, optlen = 0;
1752	int		 rewrite = 0;
1753	u_char		 opts[TCP_MAXOLEN];
1754	u_char		*optp = opts;
1755
1756	thoff = th->th_off << 2;
1757	cnt = thoff - sizeof(struct tcphdr);
1758
1759	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1760	    NULL, NULL, af))
1761		return (rewrite);
1762
1763	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1764		opt = optp[0];
1765		if (opt == TCPOPT_EOL)
1766			break;
1767		if (opt == TCPOPT_NOP)
1768			optlen = 1;
1769		else {
1770			if (cnt < 2)
1771				break;
1772			optlen = optp[1];
1773			if (optlen < 2 || optlen > cnt)
1774				break;
1775		}
1776		switch (opt) {
1777		case TCPOPT_MAXSEG:
1778			mss = (u_int16_t *)(optp + 2);
1779			if ((ntohs(*mss)) > r->max_mss) {
1780				th->th_sum = pf_proto_cksum_fixup(m,
1781				    th->th_sum, *mss, htons(r->max_mss), 0);
1782				*mss = htons(r->max_mss);
1783				rewrite = 1;
1784			}
1785			break;
1786		default:
1787			break;
1788		}
1789	}
1790
1791	if (rewrite)
1792		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1793
1794	return (rewrite);
1795}
1796
1797#ifdef INET
1798static void
1799pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1800{
1801	struct mbuf		*m = *m0;
1802	struct ip		*h = mtod(m, struct ip *);
1803
1804	/* Clear IP_DF if no-df was requested */
1805	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1806		u_int16_t ip_off = h->ip_off;
1807
1808		h->ip_off &= htons(~IP_DF);
1809		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1810	}
1811
1812	/* Enforce a minimum ttl, may cause endless packet loops */
1813	if (min_ttl && h->ip_ttl < min_ttl) {
1814		u_int16_t ip_ttl = h->ip_ttl;
1815
1816		h->ip_ttl = min_ttl;
1817		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1818	}
1819
1820	/* Enforce tos */
1821	if (flags & PFRULE_SET_TOS) {
1822		u_int16_t	ov, nv;
1823
1824		ov = *(u_int16_t *)h;
1825		h->ip_tos = tos;
1826		nv = *(u_int16_t *)h;
1827
1828		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1829	}
1830
1831	/* random-id, but not for fragments */
1832	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1833		uint16_t ip_id = h->ip_id;
1834
1835		ip_fillid(h);
1836		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1837	}
1838}
1839#endif /* INET */
1840
1841#ifdef INET6
1842static void
1843pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1844{
1845	struct mbuf		*m = *m0;
1846	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1847
1848	/* Enforce a minimum ttl, may cause endless packet loops */
1849	if (min_ttl && h->ip6_hlim < min_ttl)
1850		h->ip6_hlim = min_ttl;
1851}
1852#endif
1853