dn_sched_qfq.c revision 302408
1/*
2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD: stable/11/sys/netpfil/ipfw/dn_sched_qfq.c 300779 2016-05-26 21:40:13Z truckman $
29 */
30
31#ifdef _KERNEL
32#include <sys/malloc.h>
33#include <sys/socket.h>
34#include <sys/socketvar.h>
35#include <sys/kernel.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <net/if.h>	/* IFNAMSIZ */
39#include <netinet/in.h>
40#include <netinet/ip_var.h>		/* ipfw_rule_ref */
41#include <netinet/ip_fw.h>	/* flow_id */
42#include <netinet/ip_dummynet.h>
43#include <netpfil/ipfw/dn_heap.h>
44#include <netpfil/ipfw/ip_dn_private.h>
45#ifdef NEW_AQM
46#include <netpfil/ipfw/dn_aqm.h>
47#endif
48#include <netpfil/ipfw/dn_sched.h>
49#else
50#include <dn_test.h>
51#endif
52
53#ifdef QFQ_DEBUG
54#define _P64	unsigned long long	/* cast for printing uint64_t */
55struct qfq_sched;
56static void dump_sched(struct qfq_sched *q, const char *msg);
57#define	NO(x)	x
58#else
59#define NO(x)
60#endif
61#define DN_SCHED_QFQ	4 // XXX Where?
62typedef	unsigned long	bitmap;
63
64/*
65 * bitmaps ops are critical. Some linux versions have __fls
66 * and the bitmap ops. Some machines have ffs
67 * NOTE: fls() returns 1 for the least significant bit,
68 *       __fls() returns 0 for the same case.
69 * We use the base-0 version __fls() to match the description in
70 * the ToN QFQ paper
71 */
72#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
73int fls(unsigned int n)
74{
75	int i = 0;
76	for (i = 0; n > 0; n >>= 1, i++)
77		;
78	return i;
79}
80#endif
81
82#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
83static inline unsigned long __fls(unsigned long word)
84{
85	return fls(word) - 1;
86}
87#endif
88
89#if !defined(_KERNEL) || !defined(__linux__)
90#ifdef QFQ_DEBUG
91static int test_bit(int ix, bitmap *p)
92{
93	if (ix < 0 || ix > 31)
94		D("bad index %d", ix);
95	return *p & (1<<ix);
96}
97static void __set_bit(int ix, bitmap *p)
98{
99	if (ix < 0 || ix > 31)
100		D("bad index %d", ix);
101	*p |= (1<<ix);
102}
103static void __clear_bit(int ix, bitmap *p)
104{
105	if (ix < 0 || ix > 31)
106		D("bad index %d", ix);
107	*p &= ~(1<<ix);
108}
109#else /* !QFQ_DEBUG */
110/* XXX do we have fast version, or leave it to the compiler ? */
111#define test_bit(ix, pData)	((*pData) & (1<<(ix)))
112#define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
113#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
114#endif /* !QFQ_DEBUG */
115#endif /* !__linux__ */
116
117#ifdef __MIPSEL__
118#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
119#endif
120
121/*-------------------------------------------*/
122/*
123
124Virtual time computations.
125
126S, F and V are all computed in fixed point arithmetic with
127FRAC_BITS decimal bits.
128
129   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
130  	one bit per index.
131   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
132   The layout of the bits is as below:
133
134                   [ MTU_SHIFT ][      FRAC_BITS    ]
135                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
136  				 ^.__grp->index = 0
137  				 *.__grp->slot_shift
138
139   where MIN_SLOT_SHIFT is derived by difference from the others.
140
141The max group index corresponds to Lmax/w_min, where
142Lmax=1<<MTU_SHIFT, w_min = 1 .
143From this, and knowing how many groups (MAX_INDEX) we want,
144we can derive the shift corresponding to each group.
145
146Because we often need to compute
147	F = S + len/w_i  and V = V + len/wsum
148instead of storing w_i store the value
149	inv_w = (1<<FRAC_BITS)/w_i
150so we can do F = S + len * inv_w * wsum.
151We use W_TOT in the formulas so we can easily move between
152static and adaptive weight sum.
153
154The per-scheduler-instance data contain all the data structures
155for the scheduler: bitmaps and bucket lists.
156
157 */
158/*
159 * Maximum number of consecutive slots occupied by backlogged classes
160 * inside a group. This is approx lmax/lmin + 5.
161 * XXX check because it poses constraints on MAX_INDEX
162 */
163#define QFQ_MAX_SLOTS	32
164/*
165 * Shifts used for class<->group mapping. Class weights are
166 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
167 * group with the smallest index that can support the L_i / r_i
168 * configured for the class.
169 *
170 * grp->index is the index of the group; and grp->slot_shift
171 * is the shift for the corresponding (scaled) sigma_i.
172 *
173 * When computing the group index, we do (len<<FP_SHIFT)/weight,
174 * then compute an FLS (which is like a log2()), and if the result
175 * is below the MAX_INDEX region we use 0 (which is the same as
176 * using a larger len).
177 */
178#define QFQ_MAX_INDEX		19
179#define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
180
181#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
182#define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
183
184#define FRAC_BITS		30	/* fixed point arithmetic */
185#define ONE_FP			(1UL << FRAC_BITS)
186
187#define QFQ_MTU_SHIFT		11	/* log2(max_len) */
188#define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
189
190/*
191 * Possible group states, also indexes for the bitmaps array in
192 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
193 */
194enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
195
196struct qfq_group;
197/*
198 * additional queue info. Some of this info should come from
199 * the flowset, we copy them here for faster processing.
200 * This is an overlay of the struct dn_queue
201 */
202struct qfq_class {
203	struct dn_queue _q;
204	uint64_t S, F;		/* flow timestamps (exact) */
205	struct qfq_class *next; /* Link for the slot list. */
206
207	/* group we belong to. In principle we would need the index,
208	 * which is log_2(lmax/weight), but we never reference it
209	 * directly, only the group.
210	 */
211	struct qfq_group *grp;
212
213	/* these are copied from the flowset. */
214	uint32_t	inv_w;	/* ONE_FP/weight */
215	uint32_t 	lmax;	/* Max packet size for this flow. */
216};
217
218/* Group descriptor, see the paper for details.
219 * Basically this contains the bucket lists
220 */
221struct qfq_group {
222	uint64_t S, F;			/* group timestamps (approx). */
223	unsigned int slot_shift;	/* Slot shift. */
224	unsigned int index;		/* Group index. */
225	unsigned int front;		/* Index of the front slot. */
226	bitmap full_slots;		/* non-empty slots */
227
228	/* Array of lists of active classes. */
229	struct qfq_class *slots[QFQ_MAX_SLOTS];
230};
231
232/* scheduler instance descriptor. */
233struct qfq_sched {
234	uint64_t	V;		/* Precise virtual time. */
235	uint32_t	wsum;		/* weight sum */
236	uint32_t	iwsum;		/* inverse weight sum */
237	NO(uint32_t	i_wsum;)	/* ONE_FP/w_sum */
238	NO(uint32_t	queued;)	/* debugging */
239	NO(uint32_t	loops;)		/* debugging */
240	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
241	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
242};
243
244/*---- support functions ----------------------------*/
245
246/* Generic comparison function, handling wraparound. */
247static inline int qfq_gt(uint64_t a, uint64_t b)
248{
249	return (int64_t)(a - b) > 0;
250}
251
252/* Round a precise timestamp to its slotted value. */
253static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
254{
255	return ts & ~((1ULL << shift) - 1);
256}
257
258/* return the pointer to the group with lowest index in the bitmap */
259static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
260					unsigned long bitmap)
261{
262	int index = ffs(bitmap) - 1; // zero-based
263	return &q->groups[index];
264}
265
266/*
267 * Calculate a flow index, given its weight and maximum packet length.
268 * index = log_2(maxlen/weight) but we need to apply the scaling.
269 * This is used only once at flow creation.
270 */
271static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
272{
273	uint64_t slot_size = (uint64_t)maxlen *inv_w;
274	unsigned long size_map;
275	int index = 0;
276
277	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
278	if (!size_map)
279		goto out;
280
281	index = __fls(size_map) + 1;	// basically a log_2()
282	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
283
284	if (index < 0)
285		index = 0;
286
287out:
288	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
289	return index;
290}
291/*---- end support functions ----*/
292
293/*-------- API calls --------------------------------*/
294/*
295 * Validate and copy parameters from flowset.
296 */
297static int
298qfq_new_queue(struct dn_queue *_q)
299{
300	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
301	struct qfq_class *cl = (struct qfq_class *)_q;
302	int i;
303	uint32_t w;	/* approximated weight */
304
305	/* import parameters from the flowset. They should be correct
306	 * already.
307	 */
308	w = _q->fs->fs.par[0];
309	cl->lmax = _q->fs->fs.par[1];
310	if (!w || w > QFQ_MAX_WEIGHT) {
311		w = 1;
312		D("rounding weight to 1");
313	}
314	cl->inv_w = ONE_FP/w;
315	w = ONE_FP/cl->inv_w;
316	if (q->wsum + w > QFQ_MAX_WSUM)
317		return EINVAL;
318
319	i = qfq_calc_index(cl->inv_w, cl->lmax);
320	cl->grp = &q->groups[i];
321	q->wsum += w;
322	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
323	// XXX cl->S = q->V; ?
324	return 0;
325}
326
327/* remove an empty queue */
328static int
329qfq_free_queue(struct dn_queue *_q)
330{
331	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
332	struct qfq_class *cl = (struct qfq_class *)_q;
333	if (cl->inv_w) {
334		q->wsum -= ONE_FP/cl->inv_w;
335		if (q->wsum != 0)
336			q->iwsum = ONE_FP / q->wsum;
337		cl->inv_w = 0; /* reset weight to avoid run twice */
338	}
339	return 0;
340}
341
342/* Calculate a mask to mimic what would be ffs_from(). */
343static inline unsigned long
344mask_from(unsigned long bitmap, int from)
345{
346	return bitmap & ~((1UL << from) - 1);
347}
348
349/*
350 * The state computation relies on ER=0, IR=1, EB=2, IB=3
351 * First compute eligibility comparing grp->S, q->V,
352 * then check if someone is blocking us and possibly add EB
353 */
354static inline unsigned int
355qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
356{
357	/* if S > V we are not eligible */
358	unsigned int state = qfq_gt(grp->S, q->V);
359	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
360	struct qfq_group *next;
361
362	if (mask) {
363		next = qfq_ffs(q, mask);
364		if (qfq_gt(grp->F, next->F))
365			state |= EB;
366	}
367
368	return state;
369}
370
371/*
372 * In principle
373 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
374 *	q->bitmaps[src] &= ~mask;
375 * but we should make sure that src != dst
376 */
377static inline void
378qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
379{
380	q->bitmaps[dst] |= q->bitmaps[src] & mask;
381	q->bitmaps[src] &= ~mask;
382}
383
384static inline void
385qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
386{
387	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
388	struct qfq_group *next;
389
390	if (mask) {
391		next = qfq_ffs(q, mask);
392		if (!qfq_gt(next->F, old_finish))
393			return;
394	}
395
396	mask = (1UL << index) - 1;
397	qfq_move_groups(q, mask, EB, ER);
398	qfq_move_groups(q, mask, IB, IR);
399}
400
401/*
402 * perhaps
403 *
404	old_V ^= q->V;
405	old_V >>= QFQ_MIN_SLOT_SHIFT;
406	if (old_V) {
407		...
408	}
409 *
410 */
411static inline void
412qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
413{
414	unsigned long mask, vslot, old_vslot;
415
416	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
417	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
418
419	if (vslot != old_vslot) {
420		/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
421		mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
422		qfq_move_groups(q, mask, IR, ER);
423		qfq_move_groups(q, mask, IB, EB);
424	}
425}
426
427/*
428 * XXX we should make sure that slot becomes less than 32.
429 * This is guaranteed by the input values.
430 * roundedS is always cl->S rounded on grp->slot_shift bits.
431 */
432static inline void
433qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
434{
435	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
436	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
437
438	cl->next = grp->slots[i];
439	grp->slots[i] = cl;
440	__set_bit(slot, &grp->full_slots);
441}
442
443/*
444 * remove the entry from the slot
445 */
446static inline void
447qfq_front_slot_remove(struct qfq_group *grp)
448{
449	struct qfq_class **h = &grp->slots[grp->front];
450
451	*h = (*h)->next;
452	if (!*h)
453		__clear_bit(0, &grp->full_slots);
454}
455
456/*
457 * Returns the first full queue in a group. As a side effect,
458 * adjust the bucket list so the first non-empty bucket is at
459 * position 0 in full_slots.
460 */
461static inline struct qfq_class *
462qfq_slot_scan(struct qfq_group *grp)
463{
464	int i;
465
466	ND("grp %d full %x", grp->index, grp->full_slots);
467	if (!grp->full_slots)
468		return NULL;
469
470	i = ffs(grp->full_slots) - 1; // zero-based
471	if (i > 0) {
472		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
473		grp->full_slots >>= i;
474	}
475
476	return grp->slots[grp->front];
477}
478
479/*
480 * adjust the bucket list. When the start time of a group decreases,
481 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
482 * move the objects. The mask of occupied slots must be shifted
483 * because we use ffs() to find the first non-empty slot.
484 * This covers decreases in the group's start time, but what about
485 * increases of the start time ?
486 * Here too we should make sure that i is less than 32
487 */
488static inline void
489qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
490{
491	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
492
493	(void)q;
494	grp->full_slots <<= i;
495	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
496}
497
498
499static inline void
500qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
501{
502	bitmap ineligible;
503
504	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
505	if (ineligible) {
506		if (!q->bitmaps[ER]) {
507			struct qfq_group *grp;
508			grp = qfq_ffs(q, ineligible);
509			if (qfq_gt(grp->S, q->V))
510				q->V = grp->S;
511		}
512		qfq_make_eligible(q, old_V);
513	}
514}
515
516/*
517 * Updates the class, returns true if also the group needs to be updated.
518 */
519static inline int
520qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
521	    struct qfq_class *cl)
522{
523
524	(void)q;
525	cl->S = cl->F;
526	if (cl->_q.mq.head == NULL)  {
527		qfq_front_slot_remove(grp);
528	} else {
529		unsigned int len;
530		uint64_t roundedS;
531
532		len = cl->_q.mq.head->m_pkthdr.len;
533		cl->F = cl->S + (uint64_t)len * cl->inv_w;
534		roundedS = qfq_round_down(cl->S, grp->slot_shift);
535		if (roundedS == grp->S)
536			return 0;
537
538		qfq_front_slot_remove(grp);
539		qfq_slot_insert(grp, cl, roundedS);
540	}
541	return 1;
542}
543
544static struct mbuf *
545qfq_dequeue(struct dn_sch_inst *si)
546{
547	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
548	struct qfq_group *grp;
549	struct qfq_class *cl;
550	struct mbuf *m;
551	uint64_t old_V;
552
553	NO(q->loops++;)
554	if (!q->bitmaps[ER]) {
555		NO(if (q->queued)
556			dump_sched(q, "start dequeue");)
557		return NULL;
558	}
559
560	grp = qfq_ffs(q, q->bitmaps[ER]);
561
562	cl = grp->slots[grp->front];
563	/* extract from the first bucket in the bucket list */
564	m = dn_dequeue(&cl->_q);
565
566	if (!m) {
567		D("BUG/* non-workconserving leaf */");
568		return NULL;
569	}
570	NO(q->queued--;)
571	old_V = q->V;
572	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
573	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
574
575	if (qfq_update_class(q, grp, cl)) {
576		uint64_t old_F = grp->F;
577		cl = qfq_slot_scan(grp);
578		if (!cl) { /* group gone, remove from ER */
579			__clear_bit(grp->index, &q->bitmaps[ER]);
580			// grp->S = grp->F + 1; // XXX debugging only
581		} else {
582			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
583			unsigned int s;
584
585			if (grp->S == roundedS)
586				goto skip_unblock;
587			grp->S = roundedS;
588			grp->F = roundedS + (2ULL << grp->slot_shift);
589			/* remove from ER and put in the new set */
590			__clear_bit(grp->index, &q->bitmaps[ER]);
591			s = qfq_calc_state(q, grp);
592			__set_bit(grp->index, &q->bitmaps[s]);
593		}
594		/* we need to unblock even if the group has gone away */
595		qfq_unblock_groups(q, grp->index, old_F);
596	}
597
598skip_unblock:
599	qfq_update_eligible(q, old_V);
600	NO(if (!q->bitmaps[ER] && q->queued)
601		dump_sched(q, "end dequeue");)
602
603	return m;
604}
605
606/*
607 * Assign a reasonable start time for a new flow k in group i.
608 * Admissible values for \hat(F) are multiples of \sigma_i
609 * no greater than V+\sigma_i . Larger values mean that
610 * we had a wraparound so we consider the timestamp to be stale.
611 *
612 * If F is not stale and F >= V then we set S = F.
613 * Otherwise we should assign S = V, but this may violate
614 * the ordering in ER. So, if we have groups in ER, set S to
615 * the F_j of the first group j which would be blocking us.
616 * We are guaranteed not to move S backward because
617 * otherwise our group i would still be blocked.
618 */
619static inline void
620qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
621{
622	unsigned long mask;
623	uint64_t limit, roundedF;
624	int slot_shift = cl->grp->slot_shift;
625
626	roundedF = qfq_round_down(cl->F, slot_shift);
627	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
628
629	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
630		/* timestamp was stale */
631		mask = mask_from(q->bitmaps[ER], cl->grp->index);
632		if (mask) {
633			struct qfq_group *next = qfq_ffs(q, mask);
634			if (qfq_gt(roundedF, next->F)) {
635				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
636				if (qfq_gt(limit, next->F))
637					cl->S = next->F;
638				else /* preserve timestamp correctness */
639					cl->S = limit;
640				return;
641			}
642		}
643		cl->S = q->V;
644	} else { /* timestamp is not stale */
645		cl->S = cl->F;
646	}
647}
648
649static int
650qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
651{
652	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
653	struct qfq_group *grp;
654	struct qfq_class *cl = (struct qfq_class *)_q;
655	uint64_t roundedS;
656	int s;
657
658	NO(q->loops++;)
659	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
660		_q, cl->inv_w, cl->grp->index);
661	/* XXX verify that the packet obeys the parameters */
662	if (m != _q->mq.head) {
663		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
664			return 1;
665		NO(q->queued++;)
666		if (m != _q->mq.head)
667			return 0;
668	}
669	/* If reach this point, queue q was idle */
670	grp = cl->grp;
671	qfq_update_start(q, cl); /* adjust start time */
672	/* compute new finish time and rounded start. */
673	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
674	roundedS = qfq_round_down(cl->S, grp->slot_shift);
675
676	/*
677	 * insert cl in the correct bucket.
678	 * If cl->S >= grp->S we don't need to adjust the
679	 * bucket list and simply go to the insertion phase.
680	 * Otherwise grp->S is decreasing, we must make room
681	 * in the bucket list, and also recompute the group state.
682	 * Finally, if there were no flows in this group and nobody
683	 * was in ER make sure to adjust V.
684	 */
685	if (grp->full_slots) {
686		if (!qfq_gt(grp->S, cl->S))
687			goto skip_update;
688		/* create a slot for this cl->S */
689		qfq_slot_rotate(q, grp, roundedS);
690		/* group was surely ineligible, remove */
691		__clear_bit(grp->index, &q->bitmaps[IR]);
692		__clear_bit(grp->index, &q->bitmaps[IB]);
693	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
694		q->V = roundedS;
695
696	grp->S = roundedS;
697	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
698	s = qfq_calc_state(q, grp);
699	__set_bit(grp->index, &q->bitmaps[s]);
700	ND("new state %d 0x%x", s, q->bitmaps[s]);
701	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
702skip_update:
703	qfq_slot_insert(grp, cl, roundedS);
704
705	return 0;
706}
707
708
709#if 0
710static inline void
711qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
712	struct qfq_class *cl, struct qfq_class **pprev)
713{
714	unsigned int i, offset;
715	uint64_t roundedS;
716
717	roundedS = qfq_round_down(cl->S, grp->slot_shift);
718	offset = (roundedS - grp->S) >> grp->slot_shift;
719	i = (grp->front + offset) % QFQ_MAX_SLOTS;
720
721#ifdef notyet
722	if (!pprev) {
723		pprev = &grp->slots[i];
724		while (*pprev && *pprev != cl)
725			pprev = &(*pprev)->next;
726	}
727#endif
728
729	*pprev = cl->next;
730	if (!grp->slots[i])
731		__clear_bit(offset, &grp->full_slots);
732}
733
734/*
735 * called to forcibly destroy a queue.
736 * If the queue is not in the front bucket, or if it has
737 * other queues in the front bucket, we can simply remove
738 * the queue with no other side effects.
739 * Otherwise we must propagate the event up.
740 * XXX description to be completed.
741 */
742static void
743qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
744				 struct qfq_class **pprev)
745{
746	struct qfq_group *grp = &q->groups[cl->index];
747	unsigned long mask;
748	uint64_t roundedS;
749	int s;
750
751	cl->F = cl->S;	// not needed if the class goes away.
752	qfq_slot_remove(q, grp, cl, pprev);
753
754	if (!grp->full_slots) {
755		/* nothing left in the group, remove from all sets.
756		 * Do ER last because if we were blocking other groups
757		 * we must unblock them.
758		 */
759		__clear_bit(grp->index, &q->bitmaps[IR]);
760		__clear_bit(grp->index, &q->bitmaps[EB]);
761		__clear_bit(grp->index, &q->bitmaps[IB]);
762
763		if (test_bit(grp->index, &q->bitmaps[ER]) &&
764		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
765			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
766			if (mask)
767				mask = ~((1UL << __fls(mask)) - 1);
768			else
769				mask = ~0UL;
770			qfq_move_groups(q, mask, EB, ER);
771			qfq_move_groups(q, mask, IB, IR);
772		}
773		__clear_bit(grp->index, &q->bitmaps[ER]);
774	} else if (!grp->slots[grp->front]) {
775		cl = qfq_slot_scan(grp);
776		roundedS = qfq_round_down(cl->S, grp->slot_shift);
777		if (grp->S != roundedS) {
778			__clear_bit(grp->index, &q->bitmaps[ER]);
779			__clear_bit(grp->index, &q->bitmaps[IR]);
780			__clear_bit(grp->index, &q->bitmaps[EB]);
781			__clear_bit(grp->index, &q->bitmaps[IB]);
782			grp->S = roundedS;
783			grp->F = roundedS + (2ULL << grp->slot_shift);
784			s = qfq_calc_state(q, grp);
785			__set_bit(grp->index, &q->bitmaps[s]);
786		}
787	}
788	qfq_update_eligible(q, q->V);
789}
790#endif
791
792static int
793qfq_new_fsk(struct dn_fsk *f)
794{
795	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
796	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
797	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
798	return 0;
799}
800
801/*
802 * initialize a new scheduler instance
803 */
804static int
805qfq_new_sched(struct dn_sch_inst *si)
806{
807	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
808	struct qfq_group *grp;
809	int i;
810
811	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
812		grp = &q->groups[i];
813		grp->index = i;
814		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
815					(QFQ_MAX_INDEX - i);
816	}
817	return 0;
818}
819
820/*
821 * QFQ scheduler descriptor
822 */
823static struct dn_alg qfq_desc = {
824	_SI( .type = ) DN_SCHED_QFQ,
825	_SI( .name = ) "QFQ",
826	_SI( .flags = ) DN_MULTIQUEUE,
827
828	_SI( .schk_datalen = ) 0,
829	_SI( .si_datalen = ) sizeof(struct qfq_sched),
830	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
831
832	_SI( .enqueue = ) qfq_enqueue,
833	_SI( .dequeue = ) qfq_dequeue,
834
835	_SI( .config = )  NULL,
836	_SI( .destroy = )  NULL,
837	_SI( .new_sched = ) qfq_new_sched,
838	_SI( .free_sched = )  NULL,
839	_SI( .new_fsk = ) qfq_new_fsk,
840	_SI( .free_fsk = )  NULL,
841	_SI( .new_queue = ) qfq_new_queue,
842	_SI( .free_queue = ) qfq_free_queue,
843#ifdef NEW_AQM
844	_SI( .getconfig = )  NULL,
845#endif
846};
847
848DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
849
850#ifdef QFQ_DEBUG
851static void
852dump_groups(struct qfq_sched *q, uint32_t mask)
853{
854	int i, j;
855
856	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
857		struct qfq_group *g = &q->groups[i];
858
859		if (0 == (mask & (1<<i)))
860			continue;
861		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
862			if (g->slots[j])
863				D("    bucket %d %p", j, g->slots[j]);
864		}
865		D("full_slots 0x%llx", (_P64)g->full_slots);
866		D("        %2d S 0x%20llx F 0x%llx %c", i,
867			(_P64)g->S, (_P64)g->F,
868			mask & (1<<i) ? '1' : '0');
869	}
870}
871
872static void
873dump_sched(struct qfq_sched *q, const char *msg)
874{
875	D("--- in %s: ---", msg);
876	D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
877	D("    ER 0x%08x", (unsigned)q->bitmaps[ER]);
878	D("    EB 0x%08x", (unsigned)q->bitmaps[EB]);
879	D("    IR 0x%08x", (unsigned)q->bitmaps[IR]);
880	D("    IB 0x%08x", (unsigned)q->bitmaps[IB]);
881	dump_groups(q, 0xffffffff);
882};
883#endif /* QFQ_DEBUG */
884