dn_sched_qfq.c revision 294858
1/*
2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD: head/sys/netpfil/ipfw/dn_sched_qfq.c 294858 2016-01-26 23:36:18Z luigi $
29 */
30
31#ifdef _KERNEL
32#include <sys/malloc.h>
33#include <sys/socket.h>
34#include <sys/socketvar.h>
35#include <sys/kernel.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <net/if.h>	/* IFNAMSIZ */
39#include <netinet/in.h>
40#include <netinet/ip_var.h>		/* ipfw_rule_ref */
41#include <netinet/ip_fw.h>	/* flow_id */
42#include <netinet/ip_dummynet.h>
43#include <netpfil/ipfw/dn_heap.h>
44#include <netpfil/ipfw/ip_dn_private.h>
45#include <netpfil/ipfw/dn_sched.h>
46#else
47#include <dn_test.h>
48#endif
49
50#ifdef QFQ_DEBUG
51#define _P64	unsigned long long	/* cast for printing uint64_t */
52struct qfq_sched;
53static void dump_sched(struct qfq_sched *q, const char *msg);
54#define	NO(x)	x
55#else
56#define NO(x)
57#endif
58#define DN_SCHED_QFQ	4 // XXX Where?
59typedef	unsigned long	bitmap;
60
61/*
62 * bitmaps ops are critical. Some linux versions have __fls
63 * and the bitmap ops. Some machines have ffs
64 * NOTE: fls() returns 1 for the least significant bit,
65 *       __fls() returns 0 for the same case.
66 * We use the base-0 version __fls() to match the description in
67 * the ToN QFQ paper
68 */
69#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
70int fls(unsigned int n)
71{
72	int i = 0;
73	for (i = 0; n > 0; n >>= 1, i++)
74		;
75	return i;
76}
77#endif
78
79#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
80static inline unsigned long __fls(unsigned long word)
81{
82	return fls(word) - 1;
83}
84#endif
85
86#if !defined(_KERNEL) || !defined(__linux__)
87#ifdef QFQ_DEBUG
88static int test_bit(int ix, bitmap *p)
89{
90	if (ix < 0 || ix > 31)
91		D("bad index %d", ix);
92	return *p & (1<<ix);
93}
94static void __set_bit(int ix, bitmap *p)
95{
96	if (ix < 0 || ix > 31)
97		D("bad index %d", ix);
98	*p |= (1<<ix);
99}
100static void __clear_bit(int ix, bitmap *p)
101{
102	if (ix < 0 || ix > 31)
103		D("bad index %d", ix);
104	*p &= ~(1<<ix);
105}
106#else /* !QFQ_DEBUG */
107/* XXX do we have fast version, or leave it to the compiler ? */
108#define test_bit(ix, pData)	((*pData) & (1<<(ix)))
109#define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
110#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
111#endif /* !QFQ_DEBUG */
112#endif /* !__linux__ */
113
114#ifdef __MIPSEL__
115#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
116#endif
117
118/*-------------------------------------------*/
119/*
120
121Virtual time computations.
122
123S, F and V are all computed in fixed point arithmetic with
124FRAC_BITS decimal bits.
125
126   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
127  	one bit per index.
128   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
129   The layout of the bits is as below:
130
131                   [ MTU_SHIFT ][      FRAC_BITS    ]
132                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
133  				 ^.__grp->index = 0
134  				 *.__grp->slot_shift
135
136   where MIN_SLOT_SHIFT is derived by difference from the others.
137
138The max group index corresponds to Lmax/w_min, where
139Lmax=1<<MTU_SHIFT, w_min = 1 .
140From this, and knowing how many groups (MAX_INDEX) we want,
141we can derive the shift corresponding to each group.
142
143Because we often need to compute
144	F = S + len/w_i  and V = V + len/wsum
145instead of storing w_i store the value
146	inv_w = (1<<FRAC_BITS)/w_i
147so we can do F = S + len * inv_w * wsum.
148We use W_TOT in the formulas so we can easily move between
149static and adaptive weight sum.
150
151The per-scheduler-instance data contain all the data structures
152for the scheduler: bitmaps and bucket lists.
153
154 */
155/*
156 * Maximum number of consecutive slots occupied by backlogged classes
157 * inside a group. This is approx lmax/lmin + 5.
158 * XXX check because it poses constraints on MAX_INDEX
159 */
160#define QFQ_MAX_SLOTS	32
161/*
162 * Shifts used for class<->group mapping. Class weights are
163 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
164 * group with the smallest index that can support the L_i / r_i
165 * configured for the class.
166 *
167 * grp->index is the index of the group; and grp->slot_shift
168 * is the shift for the corresponding (scaled) sigma_i.
169 *
170 * When computing the group index, we do (len<<FP_SHIFT)/weight,
171 * then compute an FLS (which is like a log2()), and if the result
172 * is below the MAX_INDEX region we use 0 (which is the same as
173 * using a larger len).
174 */
175#define QFQ_MAX_INDEX		19
176#define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
177
178#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
179#define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
180
181#define FRAC_BITS		30	/* fixed point arithmetic */
182#define ONE_FP			(1UL << FRAC_BITS)
183
184#define QFQ_MTU_SHIFT		11	/* log2(max_len) */
185#define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
186
187/*
188 * Possible group states, also indexes for the bitmaps array in
189 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
190 */
191enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
192
193struct qfq_group;
194/*
195 * additional queue info. Some of this info should come from
196 * the flowset, we copy them here for faster processing.
197 * This is an overlay of the struct dn_queue
198 */
199struct qfq_class {
200	struct dn_queue _q;
201	uint64_t S, F;		/* flow timestamps (exact) */
202	struct qfq_class *next; /* Link for the slot list. */
203
204	/* group we belong to. In principle we would need the index,
205	 * which is log_2(lmax/weight), but we never reference it
206	 * directly, only the group.
207	 */
208	struct qfq_group *grp;
209
210	/* these are copied from the flowset. */
211	uint32_t	inv_w;	/* ONE_FP/weight */
212	uint32_t 	lmax;	/* Max packet size for this flow. */
213};
214
215/* Group descriptor, see the paper for details.
216 * Basically this contains the bucket lists
217 */
218struct qfq_group {
219	uint64_t S, F;			/* group timestamps (approx). */
220	unsigned int slot_shift;	/* Slot shift. */
221	unsigned int index;		/* Group index. */
222	unsigned int front;		/* Index of the front slot. */
223	bitmap full_slots;		/* non-empty slots */
224
225	/* Array of lists of active classes. */
226	struct qfq_class *slots[QFQ_MAX_SLOTS];
227};
228
229/* scheduler instance descriptor. */
230struct qfq_sched {
231	uint64_t	V;		/* Precise virtual time. */
232	uint32_t	wsum;		/* weight sum */
233	uint32_t	iwsum;		/* inverse weight sum */
234	NO(uint32_t	i_wsum;)	/* ONE_FP/w_sum */
235	NO(uint32_t	queued;)	/* debugging */
236	NO(uint32_t	loops;)		/* debugging */
237	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
238	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
239};
240
241/*---- support functions ----------------------------*/
242
243/* Generic comparison function, handling wraparound. */
244static inline int qfq_gt(uint64_t a, uint64_t b)
245{
246	return (int64_t)(a - b) > 0;
247}
248
249/* Round a precise timestamp to its slotted value. */
250static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
251{
252	return ts & ~((1ULL << shift) - 1);
253}
254
255/* return the pointer to the group with lowest index in the bitmap */
256static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
257					unsigned long bitmap)
258{
259	int index = ffs(bitmap) - 1; // zero-based
260	return &q->groups[index];
261}
262
263/*
264 * Calculate a flow index, given its weight and maximum packet length.
265 * index = log_2(maxlen/weight) but we need to apply the scaling.
266 * This is used only once at flow creation.
267 */
268static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
269{
270	uint64_t slot_size = (uint64_t)maxlen *inv_w;
271	unsigned long size_map;
272	int index = 0;
273
274	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
275	if (!size_map)
276		goto out;
277
278	index = __fls(size_map) + 1;	// basically a log_2()
279	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
280
281	if (index < 0)
282		index = 0;
283
284out:
285	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
286	return index;
287}
288/*---- end support functions ----*/
289
290/*-------- API calls --------------------------------*/
291/*
292 * Validate and copy parameters from flowset.
293 */
294static int
295qfq_new_queue(struct dn_queue *_q)
296{
297	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
298	struct qfq_class *cl = (struct qfq_class *)_q;
299	int i;
300	uint32_t w;	/* approximated weight */
301
302	/* import parameters from the flowset. They should be correct
303	 * already.
304	 */
305	w = _q->fs->fs.par[0];
306	cl->lmax = _q->fs->fs.par[1];
307	if (!w || w > QFQ_MAX_WEIGHT) {
308		w = 1;
309		D("rounding weight to 1");
310	}
311	cl->inv_w = ONE_FP/w;
312	w = ONE_FP/cl->inv_w;
313	if (q->wsum + w > QFQ_MAX_WSUM)
314		return EINVAL;
315
316	i = qfq_calc_index(cl->inv_w, cl->lmax);
317	cl->grp = &q->groups[i];
318	q->wsum += w;
319	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
320	// XXX cl->S = q->V; ?
321	return 0;
322}
323
324/* remove an empty queue */
325static int
326qfq_free_queue(struct dn_queue *_q)
327{
328	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
329	struct qfq_class *cl = (struct qfq_class *)_q;
330	if (cl->inv_w) {
331		q->wsum -= ONE_FP/cl->inv_w;
332		if (q->wsum != 0)
333			q->iwsum = ONE_FP / q->wsum;
334		cl->inv_w = 0; /* reset weight to avoid run twice */
335	}
336	return 0;
337}
338
339/* Calculate a mask to mimic what would be ffs_from(). */
340static inline unsigned long
341mask_from(unsigned long bitmap, int from)
342{
343	return bitmap & ~((1UL << from) - 1);
344}
345
346/*
347 * The state computation relies on ER=0, IR=1, EB=2, IB=3
348 * First compute eligibility comparing grp->S, q->V,
349 * then check if someone is blocking us and possibly add EB
350 */
351static inline unsigned int
352qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
353{
354	/* if S > V we are not eligible */
355	unsigned int state = qfq_gt(grp->S, q->V);
356	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
357	struct qfq_group *next;
358
359	if (mask) {
360		next = qfq_ffs(q, mask);
361		if (qfq_gt(grp->F, next->F))
362			state |= EB;
363	}
364
365	return state;
366}
367
368/*
369 * In principle
370 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
371 *	q->bitmaps[src] &= ~mask;
372 * but we should make sure that src != dst
373 */
374static inline void
375qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
376{
377	q->bitmaps[dst] |= q->bitmaps[src] & mask;
378	q->bitmaps[src] &= ~mask;
379}
380
381static inline void
382qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
383{
384	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
385	struct qfq_group *next;
386
387	if (mask) {
388		next = qfq_ffs(q, mask);
389		if (!qfq_gt(next->F, old_finish))
390			return;
391	}
392
393	mask = (1UL << index) - 1;
394	qfq_move_groups(q, mask, EB, ER);
395	qfq_move_groups(q, mask, IB, IR);
396}
397
398/*
399 * perhaps
400 *
401	old_V ^= q->V;
402	old_V >>= QFQ_MIN_SLOT_SHIFT;
403	if (old_V) {
404		...
405	}
406 *
407 */
408static inline void
409qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
410{
411	unsigned long mask, vslot, old_vslot;
412
413	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
414	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
415
416	if (vslot != old_vslot) {
417		/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
418		mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
419		qfq_move_groups(q, mask, IR, ER);
420		qfq_move_groups(q, mask, IB, EB);
421	}
422}
423
424/*
425 * XXX we should make sure that slot becomes less than 32.
426 * This is guaranteed by the input values.
427 * roundedS is always cl->S rounded on grp->slot_shift bits.
428 */
429static inline void
430qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
431{
432	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
433	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
434
435	cl->next = grp->slots[i];
436	grp->slots[i] = cl;
437	__set_bit(slot, &grp->full_slots);
438}
439
440/*
441 * remove the entry from the slot
442 */
443static inline void
444qfq_front_slot_remove(struct qfq_group *grp)
445{
446	struct qfq_class **h = &grp->slots[grp->front];
447
448	*h = (*h)->next;
449	if (!*h)
450		__clear_bit(0, &grp->full_slots);
451}
452
453/*
454 * Returns the first full queue in a group. As a side effect,
455 * adjust the bucket list so the first non-empty bucket is at
456 * position 0 in full_slots.
457 */
458static inline struct qfq_class *
459qfq_slot_scan(struct qfq_group *grp)
460{
461	int i;
462
463	ND("grp %d full %x", grp->index, grp->full_slots);
464	if (!grp->full_slots)
465		return NULL;
466
467	i = ffs(grp->full_slots) - 1; // zero-based
468	if (i > 0) {
469		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
470		grp->full_slots >>= i;
471	}
472
473	return grp->slots[grp->front];
474}
475
476/*
477 * adjust the bucket list. When the start time of a group decreases,
478 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
479 * move the objects. The mask of occupied slots must be shifted
480 * because we use ffs() to find the first non-empty slot.
481 * This covers decreases in the group's start time, but what about
482 * increases of the start time ?
483 * Here too we should make sure that i is less than 32
484 */
485static inline void
486qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
487{
488	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
489
490	(void)q;
491	grp->full_slots <<= i;
492	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
493}
494
495
496static inline void
497qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
498{
499	bitmap ineligible;
500
501	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
502	if (ineligible) {
503		if (!q->bitmaps[ER]) {
504			struct qfq_group *grp;
505			grp = qfq_ffs(q, ineligible);
506			if (qfq_gt(grp->S, q->V))
507				q->V = grp->S;
508		}
509		qfq_make_eligible(q, old_V);
510	}
511}
512
513/*
514 * Updates the class, returns true if also the group needs to be updated.
515 */
516static inline int
517qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
518	    struct qfq_class *cl)
519{
520
521	(void)q;
522	cl->S = cl->F;
523	if (cl->_q.mq.head == NULL)  {
524		qfq_front_slot_remove(grp);
525	} else {
526		unsigned int len;
527		uint64_t roundedS;
528
529		len = cl->_q.mq.head->m_pkthdr.len;
530		cl->F = cl->S + (uint64_t)len * cl->inv_w;
531		roundedS = qfq_round_down(cl->S, grp->slot_shift);
532		if (roundedS == grp->S)
533			return 0;
534
535		qfq_front_slot_remove(grp);
536		qfq_slot_insert(grp, cl, roundedS);
537	}
538	return 1;
539}
540
541static struct mbuf *
542qfq_dequeue(struct dn_sch_inst *si)
543{
544	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
545	struct qfq_group *grp;
546	struct qfq_class *cl;
547	struct mbuf *m;
548	uint64_t old_V;
549
550	NO(q->loops++;)
551	if (!q->bitmaps[ER]) {
552		NO(if (q->queued)
553			dump_sched(q, "start dequeue");)
554		return NULL;
555	}
556
557	grp = qfq_ffs(q, q->bitmaps[ER]);
558
559	cl = grp->slots[grp->front];
560	/* extract from the first bucket in the bucket list */
561	m = dn_dequeue(&cl->_q);
562
563	if (!m) {
564		D("BUG/* non-workconserving leaf */");
565		return NULL;
566	}
567	NO(q->queued--;)
568	old_V = q->V;
569	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
570	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
571
572	if (qfq_update_class(q, grp, cl)) {
573		uint64_t old_F = grp->F;
574		cl = qfq_slot_scan(grp);
575		if (!cl) { /* group gone, remove from ER */
576			__clear_bit(grp->index, &q->bitmaps[ER]);
577			// grp->S = grp->F + 1; // XXX debugging only
578		} else {
579			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
580			unsigned int s;
581
582			if (grp->S == roundedS)
583				goto skip_unblock;
584			grp->S = roundedS;
585			grp->F = roundedS + (2ULL << grp->slot_shift);
586			/* remove from ER and put in the new set */
587			__clear_bit(grp->index, &q->bitmaps[ER]);
588			s = qfq_calc_state(q, grp);
589			__set_bit(grp->index, &q->bitmaps[s]);
590		}
591		/* we need to unblock even if the group has gone away */
592		qfq_unblock_groups(q, grp->index, old_F);
593	}
594
595skip_unblock:
596	qfq_update_eligible(q, old_V);
597	NO(if (!q->bitmaps[ER] && q->queued)
598		dump_sched(q, "end dequeue");)
599
600	return m;
601}
602
603/*
604 * Assign a reasonable start time for a new flow k in group i.
605 * Admissible values for \hat(F) are multiples of \sigma_i
606 * no greater than V+\sigma_i . Larger values mean that
607 * we had a wraparound so we consider the timestamp to be stale.
608 *
609 * If F is not stale and F >= V then we set S = F.
610 * Otherwise we should assign S = V, but this may violate
611 * the ordering in ER. So, if we have groups in ER, set S to
612 * the F_j of the first group j which would be blocking us.
613 * We are guaranteed not to move S backward because
614 * otherwise our group i would still be blocked.
615 */
616static inline void
617qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
618{
619	unsigned long mask;
620	uint64_t limit, roundedF;
621	int slot_shift = cl->grp->slot_shift;
622
623	roundedF = qfq_round_down(cl->F, slot_shift);
624	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
625
626	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
627		/* timestamp was stale */
628		mask = mask_from(q->bitmaps[ER], cl->grp->index);
629		if (mask) {
630			struct qfq_group *next = qfq_ffs(q, mask);
631			if (qfq_gt(roundedF, next->F)) {
632				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
633				if (qfq_gt(limit, next->F))
634					cl->S = next->F;
635				else /* preserve timestamp correctness */
636					cl->S = limit;
637				return;
638			}
639		}
640		cl->S = q->V;
641	} else { /* timestamp is not stale */
642		cl->S = cl->F;
643	}
644}
645
646static int
647qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
648{
649	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
650	struct qfq_group *grp;
651	struct qfq_class *cl = (struct qfq_class *)_q;
652	uint64_t roundedS;
653	int s;
654
655	NO(q->loops++;)
656	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
657		_q, cl->inv_w, cl->grp->index);
658	/* XXX verify that the packet obeys the parameters */
659	if (m != _q->mq.head) {
660		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
661			return 1;
662		NO(q->queued++;)
663		if (m != _q->mq.head)
664			return 0;
665	}
666	/* If reach this point, queue q was idle */
667	grp = cl->grp;
668	qfq_update_start(q, cl); /* adjust start time */
669	/* compute new finish time and rounded start. */
670	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
671	roundedS = qfq_round_down(cl->S, grp->slot_shift);
672
673	/*
674	 * insert cl in the correct bucket.
675	 * If cl->S >= grp->S we don't need to adjust the
676	 * bucket list and simply go to the insertion phase.
677	 * Otherwise grp->S is decreasing, we must make room
678	 * in the bucket list, and also recompute the group state.
679	 * Finally, if there were no flows in this group and nobody
680	 * was in ER make sure to adjust V.
681	 */
682	if (grp->full_slots) {
683		if (!qfq_gt(grp->S, cl->S))
684			goto skip_update;
685		/* create a slot for this cl->S */
686		qfq_slot_rotate(q, grp, roundedS);
687		/* group was surely ineligible, remove */
688		__clear_bit(grp->index, &q->bitmaps[IR]);
689		__clear_bit(grp->index, &q->bitmaps[IB]);
690	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
691		q->V = roundedS;
692
693	grp->S = roundedS;
694	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
695	s = qfq_calc_state(q, grp);
696	__set_bit(grp->index, &q->bitmaps[s]);
697	ND("new state %d 0x%x", s, q->bitmaps[s]);
698	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
699skip_update:
700	qfq_slot_insert(grp, cl, roundedS);
701
702	return 0;
703}
704
705
706#if 0
707static inline void
708qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
709	struct qfq_class *cl, struct qfq_class **pprev)
710{
711	unsigned int i, offset;
712	uint64_t roundedS;
713
714	roundedS = qfq_round_down(cl->S, grp->slot_shift);
715	offset = (roundedS - grp->S) >> grp->slot_shift;
716	i = (grp->front + offset) % QFQ_MAX_SLOTS;
717
718#ifdef notyet
719	if (!pprev) {
720		pprev = &grp->slots[i];
721		while (*pprev && *pprev != cl)
722			pprev = &(*pprev)->next;
723	}
724#endif
725
726	*pprev = cl->next;
727	if (!grp->slots[i])
728		__clear_bit(offset, &grp->full_slots);
729}
730
731/*
732 * called to forcibly destroy a queue.
733 * If the queue is not in the front bucket, or if it has
734 * other queues in the front bucket, we can simply remove
735 * the queue with no other side effects.
736 * Otherwise we must propagate the event up.
737 * XXX description to be completed.
738 */
739static void
740qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
741				 struct qfq_class **pprev)
742{
743	struct qfq_group *grp = &q->groups[cl->index];
744	unsigned long mask;
745	uint64_t roundedS;
746	int s;
747
748	cl->F = cl->S;	// not needed if the class goes away.
749	qfq_slot_remove(q, grp, cl, pprev);
750
751	if (!grp->full_slots) {
752		/* nothing left in the group, remove from all sets.
753		 * Do ER last because if we were blocking other groups
754		 * we must unblock them.
755		 */
756		__clear_bit(grp->index, &q->bitmaps[IR]);
757		__clear_bit(grp->index, &q->bitmaps[EB]);
758		__clear_bit(grp->index, &q->bitmaps[IB]);
759
760		if (test_bit(grp->index, &q->bitmaps[ER]) &&
761		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
762			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
763			if (mask)
764				mask = ~((1UL << __fls(mask)) - 1);
765			else
766				mask = ~0UL;
767			qfq_move_groups(q, mask, EB, ER);
768			qfq_move_groups(q, mask, IB, IR);
769		}
770		__clear_bit(grp->index, &q->bitmaps[ER]);
771	} else if (!grp->slots[grp->front]) {
772		cl = qfq_slot_scan(grp);
773		roundedS = qfq_round_down(cl->S, grp->slot_shift);
774		if (grp->S != roundedS) {
775			__clear_bit(grp->index, &q->bitmaps[ER]);
776			__clear_bit(grp->index, &q->bitmaps[IR]);
777			__clear_bit(grp->index, &q->bitmaps[EB]);
778			__clear_bit(grp->index, &q->bitmaps[IB]);
779			grp->S = roundedS;
780			grp->F = roundedS + (2ULL << grp->slot_shift);
781			s = qfq_calc_state(q, grp);
782			__set_bit(grp->index, &q->bitmaps[s]);
783		}
784	}
785	qfq_update_eligible(q, q->V);
786}
787#endif
788
789static int
790qfq_new_fsk(struct dn_fsk *f)
791{
792	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
793	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
794	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
795	return 0;
796}
797
798/*
799 * initialize a new scheduler instance
800 */
801static int
802qfq_new_sched(struct dn_sch_inst *si)
803{
804	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
805	struct qfq_group *grp;
806	int i;
807
808	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
809		grp = &q->groups[i];
810		grp->index = i;
811		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
812					(QFQ_MAX_INDEX - i);
813	}
814	return 0;
815}
816
817/*
818 * QFQ scheduler descriptor
819 */
820static struct dn_alg qfq_desc = {
821	_SI( .type = ) DN_SCHED_QFQ,
822	_SI( .name = ) "QFQ",
823	_SI( .flags = ) DN_MULTIQUEUE,
824
825	_SI( .schk_datalen = ) 0,
826	_SI( .si_datalen = ) sizeof(struct qfq_sched),
827	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
828
829	_SI( .enqueue = ) qfq_enqueue,
830	_SI( .dequeue = ) qfq_dequeue,
831
832	_SI( .config = )  NULL,
833	_SI( .destroy = )  NULL,
834	_SI( .new_sched = ) qfq_new_sched,
835	_SI( .free_sched = )  NULL,
836	_SI( .new_fsk = ) qfq_new_fsk,
837	_SI( .free_fsk = )  NULL,
838	_SI( .new_queue = ) qfq_new_queue,
839	_SI( .free_queue = ) qfq_free_queue,
840};
841
842DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
843
844#ifdef QFQ_DEBUG
845static void
846dump_groups(struct qfq_sched *q, uint32_t mask)
847{
848	int i, j;
849
850	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
851		struct qfq_group *g = &q->groups[i];
852
853		if (0 == (mask & (1<<i)))
854			continue;
855		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
856			if (g->slots[j])
857				D("    bucket %d %p", j, g->slots[j]);
858		}
859		D("full_slots 0x%llx", (_P64)g->full_slots);
860		D("        %2d S 0x%20llx F 0x%llx %c", i,
861			(_P64)g->S, (_P64)g->F,
862			mask & (1<<i) ? '1' : '0');
863	}
864}
865
866static void
867dump_sched(struct qfq_sched *q, const char *msg)
868{
869	D("--- in %s: ---", msg);
870	D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
871	D("    ER 0x%08x", (unsigned)q->bitmaps[ER]);
872	D("    EB 0x%08x", (unsigned)q->bitmaps[EB]);
873	D("    IR 0x%08x", (unsigned)q->bitmaps[IR]);
874	D("    IB 0x%08x", (unsigned)q->bitmaps[IB]);
875	dump_groups(q, 0xffffffff);
876};
877#endif /* QFQ_DEBUG */
878