dn_sched_qfq.c revision 294761
1/*
2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD: head/sys/netpfil/ipfw/dn_sched_qfq.c 294761 2016-01-26 04:48:24Z luigi $
29 */
30
31#ifdef _KERNEL
32#include <sys/malloc.h>
33#include <sys/socket.h>
34#include <sys/socketvar.h>
35#include <sys/kernel.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <net/if.h>	/* IFNAMSIZ */
39#include <netinet/in.h>
40#include <netinet/ip_var.h>		/* ipfw_rule_ref */
41#include <netinet/ip_fw.h>	/* flow_id */
42#include <netinet/ip_dummynet.h>
43#include <netpfil/ipfw/dn_heap.h>
44#include <netpfil/ipfw/ip_dn_private.h>
45#include <netpfil/ipfw/dn_sched.h>
46#else
47#include <dn_test.h>
48#endif
49
50#ifdef QFQ_DEBUG
51struct qfq_sched;
52static void dump_sched(struct qfq_sched *q, const char *msg);
53#define	NO(x)	x
54#else
55#define NO(x)
56#endif
57#define DN_SCHED_QFQ	4 // XXX Where?
58typedef	unsigned long	bitmap;
59
60/*
61 * bitmaps ops are critical. Some linux versions have __fls
62 * and the bitmap ops. Some machines have ffs
63 * NOTE: fls() returns 1 for the least significant bit,
64 *       __fls() returns 0 for the same case.
65 * We use the base-0 version __fls() to match the description in
66 * the ToN QFQ paper
67 */
68#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
69int fls(unsigned int n)
70{
71	int i = 0;
72	for (i = 0; n > 0; n >>= 1, i++)
73		;
74	return i;
75}
76#endif
77
78#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
79static inline unsigned long __fls(unsigned long word)
80{
81	return fls(word) - 1;
82}
83#endif
84
85#if !defined(_KERNEL) || !defined(__linux__)
86#ifdef QFQ_DEBUG
87int test_bit(int ix, bitmap *p)
88{
89	if (ix < 0 || ix > 31)
90		D("bad index %d", ix);
91	return *p & (1<<ix);
92}
93void __set_bit(int ix, bitmap *p)
94{
95	if (ix < 0 || ix > 31)
96		D("bad index %d", ix);
97	*p |= (1<<ix);
98}
99void __clear_bit(int ix, bitmap *p)
100{
101	if (ix < 0 || ix > 31)
102		D("bad index %d", ix);
103	*p &= ~(1<<ix);
104}
105#else /* !QFQ_DEBUG */
106/* XXX do we have fast version, or leave it to the compiler ? */
107#define test_bit(ix, pData)	((*pData) & (1<<(ix)))
108#define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
109#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
110#endif /* !QFQ_DEBUG */
111#endif /* !__linux__ */
112
113#ifdef __MIPSEL__
114#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
115#endif
116
117/*-------------------------------------------*/
118/*
119
120Virtual time computations.
121
122S, F and V are all computed in fixed point arithmetic with
123FRAC_BITS decimal bits.
124
125   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
126  	one bit per index.
127   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
128   The layout of the bits is as below:
129
130                   [ MTU_SHIFT ][      FRAC_BITS    ]
131                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
132  				 ^.__grp->index = 0
133  				 *.__grp->slot_shift
134
135   where MIN_SLOT_SHIFT is derived by difference from the others.
136
137The max group index corresponds to Lmax/w_min, where
138Lmax=1<<MTU_SHIFT, w_min = 1 .
139From this, and knowing how many groups (MAX_INDEX) we want,
140we can derive the shift corresponding to each group.
141
142Because we often need to compute
143	F = S + len/w_i  and V = V + len/wsum
144instead of storing w_i store the value
145	inv_w = (1<<FRAC_BITS)/w_i
146so we can do F = S + len * inv_w * wsum.
147We use W_TOT in the formulas so we can easily move between
148static and adaptive weight sum.
149
150The per-scheduler-instance data contain all the data structures
151for the scheduler: bitmaps and bucket lists.
152
153 */
154/*
155 * Maximum number of consecutive slots occupied by backlogged classes
156 * inside a group. This is approx lmax/lmin + 5.
157 * XXX check because it poses constraints on MAX_INDEX
158 */
159#define QFQ_MAX_SLOTS	32
160/*
161 * Shifts used for class<->group mapping. Class weights are
162 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
163 * group with the smallest index that can support the L_i / r_i
164 * configured for the class.
165 *
166 * grp->index is the index of the group; and grp->slot_shift
167 * is the shift for the corresponding (scaled) sigma_i.
168 *
169 * When computing the group index, we do (len<<FP_SHIFT)/weight,
170 * then compute an FLS (which is like a log2()), and if the result
171 * is below the MAX_INDEX region we use 0 (which is the same as
172 * using a larger len).
173 */
174#define QFQ_MAX_INDEX		19
175#define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
176
177#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
178#define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
179
180#define FRAC_BITS		30	/* fixed point arithmetic */
181#define ONE_FP			(1UL << FRAC_BITS)
182
183#define QFQ_MTU_SHIFT		11	/* log2(max_len) */
184#define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
185
186/*
187 * Possible group states, also indexes for the bitmaps array in
188 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
189 */
190enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
191
192struct qfq_group;
193/*
194 * additional queue info. Some of this info should come from
195 * the flowset, we copy them here for faster processing.
196 * This is an overlay of the struct dn_queue
197 */
198struct qfq_class {
199	struct dn_queue _q;
200	uint64_t S, F;		/* flow timestamps (exact) */
201	struct qfq_class *next; /* Link for the slot list. */
202
203	/* group we belong to. In principle we would need the index,
204	 * which is log_2(lmax/weight), but we never reference it
205	 * directly, only the group.
206	 */
207	struct qfq_group *grp;
208
209	/* these are copied from the flowset. */
210	uint32_t	inv_w;	/* ONE_FP/weight */
211	uint32_t 	lmax;	/* Max packet size for this flow. */
212};
213
214/* Group descriptor, see the paper for details.
215 * Basically this contains the bucket lists
216 */
217struct qfq_group {
218	uint64_t S, F;			/* group timestamps (approx). */
219	unsigned int slot_shift;	/* Slot shift. */
220	unsigned int index;		/* Group index. */
221	unsigned int front;		/* Index of the front slot. */
222	bitmap full_slots;		/* non-empty slots */
223
224	/* Array of lists of active classes. */
225	struct qfq_class *slots[QFQ_MAX_SLOTS];
226};
227
228/* scheduler instance descriptor. */
229struct qfq_sched {
230	uint64_t	V;		/* Precise virtual time. */
231	uint32_t	wsum;		/* weight sum */
232	uint32_t	iwsum;		/* inverse weight sum */
233	NO(uint32_t	i_wsum;		/* ONE_FP/w_sum */
234	uint32_t	_queued;	/* debugging */
235	uint32_t	loops;	/* debugging */)
236	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
237	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
238};
239
240/*---- support functions ----------------------------*/
241
242/* Generic comparison function, handling wraparound. */
243static inline int qfq_gt(uint64_t a, uint64_t b)
244{
245	return (int64_t)(a - b) > 0;
246}
247
248/* Round a precise timestamp to its slotted value. */
249static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
250{
251	return ts & ~((1ULL << shift) - 1);
252}
253
254/* return the pointer to the group with lowest index in the bitmap */
255static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
256					unsigned long bitmap)
257{
258	int index = ffs(bitmap) - 1; // zero-based
259	return &q->groups[index];
260}
261
262/*
263 * Calculate a flow index, given its weight and maximum packet length.
264 * index = log_2(maxlen/weight) but we need to apply the scaling.
265 * This is used only once at flow creation.
266 */
267static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
268{
269	uint64_t slot_size = (uint64_t)maxlen *inv_w;
270	unsigned long size_map;
271	int index = 0;
272
273	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
274	if (!size_map)
275		goto out;
276
277	index = __fls(size_map) + 1;	// basically a log_2()
278	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
279
280	if (index < 0)
281		index = 0;
282
283out:
284	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
285	return index;
286}
287/*---- end support functions ----*/
288
289/*-------- API calls --------------------------------*/
290/*
291 * Validate and copy parameters from flowset.
292 */
293static int
294qfq_new_queue(struct dn_queue *_q)
295{
296	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
297	struct qfq_class *cl = (struct qfq_class *)_q;
298	int i;
299	uint32_t w;	/* approximated weight */
300
301	/* import parameters from the flowset. They should be correct
302	 * already.
303	 */
304	w = _q->fs->fs.par[0];
305	cl->lmax = _q->fs->fs.par[1];
306	if (!w || w > QFQ_MAX_WEIGHT) {
307		w = 1;
308		D("rounding weight to 1");
309	}
310	cl->inv_w = ONE_FP/w;
311	w = ONE_FP/cl->inv_w;
312	if (q->wsum + w > QFQ_MAX_WSUM)
313		return EINVAL;
314
315	i = qfq_calc_index(cl->inv_w, cl->lmax);
316	cl->grp = &q->groups[i];
317	q->wsum += w;
318	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
319	// XXX cl->S = q->V; ?
320	return 0;
321}
322
323/* remove an empty queue */
324static int
325qfq_free_queue(struct dn_queue *_q)
326{
327	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
328	struct qfq_class *cl = (struct qfq_class *)_q;
329	if (cl->inv_w) {
330		q->wsum -= ONE_FP/cl->inv_w;
331		if (q->wsum != 0)
332			q->iwsum = ONE_FP / q->wsum;
333		cl->inv_w = 0; /* reset weight to avoid run twice */
334	}
335	return 0;
336}
337
338/* Calculate a mask to mimic what would be ffs_from(). */
339static inline unsigned long
340mask_from(unsigned long bitmap, int from)
341{
342	return bitmap & ~((1UL << from) - 1);
343}
344
345/*
346 * The state computation relies on ER=0, IR=1, EB=2, IB=3
347 * First compute eligibility comparing grp->S, q->V,
348 * then check if someone is blocking us and possibly add EB
349 */
350static inline unsigned int
351qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
352{
353	/* if S > V we are not eligible */
354	unsigned int state = qfq_gt(grp->S, q->V);
355	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
356	struct qfq_group *next;
357
358	if (mask) {
359		next = qfq_ffs(q, mask);
360		if (qfq_gt(grp->F, next->F))
361			state |= EB;
362	}
363
364	return state;
365}
366
367/*
368 * In principle
369 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
370 *	q->bitmaps[src] &= ~mask;
371 * but we should make sure that src != dst
372 */
373static inline void
374qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
375{
376	q->bitmaps[dst] |= q->bitmaps[src] & mask;
377	q->bitmaps[src] &= ~mask;
378}
379
380static inline void
381qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
382{
383	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
384	struct qfq_group *next;
385
386	if (mask) {
387		next = qfq_ffs(q, mask);
388		if (!qfq_gt(next->F, old_finish))
389			return;
390	}
391
392	mask = (1UL << index) - 1;
393	qfq_move_groups(q, mask, EB, ER);
394	qfq_move_groups(q, mask, IB, IR);
395}
396
397/*
398 * perhaps
399 *
400	old_V ^= q->V;
401	old_V >>= QFQ_MIN_SLOT_SHIFT;
402	if (old_V) {
403		...
404	}
405 *
406 */
407static inline void
408qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
409{
410	unsigned long mask, vslot, old_vslot;
411
412	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
413	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
414
415	if (vslot != old_vslot) {
416		/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
417		mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
418		qfq_move_groups(q, mask, IR, ER);
419		qfq_move_groups(q, mask, IB, EB);
420	}
421}
422
423/*
424 * XXX we should make sure that slot becomes less than 32.
425 * This is guaranteed by the input values.
426 * roundedS is always cl->S rounded on grp->slot_shift bits.
427 */
428static inline void
429qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
430{
431	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
432	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
433
434	cl->next = grp->slots[i];
435	grp->slots[i] = cl;
436	__set_bit(slot, &grp->full_slots);
437}
438
439/*
440 * remove the entry from the slot
441 */
442static inline void
443qfq_front_slot_remove(struct qfq_group *grp)
444{
445	struct qfq_class **h = &grp->slots[grp->front];
446
447	*h = (*h)->next;
448	if (!*h)
449		__clear_bit(0, &grp->full_slots);
450}
451
452/*
453 * Returns the first full queue in a group. As a side effect,
454 * adjust the bucket list so the first non-empty bucket is at
455 * position 0 in full_slots.
456 */
457static inline struct qfq_class *
458qfq_slot_scan(struct qfq_group *grp)
459{
460	int i;
461
462	ND("grp %d full %x", grp->index, grp->full_slots);
463	if (!grp->full_slots)
464		return NULL;
465
466	i = ffs(grp->full_slots) - 1; // zero-based
467	if (i > 0) {
468		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
469		grp->full_slots >>= i;
470	}
471
472	return grp->slots[grp->front];
473}
474
475/*
476 * adjust the bucket list. When the start time of a group decreases,
477 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
478 * move the objects. The mask of occupied slots must be shifted
479 * because we use ffs() to find the first non-empty slot.
480 * This covers decreases in the group's start time, but what about
481 * increases of the start time ?
482 * Here too we should make sure that i is less than 32
483 */
484static inline void
485qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
486{
487	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
488
489	grp->full_slots <<= i;
490	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
491}
492
493
494static inline void
495qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
496{
497	bitmap ineligible;
498
499	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
500	if (ineligible) {
501		if (!q->bitmaps[ER]) {
502			struct qfq_group *grp;
503			grp = qfq_ffs(q, ineligible);
504			if (qfq_gt(grp->S, q->V))
505				q->V = grp->S;
506		}
507		qfq_make_eligible(q, old_V);
508	}
509}
510
511/*
512 * Updates the class, returns true if also the group needs to be updated.
513 */
514static inline int
515qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
516	    struct qfq_class *cl)
517{
518
519	cl->S = cl->F;
520	if (cl->_q.mq.head == NULL)  {
521		qfq_front_slot_remove(grp);
522	} else {
523		unsigned int len;
524		uint64_t roundedS;
525
526		len = cl->_q.mq.head->m_pkthdr.len;
527		cl->F = cl->S + (uint64_t)len * cl->inv_w;
528		roundedS = qfq_round_down(cl->S, grp->slot_shift);
529		if (roundedS == grp->S)
530			return 0;
531
532		qfq_front_slot_remove(grp);
533		qfq_slot_insert(grp, cl, roundedS);
534	}
535	return 1;
536}
537
538static struct mbuf *
539qfq_dequeue(struct dn_sch_inst *si)
540{
541	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
542	struct qfq_group *grp;
543	struct qfq_class *cl;
544	struct mbuf *m;
545	uint64_t old_V;
546
547	NO(q->loops++;)
548	if (!q->bitmaps[ER]) {
549		NO(if (q->queued)
550			dump_sched(q, "start dequeue");)
551		return NULL;
552	}
553
554	grp = qfq_ffs(q, q->bitmaps[ER]);
555
556	cl = grp->slots[grp->front];
557	/* extract from the first bucket in the bucket list */
558	m = dn_dequeue(&cl->_q);
559
560	if (!m) {
561		D("BUG/* non-workconserving leaf */");
562		return NULL;
563	}
564	NO(q->queued--;)
565	old_V = q->V;
566	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
567	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
568
569	if (qfq_update_class(q, grp, cl)) {
570		uint64_t old_F = grp->F;
571		cl = qfq_slot_scan(grp);
572		if (!cl) { /* group gone, remove from ER */
573			__clear_bit(grp->index, &q->bitmaps[ER]);
574			// grp->S = grp->F + 1; // XXX debugging only
575		} else {
576			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
577			unsigned int s;
578
579			if (grp->S == roundedS)
580				goto skip_unblock;
581			grp->S = roundedS;
582			grp->F = roundedS + (2ULL << grp->slot_shift);
583			/* remove from ER and put in the new set */
584			__clear_bit(grp->index, &q->bitmaps[ER]);
585			s = qfq_calc_state(q, grp);
586			__set_bit(grp->index, &q->bitmaps[s]);
587		}
588		/* we need to unblock even if the group has gone away */
589		qfq_unblock_groups(q, grp->index, old_F);
590	}
591
592skip_unblock:
593	qfq_update_eligible(q, old_V);
594	NO(if (!q->bitmaps[ER] && q->queued)
595		dump_sched(q, "end dequeue");)
596
597	return m;
598}
599
600/*
601 * Assign a reasonable start time for a new flow k in group i.
602 * Admissible values for \hat(F) are multiples of \sigma_i
603 * no greater than V+\sigma_i . Larger values mean that
604 * we had a wraparound so we consider the timestamp to be stale.
605 *
606 * If F is not stale and F >= V then we set S = F.
607 * Otherwise we should assign S = V, but this may violate
608 * the ordering in ER. So, if we have groups in ER, set S to
609 * the F_j of the first group j which would be blocking us.
610 * We are guaranteed not to move S backward because
611 * otherwise our group i would still be blocked.
612 */
613static inline void
614qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
615{
616	unsigned long mask;
617	uint64_t limit, roundedF;
618	int slot_shift = cl->grp->slot_shift;
619
620	roundedF = qfq_round_down(cl->F, slot_shift);
621	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
622
623	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
624		/* timestamp was stale */
625		mask = mask_from(q->bitmaps[ER], cl->grp->index);
626		if (mask) {
627			struct qfq_group *next = qfq_ffs(q, mask);
628			if (qfq_gt(roundedF, next->F)) {
629				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
630				if (qfq_gt(limit, next->F))
631					cl->S = next->F;
632				else /* preserve timestamp correctness */
633					cl->S = limit;
634				return;
635			}
636		}
637		cl->S = q->V;
638	} else { /* timestamp is not stale */
639		cl->S = cl->F;
640	}
641}
642
643static int
644qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
645{
646	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
647	struct qfq_group *grp;
648	struct qfq_class *cl = (struct qfq_class *)_q;
649	uint64_t roundedS;
650	int s;
651
652	NO(q->loops++;)
653	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
654		_q, cl->inv_w, cl->grp->index);
655	/* XXX verify that the packet obeys the parameters */
656	if (m != _q->mq.head) {
657		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
658			return 1;
659		NO(q->queued++;)
660		if (m != _q->mq.head)
661			return 0;
662	}
663	/* If reach this point, queue q was idle */
664	grp = cl->grp;
665	qfq_update_start(q, cl); /* adjust start time */
666	/* compute new finish time and rounded start. */
667	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
668	roundedS = qfq_round_down(cl->S, grp->slot_shift);
669
670	/*
671	 * insert cl in the correct bucket.
672	 * If cl->S >= grp->S we don't need to adjust the
673	 * bucket list and simply go to the insertion phase.
674	 * Otherwise grp->S is decreasing, we must make room
675	 * in the bucket list, and also recompute the group state.
676	 * Finally, if there were no flows in this group and nobody
677	 * was in ER make sure to adjust V.
678	 */
679	if (grp->full_slots) {
680		if (!qfq_gt(grp->S, cl->S))
681			goto skip_update;
682		/* create a slot for this cl->S */
683		qfq_slot_rotate(q, grp, roundedS);
684		/* group was surely ineligible, remove */
685		__clear_bit(grp->index, &q->bitmaps[IR]);
686		__clear_bit(grp->index, &q->bitmaps[IB]);
687	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
688		q->V = roundedS;
689
690	grp->S = roundedS;
691	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
692	s = qfq_calc_state(q, grp);
693	__set_bit(grp->index, &q->bitmaps[s]);
694	ND("new state %d 0x%x", s, q->bitmaps[s]);
695	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
696skip_update:
697	qfq_slot_insert(grp, cl, roundedS);
698
699	return 0;
700}
701
702
703#if 0
704static inline void
705qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
706	struct qfq_class *cl, struct qfq_class **pprev)
707{
708	unsigned int i, offset;
709	uint64_t roundedS;
710
711	roundedS = qfq_round_down(cl->S, grp->slot_shift);
712	offset = (roundedS - grp->S) >> grp->slot_shift;
713	i = (grp->front + offset) % QFQ_MAX_SLOTS;
714
715#ifdef notyet
716	if (!pprev) {
717		pprev = &grp->slots[i];
718		while (*pprev && *pprev != cl)
719			pprev = &(*pprev)->next;
720	}
721#endif
722
723	*pprev = cl->next;
724	if (!grp->slots[i])
725		__clear_bit(offset, &grp->full_slots);
726}
727
728/*
729 * called to forcibly destroy a queue.
730 * If the queue is not in the front bucket, or if it has
731 * other queues in the front bucket, we can simply remove
732 * the queue with no other side effects.
733 * Otherwise we must propagate the event up.
734 * XXX description to be completed.
735 */
736static void
737qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
738				 struct qfq_class **pprev)
739{
740	struct qfq_group *grp = &q->groups[cl->index];
741	unsigned long mask;
742	uint64_t roundedS;
743	int s;
744
745	cl->F = cl->S;	// not needed if the class goes away.
746	qfq_slot_remove(q, grp, cl, pprev);
747
748	if (!grp->full_slots) {
749		/* nothing left in the group, remove from all sets.
750		 * Do ER last because if we were blocking other groups
751		 * we must unblock them.
752		 */
753		__clear_bit(grp->index, &q->bitmaps[IR]);
754		__clear_bit(grp->index, &q->bitmaps[EB]);
755		__clear_bit(grp->index, &q->bitmaps[IB]);
756
757		if (test_bit(grp->index, &q->bitmaps[ER]) &&
758		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
759			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
760			if (mask)
761				mask = ~((1UL << __fls(mask)) - 1);
762			else
763				mask = ~0UL;
764			qfq_move_groups(q, mask, EB, ER);
765			qfq_move_groups(q, mask, IB, IR);
766		}
767		__clear_bit(grp->index, &q->bitmaps[ER]);
768	} else if (!grp->slots[grp->front]) {
769		cl = qfq_slot_scan(grp);
770		roundedS = qfq_round_down(cl->S, grp->slot_shift);
771		if (grp->S != roundedS) {
772			__clear_bit(grp->index, &q->bitmaps[ER]);
773			__clear_bit(grp->index, &q->bitmaps[IR]);
774			__clear_bit(grp->index, &q->bitmaps[EB]);
775			__clear_bit(grp->index, &q->bitmaps[IB]);
776			grp->S = roundedS;
777			grp->F = roundedS + (2ULL << grp->slot_shift);
778			s = qfq_calc_state(q, grp);
779			__set_bit(grp->index, &q->bitmaps[s]);
780		}
781	}
782	qfq_update_eligible(q, q->V);
783}
784#endif
785
786static int
787qfq_new_fsk(struct dn_fsk *f)
788{
789	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
790	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
791	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
792	return 0;
793}
794
795/*
796 * initialize a new scheduler instance
797 */
798static int
799qfq_new_sched(struct dn_sch_inst *si)
800{
801	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
802	struct qfq_group *grp;
803	int i;
804
805	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
806		grp = &q->groups[i];
807		grp->index = i;
808		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
809					(QFQ_MAX_INDEX - i);
810	}
811	return 0;
812}
813
814/*
815 * QFQ scheduler descriptor
816 */
817static struct dn_alg qfq_desc = {
818	_SI( .type = ) DN_SCHED_QFQ,
819	_SI( .name = ) "QFQ",
820	_SI( .flags = ) DN_MULTIQUEUE,
821
822	_SI( .schk_datalen = ) 0,
823	_SI( .si_datalen = ) sizeof(struct qfq_sched),
824	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
825
826	_SI( .enqueue = ) qfq_enqueue,
827	_SI( .dequeue = ) qfq_dequeue,
828
829	_SI( .config = )  NULL,
830	_SI( .destroy = )  NULL,
831	_SI( .new_sched = ) qfq_new_sched,
832	_SI( .free_sched = )  NULL,
833	_SI( .new_fsk = ) qfq_new_fsk,
834	_SI( .free_fsk = )  NULL,
835	_SI( .new_queue = ) qfq_new_queue,
836	_SI( .free_queue = ) qfq_free_queue,
837};
838
839DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
840
841#ifdef QFQ_DEBUG
842static void
843dump_groups(struct qfq_sched *q, uint32_t mask)
844{
845	int i, j;
846
847	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
848		struct qfq_group *g = &q->groups[i];
849
850		if (0 == (mask & (1<<i)))
851			continue;
852		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
853			if (g->slots[j])
854				D("    bucket %d %p", j, g->slots[j]);
855		}
856		D("full_slots 0x%x", g->full_slots);
857		D("        %2d S 0x%20llx F 0x%llx %c", i,
858			g->S, g->F,
859			mask & (1<<i) ? '1' : '0');
860	}
861}
862
863static void
864dump_sched(struct qfq_sched *q, const char *msg)
865{
866	D("--- in %s: ---", msg);
867	ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V);
868	D("    ER 0x%08x", q->bitmaps[ER]);
869	D("    EB 0x%08x", q->bitmaps[EB]);
870	D("    IR 0x%08x", q->bitmaps[IR]);
871	D("    IB 0x%08x", q->bitmaps[IB]);
872	dump_groups(q, 0xffffffff);
873};
874#endif /* QFQ_DEBUG */
875