dn_sched_qfq.c revision 285362
1/*
2 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD: head/sys/netpfil/ipfw/dn_sched_qfq.c 285362 2015-07-10 19:24:36Z luigi $
29 */
30
31#ifdef _KERNEL
32#include <sys/malloc.h>
33#include <sys/socket.h>
34#include <sys/socketvar.h>
35#include <sys/kernel.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <net/if.h>	/* IFNAMSIZ */
39#include <netinet/in.h>
40#include <netinet/ip_var.h>		/* ipfw_rule_ref */
41#include <netinet/ip_fw.h>	/* flow_id */
42#include <netinet/ip_dummynet.h>
43#include <netpfil/ipfw/dn_heap.h>
44#include <netpfil/ipfw/ip_dn_private.h>
45#include <netpfil/ipfw/dn_sched.h>
46#else
47#include <dn_test.h>
48#endif
49
50#ifdef QFQ_DEBUG
51struct qfq_sched;
52static void dump_sched(struct qfq_sched *q, const char *msg);
53#define	NO(x)	x
54#else
55#define NO(x)
56#endif
57#define DN_SCHED_QFQ	4 // XXX Where?
58typedef	unsigned long	bitmap;
59
60/*
61 * bitmaps ops are critical. Some linux versions have __fls
62 * and the bitmap ops. Some machines have ffs
63 */
64#if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
65int fls(unsigned int n)
66{
67	int i = 0;
68	for (i = 0; n > 0; n >>= 1, i++)
69		;
70	return i;
71}
72#endif
73
74#if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
75static inline unsigned long __fls(unsigned long word)
76{
77	return fls(word) - 1;
78}
79#endif
80
81#if !defined(_KERNEL) || !defined(__linux__)
82#ifdef QFQ_DEBUG
83int test_bit(int ix, bitmap *p)
84{
85	if (ix < 0 || ix > 31)
86		D("bad index %d", ix);
87	return *p & (1<<ix);
88}
89void __set_bit(int ix, bitmap *p)
90{
91	if (ix < 0 || ix > 31)
92		D("bad index %d", ix);
93	*p |= (1<<ix);
94}
95void __clear_bit(int ix, bitmap *p)
96{
97	if (ix < 0 || ix > 31)
98		D("bad index %d", ix);
99	*p &= ~(1<<ix);
100}
101#else /* !QFQ_DEBUG */
102/* XXX do we have fast version, or leave it to the compiler ? */
103#define test_bit(ix, pData)	((*pData) & (1<<(ix)))
104#define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
105#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
106#endif /* !QFQ_DEBUG */
107#endif /* !__linux__ */
108
109#ifdef __MIPSEL__
110#define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
111#endif
112
113/*-------------------------------------------*/
114/*
115
116Virtual time computations.
117
118S, F and V are all computed in fixed point arithmetic with
119FRAC_BITS decimal bits.
120
121   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
122  	one bit per index.
123   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
124   The layout of the bits is as below:
125
126                   [ MTU_SHIFT ][      FRAC_BITS    ]
127                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
128  				 ^.__grp->index = 0
129  				 *.__grp->slot_shift
130
131   where MIN_SLOT_SHIFT is derived by difference from the others.
132
133The max group index corresponds to Lmax/w_min, where
134Lmax=1<<MTU_SHIFT, w_min = 1 .
135From this, and knowing how many groups (MAX_INDEX) we want,
136we can derive the shift corresponding to each group.
137
138Because we often need to compute
139	F = S + len/w_i  and V = V + len/wsum
140instead of storing w_i store the value
141	inv_w = (1<<FRAC_BITS)/w_i
142so we can do F = S + len * inv_w * wsum.
143We use W_TOT in the formulas so we can easily move between
144static and adaptive weight sum.
145
146The per-scheduler-instance data contain all the data structures
147for the scheduler: bitmaps and bucket lists.
148
149 */
150/*
151 * Maximum number of consecutive slots occupied by backlogged classes
152 * inside a group. This is approx lmax/lmin + 5.
153 * XXX check because it poses constraints on MAX_INDEX
154 */
155#define QFQ_MAX_SLOTS	32
156/*
157 * Shifts used for class<->group mapping. Class weights are
158 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
159 * group with the smallest index that can support the L_i / r_i
160 * configured for the class.
161 *
162 * grp->index is the index of the group; and grp->slot_shift
163 * is the shift for the corresponding (scaled) sigma_i.
164 *
165 * When computing the group index, we do (len<<FP_SHIFT)/weight,
166 * then compute an FLS (which is like a log2()), and if the result
167 * is below the MAX_INDEX region we use 0 (which is the same as
168 * using a larger len).
169 */
170#define QFQ_MAX_INDEX		19
171#define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
172
173#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
174#define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
175
176#define FRAC_BITS		30	/* fixed point arithmetic */
177#define ONE_FP			(1UL << FRAC_BITS)
178
179#define QFQ_MTU_SHIFT		11	/* log2(max_len) */
180#define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
181
182/*
183 * Possible group states, also indexes for the bitmaps array in
184 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
185 */
186enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
187
188struct qfq_group;
189/*
190 * additional queue info. Some of this info should come from
191 * the flowset, we copy them here for faster processing.
192 * This is an overlay of the struct dn_queue
193 */
194struct qfq_class {
195	struct dn_queue _q;
196	uint64_t S, F;		/* flow timestamps (exact) */
197	struct qfq_class *next; /* Link for the slot list. */
198
199	/* group we belong to. In principle we would need the index,
200	 * which is log_2(lmax/weight), but we never reference it
201	 * directly, only the group.
202	 */
203	struct qfq_group *grp;
204
205	/* these are copied from the flowset. */
206	uint32_t	inv_w;	/* ONE_FP/weight */
207	uint32_t 	lmax;	/* Max packet size for this flow. */
208};
209
210/* Group descriptor, see the paper for details.
211 * Basically this contains the bucket lists
212 */
213struct qfq_group {
214	uint64_t S, F;			/* group timestamps (approx). */
215	unsigned int slot_shift;	/* Slot shift. */
216	unsigned int index;		/* Group index. */
217	unsigned int front;		/* Index of the front slot. */
218	bitmap full_slots;		/* non-empty slots */
219
220	/* Array of lists of active classes. */
221	struct qfq_class *slots[QFQ_MAX_SLOTS];
222};
223
224/* scheduler instance descriptor. */
225struct qfq_sched {
226	uint64_t	V;		/* Precise virtual time. */
227	uint32_t	wsum;		/* weight sum */
228	uint32_t	iwsum;		/* inverse weight sum */
229	NO(uint32_t	i_wsum;		/* ONE_FP/w_sum */
230	uint32_t	_queued;	/* debugging */
231	uint32_t	loops;	/* debugging */)
232	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
233	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
234};
235
236/*---- support functions ----------------------------*/
237
238/* Generic comparison function, handling wraparound. */
239static inline int qfq_gt(uint64_t a, uint64_t b)
240{
241	return (int64_t)(a - b) > 0;
242}
243
244/* Round a precise timestamp to its slotted value. */
245static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
246{
247	return ts & ~((1ULL << shift) - 1);
248}
249
250/* return the pointer to the group with lowest index in the bitmap */
251static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
252					unsigned long bitmap)
253{
254	int index = ffs(bitmap) - 1; // zero-based
255	return &q->groups[index];
256}
257
258/*
259 * Calculate a flow index, given its weight and maximum packet length.
260 * index = log_2(maxlen/weight) but we need to apply the scaling.
261 * This is used only once at flow creation.
262 */
263static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
264{
265	uint64_t slot_size = (uint64_t)maxlen *inv_w;
266	unsigned long size_map;
267	int index = 0;
268
269	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
270	if (!size_map)
271		goto out;
272
273	index = __fls(size_map) + 1;	// basically a log_2()
274	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
275
276	if (index < 0)
277		index = 0;
278
279out:
280	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
281	return index;
282}
283/*---- end support functions ----*/
284
285/*-------- API calls --------------------------------*/
286/*
287 * Validate and copy parameters from flowset.
288 */
289static int
290qfq_new_queue(struct dn_queue *_q)
291{
292	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
293	struct qfq_class *cl = (struct qfq_class *)_q;
294	int i;
295	uint32_t w;	/* approximated weight */
296
297	/* import parameters from the flowset. They should be correct
298	 * already.
299	 */
300	w = _q->fs->fs.par[0];
301	cl->lmax = _q->fs->fs.par[1];
302	if (!w || w > QFQ_MAX_WEIGHT) {
303		w = 1;
304		D("rounding weight to 1");
305	}
306	cl->inv_w = ONE_FP/w;
307	w = ONE_FP/cl->inv_w;
308	if (q->wsum + w > QFQ_MAX_WSUM)
309		return EINVAL;
310
311	i = qfq_calc_index(cl->inv_w, cl->lmax);
312	cl->grp = &q->groups[i];
313	q->wsum += w;
314	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
315	// XXX cl->S = q->V; ?
316	return 0;
317}
318
319/* remove an empty queue */
320static int
321qfq_free_queue(struct dn_queue *_q)
322{
323	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
324	struct qfq_class *cl = (struct qfq_class *)_q;
325	if (cl->inv_w) {
326		q->wsum -= ONE_FP/cl->inv_w;
327		if (q->wsum != 0)
328			q->iwsum = ONE_FP / q->wsum;
329		cl->inv_w = 0; /* reset weight to avoid run twice */
330	}
331	return 0;
332}
333
334/* Calculate a mask to mimic what would be ffs_from(). */
335static inline unsigned long
336mask_from(unsigned long bitmap, int from)
337{
338	return bitmap & ~((1UL << from) - 1);
339}
340
341/*
342 * The state computation relies on ER=0, IR=1, EB=2, IB=3
343 * First compute eligibility comparing grp->S, q->V,
344 * then check if someone is blocking us and possibly add EB
345 */
346static inline unsigned int
347qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
348{
349	/* if S > V we are not eligible */
350	unsigned int state = qfq_gt(grp->S, q->V);
351	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
352	struct qfq_group *next;
353
354	if (mask) {
355		next = qfq_ffs(q, mask);
356		if (qfq_gt(grp->F, next->F))
357			state |= EB;
358	}
359
360	return state;
361}
362
363/*
364 * In principle
365 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
366 *	q->bitmaps[src] &= ~mask;
367 * but we should make sure that src != dst
368 */
369static inline void
370qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
371{
372	q->bitmaps[dst] |= q->bitmaps[src] & mask;
373	q->bitmaps[src] &= ~mask;
374}
375
376static inline void
377qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
378{
379	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
380	struct qfq_group *next;
381
382	if (mask) {
383		next = qfq_ffs(q, mask);
384		if (!qfq_gt(next->F, old_finish))
385			return;
386	}
387
388	mask = (1UL << index) - 1;
389	qfq_move_groups(q, mask, EB, ER);
390	qfq_move_groups(q, mask, IB, IR);
391}
392
393/*
394 * perhaps
395 *
396	old_V ^= q->V;
397	old_V >>= QFQ_MIN_SLOT_SHIFT;
398	if (old_V) {
399		...
400	}
401 *
402 */
403static inline void
404qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
405{
406	unsigned long mask, vslot, old_vslot;
407
408	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
409	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
410
411	if (vslot != old_vslot) {
412		/* should be 1ULL not 2ULL */
413		mask = (1ULL << (__fls(vslot ^ old_vslot))) - 1;
414		qfq_move_groups(q, mask, IR, ER);
415		qfq_move_groups(q, mask, IB, EB);
416	}
417}
418
419/*
420 * XXX we should make sure that slot becomes less than 32.
421 * This is guaranteed by the input values.
422 * roundedS is always cl->S rounded on grp->slot_shift bits.
423 */
424static inline void
425qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
426{
427	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
428	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
429
430	cl->next = grp->slots[i];
431	grp->slots[i] = cl;
432	__set_bit(slot, &grp->full_slots);
433}
434
435/*
436 * remove the entry from the slot
437 */
438static inline void
439qfq_front_slot_remove(struct qfq_group *grp)
440{
441	struct qfq_class **h = &grp->slots[grp->front];
442
443	*h = (*h)->next;
444	if (!*h)
445		__clear_bit(0, &grp->full_slots);
446}
447
448/*
449 * Returns the first full queue in a group. As a side effect,
450 * adjust the bucket list so the first non-empty bucket is at
451 * position 0 in full_slots.
452 */
453static inline struct qfq_class *
454qfq_slot_scan(struct qfq_group *grp)
455{
456	int i;
457
458	ND("grp %d full %x", grp->index, grp->full_slots);
459	if (!grp->full_slots)
460		return NULL;
461
462	i = ffs(grp->full_slots) - 1; // zero-based
463	if (i > 0) {
464		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
465		grp->full_slots >>= i;
466	}
467
468	return grp->slots[grp->front];
469}
470
471/*
472 * adjust the bucket list. When the start time of a group decreases,
473 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
474 * move the objects. The mask of occupied slots must be shifted
475 * because we use ffs() to find the first non-empty slot.
476 * This covers decreases in the group's start time, but what about
477 * increases of the start time ?
478 * Here too we should make sure that i is less than 32
479 */
480static inline void
481qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
482{
483	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
484
485	grp->full_slots <<= i;
486	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
487}
488
489
490static inline void
491qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
492{
493	bitmap ineligible;
494
495	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
496	if (ineligible) {
497		if (!q->bitmaps[ER]) {
498			struct qfq_group *grp;
499			grp = qfq_ffs(q, ineligible);
500			if (qfq_gt(grp->S, q->V))
501				q->V = grp->S;
502		}
503		qfq_make_eligible(q, old_V);
504	}
505}
506
507/*
508 * Updates the class, returns true if also the group needs to be updated.
509 */
510static inline int
511qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
512	    struct qfq_class *cl)
513{
514
515	cl->S = cl->F;
516	if (cl->_q.mq.head == NULL)  {
517		qfq_front_slot_remove(grp);
518	} else {
519		unsigned int len;
520		uint64_t roundedS;
521
522		len = cl->_q.mq.head->m_pkthdr.len;
523		cl->F = cl->S + (uint64_t)len * cl->inv_w;
524		roundedS = qfq_round_down(cl->S, grp->slot_shift);
525		if (roundedS == grp->S)
526			return 0;
527
528		qfq_front_slot_remove(grp);
529		qfq_slot_insert(grp, cl, roundedS);
530	}
531	return 1;
532}
533
534static struct mbuf *
535qfq_dequeue(struct dn_sch_inst *si)
536{
537	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
538	struct qfq_group *grp;
539	struct qfq_class *cl;
540	struct mbuf *m;
541	uint64_t old_V;
542
543	NO(q->loops++;)
544	if (!q->bitmaps[ER]) {
545		NO(if (q->queued)
546			dump_sched(q, "start dequeue");)
547		return NULL;
548	}
549
550	grp = qfq_ffs(q, q->bitmaps[ER]);
551
552	cl = grp->slots[grp->front];
553	/* extract from the first bucket in the bucket list */
554	m = dn_dequeue(&cl->_q);
555
556	if (!m) {
557		D("BUG/* non-workconserving leaf */");
558		return NULL;
559	}
560	NO(q->queued--;)
561	old_V = q->V;
562	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
563	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
564
565	if (qfq_update_class(q, grp, cl)) {
566		uint64_t old_F = grp->F;
567		cl = qfq_slot_scan(grp);
568		if (!cl) { /* group gone, remove from ER */
569			__clear_bit(grp->index, &q->bitmaps[ER]);
570			// grp->S = grp->F + 1; // XXX debugging only
571		} else {
572			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
573			unsigned int s;
574
575			if (grp->S == roundedS)
576				goto skip_unblock;
577			grp->S = roundedS;
578			grp->F = roundedS + (2ULL << grp->slot_shift);
579			/* remove from ER and put in the new set */
580			__clear_bit(grp->index, &q->bitmaps[ER]);
581			s = qfq_calc_state(q, grp);
582			__set_bit(grp->index, &q->bitmaps[s]);
583		}
584		/* we need to unblock even if the group has gone away */
585		qfq_unblock_groups(q, grp->index, old_F);
586	}
587
588skip_unblock:
589	qfq_update_eligible(q, old_V);
590	NO(if (!q->bitmaps[ER] && q->queued)
591		dump_sched(q, "end dequeue");)
592
593	return m;
594}
595
596/*
597 * Assign a reasonable start time for a new flow k in group i.
598 * Admissible values for \hat(F) are multiples of \sigma_i
599 * no greater than V+\sigma_i . Larger values mean that
600 * we had a wraparound so we consider the timestamp to be stale.
601 *
602 * If F is not stale and F >= V then we set S = F.
603 * Otherwise we should assign S = V, but this may violate
604 * the ordering in ER. So, if we have groups in ER, set S to
605 * the F_j of the first group j which would be blocking us.
606 * We are guaranteed not to move S backward because
607 * otherwise our group i would still be blocked.
608 */
609static inline void
610qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
611{
612	unsigned long mask;
613	uint64_t limit, roundedF;
614	int slot_shift = cl->grp->slot_shift;
615
616	roundedF = qfq_round_down(cl->F, slot_shift);
617	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
618
619	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
620		/* timestamp was stale */
621		mask = mask_from(q->bitmaps[ER], cl->grp->index);
622		if (mask) {
623			struct qfq_group *next = qfq_ffs(q, mask);
624			if (qfq_gt(roundedF, next->F)) {
625				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
626				if (qfq_gt(limit, next->F))
627					cl->S = next->F;
628				else /* preserve timestamp correctness */
629					cl->S = limit;
630				return;
631			}
632		}
633		cl->S = q->V;
634	} else { /* timestamp is not stale */
635		cl->S = cl->F;
636	}
637}
638
639static int
640qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
641{
642	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
643	struct qfq_group *grp;
644	struct qfq_class *cl = (struct qfq_class *)_q;
645	uint64_t roundedS;
646	int s;
647
648	NO(q->loops++;)
649	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
650		_q, cl->inv_w, cl->grp->index);
651	/* XXX verify that the packet obeys the parameters */
652	if (m != _q->mq.head) {
653		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
654			return 1;
655		NO(q->queued++;)
656		if (m != _q->mq.head)
657			return 0;
658	}
659	/* If reach this point, queue q was idle */
660	grp = cl->grp;
661	qfq_update_start(q, cl); /* adjust start time */
662	/* compute new finish time and rounded start. */
663	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
664	roundedS = qfq_round_down(cl->S, grp->slot_shift);
665
666	/*
667	 * insert cl in the correct bucket.
668	 * If cl->S >= grp->S we don't need to adjust the
669	 * bucket list and simply go to the insertion phase.
670	 * Otherwise grp->S is decreasing, we must make room
671	 * in the bucket list, and also recompute the group state.
672	 * Finally, if there were no flows in this group and nobody
673	 * was in ER make sure to adjust V.
674	 */
675	if (grp->full_slots) {
676		if (!qfq_gt(grp->S, cl->S))
677			goto skip_update;
678		/* create a slot for this cl->S */
679		qfq_slot_rotate(q, grp, roundedS);
680		/* group was surely ineligible, remove */
681		__clear_bit(grp->index, &q->bitmaps[IR]);
682		__clear_bit(grp->index, &q->bitmaps[IB]);
683	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
684		q->V = roundedS;
685
686	grp->S = roundedS;
687	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
688	s = qfq_calc_state(q, grp);
689	__set_bit(grp->index, &q->bitmaps[s]);
690	ND("new state %d 0x%x", s, q->bitmaps[s]);
691	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
692skip_update:
693	qfq_slot_insert(grp, cl, roundedS);
694
695	return 0;
696}
697
698
699#if 0
700static inline void
701qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
702	struct qfq_class *cl, struct qfq_class **pprev)
703{
704	unsigned int i, offset;
705	uint64_t roundedS;
706
707	roundedS = qfq_round_down(cl->S, grp->slot_shift);
708	offset = (roundedS - grp->S) >> grp->slot_shift;
709	i = (grp->front + offset) % QFQ_MAX_SLOTS;
710
711#ifdef notyet
712	if (!pprev) {
713		pprev = &grp->slots[i];
714		while (*pprev && *pprev != cl)
715			pprev = &(*pprev)->next;
716	}
717#endif
718
719	*pprev = cl->next;
720	if (!grp->slots[i])
721		__clear_bit(offset, &grp->full_slots);
722}
723
724/*
725 * called to forcibly destroy a queue.
726 * If the queue is not in the front bucket, or if it has
727 * other queues in the front bucket, we can simply remove
728 * the queue with no other side effects.
729 * Otherwise we must propagate the event up.
730 * XXX description to be completed.
731 */
732static void
733qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
734				 struct qfq_class **pprev)
735{
736	struct qfq_group *grp = &q->groups[cl->index];
737	unsigned long mask;
738	uint64_t roundedS;
739	int s;
740
741	cl->F = cl->S;	// not needed if the class goes away.
742	qfq_slot_remove(q, grp, cl, pprev);
743
744	if (!grp->full_slots) {
745		/* nothing left in the group, remove from all sets.
746		 * Do ER last because if we were blocking other groups
747		 * we must unblock them.
748		 */
749		__clear_bit(grp->index, &q->bitmaps[IR]);
750		__clear_bit(grp->index, &q->bitmaps[EB]);
751		__clear_bit(grp->index, &q->bitmaps[IB]);
752
753		if (test_bit(grp->index, &q->bitmaps[ER]) &&
754		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
755			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
756			if (mask)
757				mask = ~((1UL << __fls(mask)) - 1);
758			else
759				mask = ~0UL;
760			qfq_move_groups(q, mask, EB, ER);
761			qfq_move_groups(q, mask, IB, IR);
762		}
763		__clear_bit(grp->index, &q->bitmaps[ER]);
764	} else if (!grp->slots[grp->front]) {
765		cl = qfq_slot_scan(grp);
766		roundedS = qfq_round_down(cl->S, grp->slot_shift);
767		if (grp->S != roundedS) {
768			__clear_bit(grp->index, &q->bitmaps[ER]);
769			__clear_bit(grp->index, &q->bitmaps[IR]);
770			__clear_bit(grp->index, &q->bitmaps[EB]);
771			__clear_bit(grp->index, &q->bitmaps[IB]);
772			grp->S = roundedS;
773			grp->F = roundedS + (2ULL << grp->slot_shift);
774			s = qfq_calc_state(q, grp);
775			__set_bit(grp->index, &q->bitmaps[s]);
776		}
777	}
778	qfq_update_eligible(q, q->V);
779}
780#endif
781
782static int
783qfq_new_fsk(struct dn_fsk *f)
784{
785	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
786	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
787	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
788	return 0;
789}
790
791/*
792 * initialize a new scheduler instance
793 */
794static int
795qfq_new_sched(struct dn_sch_inst *si)
796{
797	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
798	struct qfq_group *grp;
799	int i;
800
801	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
802		grp = &q->groups[i];
803		grp->index = i;
804		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
805					(QFQ_MAX_INDEX - i);
806	}
807	return 0;
808}
809
810/*
811 * QFQ scheduler descriptor
812 */
813static struct dn_alg qfq_desc = {
814	_SI( .type = ) DN_SCHED_QFQ,
815	_SI( .name = ) "QFQ",
816	_SI( .flags = ) DN_MULTIQUEUE,
817
818	_SI( .schk_datalen = ) 0,
819	_SI( .si_datalen = ) sizeof(struct qfq_sched),
820	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
821
822	_SI( .enqueue = ) qfq_enqueue,
823	_SI( .dequeue = ) qfq_dequeue,
824
825	_SI( .config = )  NULL,
826	_SI( .destroy = )  NULL,
827	_SI( .new_sched = ) qfq_new_sched,
828	_SI( .free_sched = )  NULL,
829	_SI( .new_fsk = ) qfq_new_fsk,
830	_SI( .free_fsk = )  NULL,
831	_SI( .new_queue = ) qfq_new_queue,
832	_SI( .free_queue = ) qfq_free_queue,
833};
834
835DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
836
837#ifdef QFQ_DEBUG
838static void
839dump_groups(struct qfq_sched *q, uint32_t mask)
840{
841	int i, j;
842
843	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
844		struct qfq_group *g = &q->groups[i];
845
846		if (0 == (mask & (1<<i)))
847			continue;
848		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
849			if (g->slots[j])
850				D("    bucket %d %p", j, g->slots[j]);
851		}
852		D("full_slots 0x%x", g->full_slots);
853		D("        %2d S 0x%20llx F 0x%llx %c", i,
854			g->S, g->F,
855			mask & (1<<i) ? '1' : '0');
856	}
857}
858
859static void
860dump_sched(struct qfq_sched *q, const char *msg)
861{
862	D("--- in %s: ---", msg);
863	ND("loops %d queued %d V 0x%llx", q->loops, q->queued, q->V);
864	D("    ER 0x%08x", q->bitmaps[ER]);
865	D("    EB 0x%08x", q->bitmaps[EB]);
866	D("    IR 0x%08x", q->bitmaps[IR]);
867	D("    IB 0x%08x", q->bitmaps[IB]);
868	dump_groups(q, 0xffffffff);
869};
870#endif /* QFQ_DEBUG */
871