1/*
2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM
3 *
4 * $FreeBSD: stable/11/sys/netpfil/ipfw/dn_sched_fq_pie.c 325730 2017-11-12 01:26:43Z truckman $
5 *
6 * Copyright (C) 2016 Centre for Advanced Internet Architectures,
7 *  Swinburne University of Technology, Melbourne, Australia.
8 * Portions of this code were made possible in part by a gift from
9 *  The Comcast Innovation Fund.
10 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/* Important note:
35 * As there is no an office document for FQ-PIE specification, we used
36 * FQ-CoDel algorithm with some modifications to implement FQ-PIE.
37 * This FQ-PIE implementation is a beta version and have not been tested
38 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By
39 * default, timestamp is used to calculate queue delay instead of departure
40 * rate estimation method. Although departure rate estimation is available
41 * as testing option, the results could be incorrect. Moreover, turning PIE on
42 * and off option is available but it does not work properly in this version.
43 */
44
45
46#ifdef _KERNEL
47#include <sys/malloc.h>
48#include <sys/socket.h>
49#include <sys/kernel.h>
50#include <sys/mbuf.h>
51#include <sys/lock.h>
52#include <sys/module.h>
53#include <sys/mutex.h>
54#include <net/if.h>	/* IFNAMSIZ */
55#include <netinet/in.h>
56#include <netinet/ip_var.h>		/* ipfw_rule_ref */
57#include <netinet/ip_fw.h>	/* flow_id */
58#include <netinet/ip_dummynet.h>
59
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62
63#include <netpfil/ipfw/ip_fw_private.h>
64#include <sys/sysctl.h>
65#include <netinet/ip.h>
66#include <netinet/ip6.h>
67#include <netinet/ip_icmp.h>
68#include <netinet/tcp.h>
69#include <netinet/udp.h>
70#include <sys/queue.h>
71#include <sys/hash.h>
72
73#include <netpfil/ipfw/dn_heap.h>
74#include <netpfil/ipfw/ip_dn_private.h>
75
76#include <netpfil/ipfw/dn_aqm.h>
77#include <netpfil/ipfw/dn_aqm_pie.h>
78#include <netpfil/ipfw/dn_sched.h>
79
80#else
81#include <dn_test.h>
82#endif
83
84#define DN_SCHED_FQ_PIE 7
85
86/* list of queues */
87STAILQ_HEAD(fq_pie_list, fq_pie_flow) ;
88
89/* FQ_PIE parameters including PIE */
90struct dn_sch_fq_pie_parms {
91	struct dn_aqm_pie_parms	pcfg;	/* PIE configuration Parameters */
92	/* FQ_PIE Parameters */
93	uint32_t flows_cnt;	/* number of flows */
94	uint32_t limit;	/* hard limit of FQ_PIE queue size*/
95	uint32_t quantum;
96};
97
98/* flow (sub-queue) stats */
99struct flow_stats {
100	uint64_t tot_pkts;	/* statistics counters  */
101	uint64_t tot_bytes;
102	uint32_t length;		/* Queue length, in packets */
103	uint32_t len_bytes;	/* Queue length, in bytes */
104	uint32_t drops;
105};
106
107/* A flow of packets (sub-queue)*/
108struct fq_pie_flow {
109	struct mq	mq;	/* list of packets */
110	struct flow_stats stats;	/* statistics */
111	int deficit;
112	int active;		/* 1: flow is active (in a list) */
113	struct pie_status pst;	/* pie status variables */
114	struct fq_pie_si_extra *psi_extra;
115	STAILQ_ENTRY(fq_pie_flow) flowchain;
116};
117
118/* extra fq_pie scheduler configurations */
119struct fq_pie_schk {
120	struct dn_sch_fq_pie_parms cfg;
121};
122
123
124/* fq_pie scheduler instance extra state vars.
125 * The purpose of separation this structure is to preserve number of active
126 * sub-queues and the flows array pointer even after the scheduler instance
127 * is destroyed.
128 * Preserving these varaiables allows freeing the allocated memory by
129 * fqpie_callout_cleanup() independently from fq_pie_free_sched().
130 */
131struct fq_pie_si_extra {
132	uint32_t nr_active_q;	/* number of active queues */
133	struct fq_pie_flow *flows;	/* array of flows (queues) */
134	};
135
136/* fq_pie scheduler instance */
137struct fq_pie_si {
138	struct dn_sch_inst _si;	/* standard scheduler instance. SHOULD BE FIRST */
139	struct dn_queue main_q; /* main queue is after si directly */
140	uint32_t perturbation; 	/* random value */
141	struct fq_pie_list newflows;	/* list of new queues */
142	struct fq_pie_list oldflows;	/* list of old queues */
143	struct fq_pie_si_extra *si_extra; /* extra state vars*/
144};
145
146
147static struct dn_alg fq_pie_desc;
148
149/*  Default FQ-PIE parameters including PIE */
150/*  PIE defaults
151 * target=15ms, max_burst=150ms, max_ecnth=0.1,
152 * alpha=0.125, beta=1.25, tupdate=15ms
153 * FQ-
154 * flows=1024, limit=10240, quantum =1514
155 */
156struct dn_sch_fq_pie_parms
157 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US,
158	150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125,
159	PIE_SCALE * 1.25,	PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED},
160	1024, 10240, 1514};
161
162static int
163fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS)
164{
165	int error;
166	long  value;
167
168	if (!strcmp(oidp->oid_name,"alpha"))
169		value = fq_pie_sysctl.pcfg.alpha;
170	else
171		value = fq_pie_sysctl.pcfg.beta;
172
173	value = value * 1000 / PIE_SCALE;
174	error = sysctl_handle_long(oidp, &value, 0, req);
175	if (error != 0 || req->newptr == NULL)
176		return (error);
177	if (value < 1 || value > 7 * PIE_SCALE)
178		return (EINVAL);
179	value = (value * PIE_SCALE) / 1000;
180	if (!strcmp(oidp->oid_name,"alpha"))
181			fq_pie_sysctl.pcfg.alpha = value;
182	else
183		fq_pie_sysctl.pcfg.beta = value;
184	return (0);
185}
186
187static int
188fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS)
189{
190	int error;
191	long  value;
192
193	if (!strcmp(oidp->oid_name,"target"))
194		value = fq_pie_sysctl.pcfg.qdelay_ref;
195	else if (!strcmp(oidp->oid_name,"tupdate"))
196		value = fq_pie_sysctl.pcfg.tupdate;
197	else
198		value = fq_pie_sysctl.pcfg.max_burst;
199
200	value = value / AQM_TIME_1US;
201	error = sysctl_handle_long(oidp, &value, 0, req);
202	if (error != 0 || req->newptr == NULL)
203		return (error);
204	if (value < 1 || value > 10 * AQM_TIME_1S)
205		return (EINVAL);
206	value = value * AQM_TIME_1US;
207
208	if (!strcmp(oidp->oid_name,"target"))
209		fq_pie_sysctl.pcfg.qdelay_ref  = value;
210	else if (!strcmp(oidp->oid_name,"tupdate"))
211		fq_pie_sysctl.pcfg.tupdate  = value;
212	else
213		fq_pie_sysctl.pcfg.max_burst = value;
214	return (0);
215}
216
217static int
218fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS)
219{
220	int error;
221	long  value;
222
223	value = fq_pie_sysctl.pcfg.max_ecnth;
224	value = value * 1000 / PIE_SCALE;
225	error = sysctl_handle_long(oidp, &value, 0, req);
226	if (error != 0 || req->newptr == NULL)
227		return (error);
228	if (value < 1 || value > PIE_SCALE)
229		return (EINVAL);
230	value = (value * PIE_SCALE) / 1000;
231	fq_pie_sysctl.pcfg.max_ecnth = value;
232	return (0);
233}
234
235/* define FQ- PIE sysctl variables */
236SYSBEGIN(f4)
237SYSCTL_DECL(_net_inet);
238SYSCTL_DECL(_net_inet_ip);
239SYSCTL_DECL(_net_inet_ip_dummynet);
240static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie,
241	CTLFLAG_RW, 0, "FQ_PIE");
242
243#ifdef SYSCTL_NODE
244
245SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target,
246	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
247	fqpie_sysctl_target_tupdate_maxb_handler, "L",
248	"queue target in microsecond");
249
250SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate,
251	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
252	fqpie_sysctl_target_tupdate_maxb_handler, "L",
253	"the frequency of drop probability calculation in microsecond");
254
255SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst,
256	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
257	fqpie_sysctl_target_tupdate_maxb_handler, "L",
258	"Burst allowance interval in microsecond");
259
260SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth,
261	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
262	fqpie_sysctl_max_ecnth_handler, "L",
263	"ECN safeguard threshold scaled by 1000");
264
265SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha,
266	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
267	fqpie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000");
268
269SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta,
270	CTLTYPE_LONG | CTLFLAG_RW, NULL, 0,
271	fqpie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000");
272
273SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum,
274	CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE");
275SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows,
276	CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE");
277SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit,
278	CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE");
279#endif
280
281/* Helper function to update queue&main-queue and scheduler statistics.
282 * negative len & drop -> drop
283 * negative len -> dequeue
284 * positive len -> enqueue
285 * positive len + drop -> drop during enqueue
286 */
287__inline static void
288fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len,
289	int drop)
290{
291	int inc = 0;
292
293	if (len < 0)
294		inc = -1;
295	else if (len > 0)
296		inc = 1;
297
298	if (drop) {
299		si->main_q.ni.drops ++;
300		q->stats.drops ++;
301		si->_si.ni.drops ++;
302		io_pkt_drop ++;
303	}
304
305	if (!drop || (drop && len < 0)) {
306		/* Update stats for the main queue */
307		si->main_q.ni.length += inc;
308		si->main_q.ni.len_bytes += len;
309
310		/*update sub-queue stats */
311		q->stats.length += inc;
312		q->stats.len_bytes += len;
313
314		/*update scheduler instance stats */
315		si->_si.ni.length += inc;
316		si->_si.ni.len_bytes += len;
317	}
318
319	if (inc > 0) {
320		si->main_q.ni.tot_bytes += len;
321		si->main_q.ni.tot_pkts ++;
322
323		q->stats.tot_bytes +=len;
324		q->stats.tot_pkts++;
325
326		si->_si.ni.tot_bytes +=len;
327		si->_si.ni.tot_pkts ++;
328	}
329
330}
331
332/*
333 * Extract a packet from the head of sub-queue 'q'
334 * Return a packet or NULL if the queue is empty.
335 * If getts is set, also extract packet's timestamp from mtag.
336 */
337__inline static struct mbuf *
338fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts,
339	struct fq_pie_si *si, int getts)
340{
341	struct mbuf *m = q->mq.head;
342
343	if (m == NULL)
344		return m;
345	q->mq.head = m->m_nextpkt;
346
347	fq_update_stats(q, si, -m->m_pkthdr.len, 0);
348
349	if (si->main_q.ni.length == 0) /* queue is now idle */
350			si->main_q.q_time = dn_cfg.curr_time;
351
352	if (getts) {
353		/* extract packet timestamp*/
354		struct m_tag *mtag;
355		mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
356		if (mtag == NULL){
357			D("PIE timestamp mtag not found!");
358			*pkt_ts = 0;
359		} else {
360			*pkt_ts = *(aqm_time_t *)(mtag + 1);
361			m_tag_delete(m,mtag);
362		}
363	}
364	return m;
365}
366
367/*
368 * Callout function for drop probability calculation
369 * This function is called over tupdate ms and takes pointer of FQ-PIE
370 * flow as an argument
371  */
372static void
373fq_calculate_drop_prob(void *x)
374{
375	struct fq_pie_flow *q = (struct fq_pie_flow *) x;
376	struct pie_status *pst = &q->pst;
377	struct dn_aqm_pie_parms *pprms;
378	int64_t p, prob, oldprob;
379	aqm_time_t now;
380	int p_isneg;
381
382	now = AQM_UNOW;
383	pprms = pst->parms;
384	prob = pst->drop_prob;
385
386	/* calculate current qdelay using DRE method.
387	 * If TS is used and no data in the queue, reset current_qdelay
388	 * as it stays at last value during dequeue process.
389	*/
390	if (pprms->flags & PIE_DEPRATEEST_ENABLED)
391		pst->current_qdelay = ((uint64_t)q->stats.len_bytes  * pst->avg_dq_time)
392			>> PIE_DQ_THRESHOLD_BITS;
393	else
394		if (!q->stats.len_bytes)
395			pst->current_qdelay = 0;
396
397	/* calculate drop probability */
398	p = (int64_t)pprms->alpha *
399		((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref);
400	p +=(int64_t) pprms->beta *
401		((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old);
402
403	/* take absolute value so right shift result is well defined */
404	p_isneg = p < 0;
405	if (p_isneg) {
406		p = -p;
407	}
408
409	/* We PIE_MAX_PROB shift by 12-bits to increase the division precision  */
410	p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S;
411
412	/* auto-tune drop probability */
413	if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */
414		p >>= 11 + PIE_FIX_POINT_BITS + 12;
415	else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */
416		p >>= 9 + PIE_FIX_POINT_BITS + 12;
417	else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */
418		p >>= 7 + PIE_FIX_POINT_BITS + 12;
419	else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */
420		p >>= 5 + PIE_FIX_POINT_BITS + 12;
421	else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */
422		p >>= 3 + PIE_FIX_POINT_BITS + 12;
423	else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */
424		p >>= 1 + PIE_FIX_POINT_BITS + 12;
425	else
426		p >>= PIE_FIX_POINT_BITS + 12;
427
428	oldprob = prob;
429
430	if (p_isneg) {
431		prob = prob - p;
432
433		/* check for multiplication underflow */
434		if (prob > oldprob) {
435			prob= 0;
436			D("underflow");
437		}
438	} else {
439		/* Cap Drop adjustment */
440		if ((pprms->flags & PIE_CAPDROP_ENABLED) &&
441		    prob >= PIE_MAX_PROB / 10 &&
442		    p > PIE_MAX_PROB / 50 ) {
443			p = PIE_MAX_PROB / 50;
444		}
445
446		prob = prob + p;
447
448		/* check for multiplication overflow */
449		if (prob<oldprob) {
450			D("overflow");
451			prob= PIE_MAX_PROB;
452		}
453	}
454
455	/*
456	 * decay the drop probability exponentially
457	 * and restrict it to range 0 to PIE_MAX_PROB
458	 */
459	if (prob < 0) {
460		prob = 0;
461	} else {
462		if (pst->current_qdelay == 0 && pst->qdelay_old == 0) {
463			/* 0.98 ~= 1- 1/64 */
464			prob = prob - (prob >> 6);
465		}
466
467		if (prob > PIE_MAX_PROB) {
468			prob = PIE_MAX_PROB;
469		}
470	}
471
472	pst->drop_prob = prob;
473
474	/* store current delay value */
475	pst->qdelay_old = pst->current_qdelay;
476
477	/* update burst allowance */
478	if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) {
479		if (pst->burst_allowance > pprms->tupdate)
480			pst->burst_allowance -= pprms->tupdate;
481		else
482			pst->burst_allowance = 0;
483	}
484
485	if (pst->sflags & PIE_ACTIVE)
486	callout_reset_sbt(&pst->aqm_pie_callout,
487		(uint64_t)pprms->tupdate * SBT_1US,
488		0, fq_calculate_drop_prob, q, 0);
489
490	mtx_unlock(&pst->lock_mtx);
491}
492
493/*
494 * Reset PIE variables & activate the queue
495 */
496__inline static void
497fq_activate_pie(struct fq_pie_flow *q)
498{
499	struct pie_status *pst = &q->pst;
500	struct dn_aqm_pie_parms *pprms;
501
502	mtx_lock(&pst->lock_mtx);
503	pprms = pst->parms;
504
505	pprms = pst->parms;
506	pst->drop_prob = 0;
507	pst->qdelay_old = 0;
508	pst->burst_allowance = pprms->max_burst;
509	pst->accu_prob = 0;
510	pst->dq_count = 0;
511	pst->avg_dq_time = 0;
512	pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE;
513	pst->measurement_start = AQM_UNOW;
514
515	callout_reset_sbt(&pst->aqm_pie_callout,
516		(uint64_t)pprms->tupdate * SBT_1US,
517		0, fq_calculate_drop_prob, q, 0);
518
519	mtx_unlock(&pst->lock_mtx);
520}
521
522
523 /*
524  * Deactivate PIE and stop probe update callout
525  */
526__inline static void
527fq_deactivate_pie(struct pie_status *pst)
528{
529	mtx_lock(&pst->lock_mtx);
530	pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT);
531	callout_stop(&pst->aqm_pie_callout);
532	//D("PIE Deactivated");
533	mtx_unlock(&pst->lock_mtx);
534}
535
536 /*
537  * Initialize PIE for sub-queue 'q'
538  */
539static int
540pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk)
541{
542	struct pie_status *pst=&q->pst;
543	struct dn_aqm_pie_parms *pprms = pst->parms;
544
545	int err = 0;
546	if (!pprms){
547		D("AQM_PIE is not configured");
548		err = EINVAL;
549	} else {
550		q->psi_extra->nr_active_q++;
551
552		/* For speed optimization, we caculate 1/3 queue size once here */
553		// XXX limit divided by number of queues divided by 3 ???
554		pst->one_third_q_size = (fqpie_schk->cfg.limit /
555			fqpie_schk->cfg.flows_cnt) / 3;
556
557		mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF);
558		callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx,
559			CALLOUT_RETURNUNLOCKED);
560	}
561
562	return err;
563}
564
565/*
566 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si
567 * extra memory when number of active sub-queues reaches zero.
568 * 'x' is a fq_pie_flow to be destroyed
569 */
570static void
571fqpie_callout_cleanup(void *x)
572{
573	struct fq_pie_flow *q = x;
574	struct pie_status *pst = &q->pst;
575	struct fq_pie_si_extra *psi_extra;
576
577	mtx_unlock(&pst->lock_mtx);
578	mtx_destroy(&pst->lock_mtx);
579	psi_extra = q->psi_extra;
580
581	DN_BH_WLOCK();
582	psi_extra->nr_active_q--;
583
584	/* when all sub-queues are destroyed, free flows fq_pie extra vars memory */
585	if (!psi_extra->nr_active_q) {
586		free(psi_extra->flows, M_DUMMYNET);
587		free(psi_extra, M_DUMMYNET);
588		fq_pie_desc.ref_count--;
589	}
590	DN_BH_WUNLOCK();
591}
592
593/*
594 * Clean up PIE status for sub-queue 'q'
595 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout.
596 */
597static int
598pie_cleanup(struct fq_pie_flow *q)
599{
600	struct pie_status *pst  = &q->pst;
601
602	mtx_lock(&pst->lock_mtx);
603	callout_reset_sbt(&pst->aqm_pie_callout,
604		SBT_1US, 0, fqpie_callout_cleanup, q, 0);
605	mtx_unlock(&pst->lock_mtx);
606	return 0;
607}
608
609/*
610 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty.
611 * Also, caculate depature time or queue delay using timestamp
612 */
613 static struct mbuf *
614pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si)
615{
616	struct mbuf *m;
617	struct dn_aqm_pie_parms *pprms;
618	struct pie_status *pst;
619	aqm_time_t now;
620	aqm_time_t pkt_ts, dq_time;
621	int32_t w;
622
623	pst  = &q->pst;
624	pprms = q->pst.parms;
625
626	/*we extarct packet ts only when Departure Rate Estimation dis not used*/
627	m = fq_pie_extract_head(q, &pkt_ts, si,
628		!(pprms->flags & PIE_DEPRATEEST_ENABLED));
629
630	if (!m || !(pst->sflags & PIE_ACTIVE))
631		return m;
632
633	now = AQM_UNOW;
634	if (pprms->flags & PIE_DEPRATEEST_ENABLED) {
635		/* calculate average depature time */
636		if(pst->sflags & PIE_INMEASUREMENT) {
637			pst->dq_count += m->m_pkthdr.len;
638
639			if (pst->dq_count >= PIE_DQ_THRESHOLD) {
640				dq_time = now - pst->measurement_start;
641
642				/*
643				 * if we don't have old avg dq_time i.e PIE is (re)initialized,
644				 * don't use weight to calculate new avg_dq_time
645				 */
646				if(pst->avg_dq_time == 0)
647					pst->avg_dq_time = dq_time;
648				else {
649					/*
650					 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled
651					 * weight by 2^8. Thus, scaled
652					 * weight = PIE_DQ_THRESHOLD /2^8
653					 * */
654					w = PIE_DQ_THRESHOLD >> 8;
655					pst->avg_dq_time = (dq_time* w
656						+ (pst->avg_dq_time * ((1L << 8) - w))) >> 8;
657					pst->sflags &= ~PIE_INMEASUREMENT;
658				}
659			}
660		}
661
662		/*
663		 * Start new measurment cycle when the queue has
664		 *  PIE_DQ_THRESHOLD worth of bytes.
665		 */
666		if(!(pst->sflags & PIE_INMEASUREMENT) &&
667			q->stats.len_bytes >= PIE_DQ_THRESHOLD) {
668			pst->sflags |= PIE_INMEASUREMENT;
669			pst->measurement_start = now;
670			pst->dq_count = 0;
671		}
672	}
673	/* Optionally, use packet timestamp to estimate queue delay */
674	else
675		pst->current_qdelay = now - pkt_ts;
676
677	return m;
678}
679
680
681 /*
682 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy
683 * (whose parameters are in q->fs).
684 * Update stats for the queue and the scheduler.
685 * Return 0 on success, 1 on drop. The packet is consumed anyways.
686 */
687static int
688pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si)
689{
690	uint64_t len;
691	struct pie_status *pst;
692	struct dn_aqm_pie_parms *pprms;
693	int t;
694
695	len = m->m_pkthdr.len;
696	pst  = &q->pst;
697	pprms = pst->parms;
698	t = ENQUE;
699
700	/* drop/mark the packet when PIE is active and burst time elapsed */
701	if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0
702		&& drop_early(pst, q->stats.len_bytes) == DROP) {
703			/*
704			 * if drop_prob over ECN threshold, drop the packet
705			 * otherwise mark and enqueue it.
706			 */
707			if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob <
708				(pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS))
709				&& ecn_mark(m))
710				t = ENQUE;
711			else
712				t = DROP;
713		}
714
715	/* Turn PIE on when 1/3 of the queue is full */
716	if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >=
717		pst->one_third_q_size) {
718		fq_activate_pie(q);
719	}
720
721	/*  reset burst tolerance and optinally turn PIE off*/
722	if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1)
723		&& pst->qdelay_old < (pprms->qdelay_ref >> 1)) {
724
725			pst->burst_allowance = pprms->max_burst;
726		if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0)
727			fq_deactivate_pie(pst);
728	}
729
730	/* Use timestamp if Departure Rate Estimation mode is disabled */
731	if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) {
732		/* Add TS to mbuf as a TAG */
733		struct m_tag *mtag;
734		mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
735		if (mtag == NULL)
736			mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS,
737				sizeof(aqm_time_t), M_NOWAIT);
738		if (mtag == NULL) {
739			m_freem(m);
740			t = DROP;
741		}
742		*(aqm_time_t *)(mtag + 1) = AQM_UNOW;
743		m_tag_prepend(m, mtag);
744	}
745
746	if (t != DROP) {
747		mq_append(&q->mq, m);
748		fq_update_stats(q, si, len, 0);
749		return 0;
750	} else {
751		fq_update_stats(q, si, len, 1);
752		pst->accu_prob = 0;
753		FREE_PKT(m);
754		return 1;
755	}
756
757	return 0;
758}
759
760/* Drop a packet form the head of FQ-PIE sub-queue */
761static void
762pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si)
763{
764	struct mbuf *m = q->mq.head;
765
766	if (m == NULL)
767		return;
768	q->mq.head = m->m_nextpkt;
769
770	fq_update_stats(q, si, -m->m_pkthdr.len, 1);
771
772	if (si->main_q.ni.length == 0) /* queue is now idle */
773			si->main_q.q_time = dn_cfg.curr_time;
774	/* reset accu_prob after packet drop */
775	q->pst.accu_prob = 0;
776
777	FREE_PKT(m);
778}
779
780/*
781 * Classify a packet to queue number using Jenkins hash function.
782 * Return: queue number
783 * the input of the hash are protocol no, perturbation, src IP, dst IP,
784 * src port, dst port,
785 */
786static inline int
787fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si)
788{
789	struct ip *ip;
790	struct tcphdr *th;
791	struct udphdr *uh;
792	uint8_t tuple[41];
793	uint16_t hash=0;
794
795	ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
796//#ifdef INET6
797	struct ip6_hdr *ip6;
798	int isip6;
799	isip6 = (ip->ip_v == 6);
800
801	if(isip6) {
802		ip6 = (struct ip6_hdr *)ip;
803		*((uint8_t *) &tuple[0]) = ip6->ip6_nxt;
804		*((uint32_t *) &tuple[1]) = si->perturbation;
805		memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16);
806		memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16);
807
808		switch (ip6->ip6_nxt) {
809		case IPPROTO_TCP:
810			th = (struct tcphdr *)(ip6 + 1);
811			*((uint16_t *) &tuple[37]) = th->th_dport;
812			*((uint16_t *) &tuple[39]) = th->th_sport;
813			break;
814
815		case IPPROTO_UDP:
816			uh = (struct udphdr *)(ip6 + 1);
817			*((uint16_t *) &tuple[37]) = uh->uh_dport;
818			*((uint16_t *) &tuple[39]) = uh->uh_sport;
819			break;
820		default:
821			memset(&tuple[37], 0, 4);
822		}
823
824		hash = jenkins_hash(tuple, 41, HASHINIT) %  fcount;
825		return hash;
826	}
827//#endif
828
829	/* IPv4 */
830	*((uint8_t *) &tuple[0]) = ip->ip_p;
831	*((uint32_t *) &tuple[1]) = si->perturbation;
832	*((uint32_t *) &tuple[5]) = ip->ip_src.s_addr;
833	*((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr;
834
835	switch (ip->ip_p) {
836		case IPPROTO_TCP:
837			th = (struct tcphdr *)(ip + 1);
838			*((uint16_t *) &tuple[13]) = th->th_dport;
839			*((uint16_t *) &tuple[15]) = th->th_sport;
840			break;
841
842		case IPPROTO_UDP:
843			uh = (struct udphdr *)(ip + 1);
844			*((uint16_t *) &tuple[13]) = uh->uh_dport;
845			*((uint16_t *) &tuple[15]) = uh->uh_sport;
846			break;
847		default:
848			memset(&tuple[13], 0, 4);
849	}
850	hash = jenkins_hash(tuple, 17, HASHINIT) % fcount;
851
852	return hash;
853}
854
855/*
856 * Enqueue a packet into an appropriate queue according to
857 * FQ-CoDe; algorithm.
858 */
859static int
860fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q,
861	struct mbuf *m)
862{
863	struct fq_pie_si *si;
864	struct fq_pie_schk *schk;
865	struct dn_sch_fq_pie_parms *param;
866	struct dn_queue *mainq;
867	struct fq_pie_flow *flows;
868	int idx, drop, i, maxidx;
869
870	mainq = (struct dn_queue *)(_si + 1);
871	si = (struct fq_pie_si *)_si;
872	flows = si->si_extra->flows;
873	schk = (struct fq_pie_schk *)(si->_si.sched+1);
874	param = &schk->cfg;
875
876	 /* classify a packet to queue number*/
877	idx = fq_pie_classify_flow(m, param->flows_cnt, si);
878
879	/* enqueue packet into appropriate queue using PIE AQM.
880	 * Note: 'pie_enqueue' function returns 1 only when it unable to
881	 * add timestamp to packet (no limit check)*/
882	drop = pie_enqueue(&flows[idx], m, si);
883
884	/* pie unable to timestamp a packet */
885	if (drop)
886		return 1;
887
888	/* If the flow (sub-queue) is not active ,then add it to tail of
889	 * new flows list, initialize and activate it.
890	 */
891	if (!flows[idx].active) {
892		STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain);
893		flows[idx].deficit = param->quantum;
894		fq_activate_pie(&flows[idx]);
895		flows[idx].active = 1;
896	}
897
898	/* check the limit for all queues and remove a packet from the
899	 * largest one
900	 */
901	if (mainq->ni.length > schk->cfg.limit) {
902		/* find first active flow */
903		for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++)
904			if (flows[maxidx].active)
905				break;
906		if (maxidx < schk->cfg.flows_cnt) {
907			/* find the largest sub- queue */
908			for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++)
909				if (flows[i].active && flows[i].stats.length >
910					flows[maxidx].stats.length)
911					maxidx = i;
912			pie_drop_head(&flows[maxidx], si);
913			drop = 1;
914		}
915	}
916
917	return drop;
918}
919
920/*
921 * Dequeue a packet from an appropriate queue according to
922 * FQ-CoDel algorithm.
923 */
924static struct mbuf *
925fq_pie_dequeue(struct dn_sch_inst *_si)
926{
927	struct fq_pie_si *si;
928	struct fq_pie_schk *schk;
929	struct dn_sch_fq_pie_parms *param;
930	struct fq_pie_flow *f;
931	struct mbuf *mbuf;
932	struct fq_pie_list *fq_pie_flowlist;
933
934	si = (struct fq_pie_si *)_si;
935	schk = (struct fq_pie_schk *)(si->_si.sched+1);
936	param = &schk->cfg;
937
938	do {
939		/* select a list to start with */
940		if (STAILQ_EMPTY(&si->newflows))
941			fq_pie_flowlist = &si->oldflows;
942		else
943			fq_pie_flowlist = &si->newflows;
944
945		/* Both new and old queue lists are empty, return NULL */
946		if (STAILQ_EMPTY(fq_pie_flowlist))
947			return NULL;
948
949		f = STAILQ_FIRST(fq_pie_flowlist);
950		while (f != NULL)	{
951			/* if there is no flow(sub-queue) deficit, increase deficit
952			 * by quantum, move the flow to the tail of old flows list
953			 * and try another flow.
954			 * Otherwise, the flow will be used for dequeue.
955			 */
956			if (f->deficit < 0) {
957				 f->deficit += param->quantum;
958				 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
959				 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain);
960			 } else
961				 break;
962
963			f = STAILQ_FIRST(fq_pie_flowlist);
964		}
965
966		/* the new flows list is empty, try old flows list */
967		if (STAILQ_EMPTY(fq_pie_flowlist))
968			continue;
969
970		/* Dequeue a packet from the selected flow */
971		mbuf = pie_dequeue(f, si);
972
973		/* pie did not return a packet */
974		if (!mbuf) {
975			/* If the selected flow belongs to new flows list, then move
976			 * it to the tail of old flows list. Otherwise, deactivate it and
977			 * remove it from the old list and
978			 */
979			if (fq_pie_flowlist == &si->newflows) {
980				STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
981				STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain);
982			}	else {
983				f->active = 0;
984				fq_deactivate_pie(&f->pst);
985				STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
986			}
987			/* start again */
988			continue;
989		}
990
991		/* we have a packet to return,
992		 * update flow deficit and return the packet*/
993		f->deficit -= mbuf->m_pkthdr.len;
994		return mbuf;
995
996	} while (1);
997
998	/* unreachable point */
999	return NULL;
1000}
1001
1002/*
1003 * Initialize fq_pie scheduler instance.
1004 * also, allocate memory for flows array.
1005 */
1006static int
1007fq_pie_new_sched(struct dn_sch_inst *_si)
1008{
1009	struct fq_pie_si *si;
1010	struct dn_queue *q;
1011	struct fq_pie_schk *schk;
1012	struct fq_pie_flow *flows;
1013	int i;
1014
1015	si = (struct fq_pie_si *)_si;
1016	schk = (struct fq_pie_schk *)(_si->sched+1);
1017
1018	if(si->si_extra) {
1019		D("si already configured!");
1020		return 0;
1021	}
1022
1023	/* init the main queue */
1024	q = &si->main_q;
1025	set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q));
1026	q->_si = _si;
1027	q->fs = _si->sched->fs;
1028
1029	/* allocate memory for scheduler instance extra vars */
1030	si->si_extra = malloc(sizeof(struct fq_pie_si_extra),
1031		 M_DUMMYNET, M_NOWAIT | M_ZERO);
1032	if (si->si_extra == NULL) {
1033		D("cannot allocate memory for fq_pie si extra vars");
1034		return ENOMEM ;
1035	}
1036	/* allocate memory for flows array */
1037	si->si_extra->flows = malloc(schk->cfg.flows_cnt * sizeof(struct fq_pie_flow),
1038		 M_DUMMYNET, M_NOWAIT | M_ZERO);
1039	flows = si->si_extra->flows;
1040	if (flows == NULL) {
1041		free(si->si_extra, M_DUMMYNET);
1042		si->si_extra = NULL;
1043		D("cannot allocate memory for fq_pie flows");
1044		return ENOMEM ;
1045	}
1046
1047	/* init perturbation for this si */
1048	si->perturbation = random();
1049	si->si_extra->nr_active_q = 0;
1050
1051	/* init the old and new flows lists */
1052	STAILQ_INIT(&si->newflows);
1053	STAILQ_INIT(&si->oldflows);
1054
1055	/* init the flows (sub-queues) */
1056	for (i = 0; i < schk->cfg.flows_cnt; i++) {
1057		flows[i].pst.parms = &schk->cfg.pcfg;
1058		flows[i].psi_extra = si->si_extra;
1059		pie_init(&flows[i], schk);
1060	}
1061
1062	fq_pie_desc.ref_count++;
1063
1064	return 0;
1065}
1066
1067
1068/*
1069 * Free fq_pie scheduler instance.
1070 */
1071static int
1072fq_pie_free_sched(struct dn_sch_inst *_si)
1073{
1074	struct fq_pie_si *si;
1075	struct fq_pie_schk *schk;
1076	struct fq_pie_flow *flows;
1077	int i;
1078
1079	si = (struct fq_pie_si *)_si;
1080	schk = (struct fq_pie_schk *)(_si->sched+1);
1081	flows = si->si_extra->flows;
1082	for (i = 0; i < schk->cfg.flows_cnt; i++) {
1083		pie_cleanup(&flows[i]);
1084	}
1085	si->si_extra = NULL;
1086	return 0;
1087}
1088
1089/*
1090 * Configure FQ-PIE scheduler.
1091 * the configurations for the scheduler is passed fromipfw  userland.
1092 */
1093static int
1094fq_pie_config(struct dn_schk *_schk)
1095{
1096	struct fq_pie_schk *schk;
1097	struct dn_extra_parms *ep;
1098	struct dn_sch_fq_pie_parms *fqp_cfg;
1099
1100	schk = (struct fq_pie_schk *)(_schk+1);
1101	ep = (struct dn_extra_parms *) _schk->cfg;
1102
1103	/* par array contains fq_pie configuration as follow
1104	 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst
1105	 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags
1106	 * FQ_PIE: 7- quantum, 8- limit, 9- flows
1107	 */
1108	if (ep && ep->oid.len ==sizeof(*ep) &&
1109		ep->oid.subtype == DN_SCH_PARAMS) {
1110
1111		fqp_cfg = &schk->cfg;
1112		if (ep->par[0] < 0)
1113			fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref;
1114		else
1115			fqp_cfg->pcfg.qdelay_ref = ep->par[0];
1116		if (ep->par[1] < 0)
1117			fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate;
1118		else
1119			fqp_cfg->pcfg.tupdate = ep->par[1];
1120		if (ep->par[2] < 0)
1121			fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst;
1122		else
1123			fqp_cfg->pcfg.max_burst = ep->par[2];
1124		if (ep->par[3] < 0)
1125			fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth;
1126		else
1127			fqp_cfg->pcfg.max_ecnth = ep->par[3];
1128		if (ep->par[4] < 0)
1129			fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha;
1130		else
1131			fqp_cfg->pcfg.alpha = ep->par[4];
1132		if (ep->par[5] < 0)
1133			fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta;
1134		else
1135			fqp_cfg->pcfg.beta = ep->par[5];
1136		if (ep->par[6] < 0)
1137			fqp_cfg->pcfg.flags = 0;
1138		else
1139			fqp_cfg->pcfg.flags = ep->par[6];
1140
1141		/* FQ configurations */
1142		if (ep->par[7] < 0)
1143			fqp_cfg->quantum = fq_pie_sysctl.quantum;
1144		else
1145			fqp_cfg->quantum = ep->par[7];
1146		if (ep->par[8] < 0)
1147			fqp_cfg->limit = fq_pie_sysctl.limit;
1148		else
1149			fqp_cfg->limit = ep->par[8];
1150		if (ep->par[9] < 0)
1151			fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt;
1152		else
1153			fqp_cfg->flows_cnt = ep->par[9];
1154
1155		/* Bound the configurations */
1156		fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref,
1157			1, 5 * AQM_TIME_1S);
1158		fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate,
1159			1, 5 * AQM_TIME_1S);
1160		fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst,
1161			0, 5 * AQM_TIME_1S);
1162		fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth,
1163			0, PIE_SCALE);
1164		fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE);
1165		fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE);
1166
1167		fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000);
1168		fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480);
1169		fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536);
1170	}
1171	else {
1172		D("Wrong parameters for fq_pie scheduler");
1173		return 1;
1174	}
1175
1176	return 0;
1177}
1178
1179/*
1180 * Return FQ-PIE scheduler configurations
1181 * the configurations for the scheduler is passed to userland.
1182 */
1183static int
1184fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) {
1185
1186	struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1);
1187	struct dn_sch_fq_pie_parms *fqp_cfg;
1188
1189	fqp_cfg = &schk->cfg;
1190
1191	strcpy(ep->name, fq_pie_desc.name);
1192	ep->par[0] = fqp_cfg->pcfg.qdelay_ref;
1193	ep->par[1] = fqp_cfg->pcfg.tupdate;
1194	ep->par[2] = fqp_cfg->pcfg.max_burst;
1195	ep->par[3] = fqp_cfg->pcfg.max_ecnth;
1196	ep->par[4] = fqp_cfg->pcfg.alpha;
1197	ep->par[5] = fqp_cfg->pcfg.beta;
1198	ep->par[6] = fqp_cfg->pcfg.flags;
1199
1200	ep->par[7] = fqp_cfg->quantum;
1201	ep->par[8] = fqp_cfg->limit;
1202	ep->par[9] = fqp_cfg->flows_cnt;
1203
1204	return 0;
1205}
1206
1207/*
1208 *  FQ-PIE scheduler descriptor
1209 * contains the type of the scheduler, the name, the size of extra
1210 * data structures, and function pointers.
1211 */
1212static struct dn_alg fq_pie_desc = {
1213	_SI( .type = )  DN_SCHED_FQ_PIE,
1214	_SI( .name = ) "FQ_PIE",
1215	_SI( .flags = ) 0,
1216
1217	_SI( .schk_datalen = ) sizeof(struct fq_pie_schk),
1218	_SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst),
1219	_SI( .q_datalen = ) 0,
1220
1221	_SI( .enqueue = ) fq_pie_enqueue,
1222	_SI( .dequeue = ) fq_pie_dequeue,
1223	_SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/
1224	_SI( .destroy = ) NULL,  /*sched x delete */
1225	_SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */
1226	_SI( .free_sched = ) fq_pie_free_sched,	/* delete schd instance */
1227	_SI( .new_fsk = ) NULL,
1228	_SI( .free_fsk = ) NULL,
1229	_SI( .new_queue = ) NULL,
1230	_SI( .free_queue = ) NULL,
1231	_SI( .getconfig = )  fq_pie_getconfig,
1232	_SI( .ref_count = ) 0
1233};
1234
1235DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc);
1236