1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.
4 * Copyright (c) 2008 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * Copyright (c) 2014 Kevin Lo
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Robert N. M. Watson under
10 * contract to Juniper Networks, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/11/sys/netinet/udp_usrreq.c 347156 2019-05-05 12:34:32Z tuexen $");
41
42#include "opt_inet.h"
43#include "opt_inet6.h"
44#include "opt_ipsec.h"
45#include "opt_rss.h"
46
47#include <sys/param.h>
48#include <sys/domain.h>
49#include <sys/eventhandler.h>
50#include <sys/jail.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mbuf.h>
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/protosw.h>
58#include <sys/sdt.h>
59#include <sys/signalvar.h>
60#include <sys/socket.h>
61#include <sys/socketvar.h>
62#include <sys/sx.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/systm.h>
66
67#include <vm/uma.h>
68
69#include <net/if.h>
70#include <net/if_var.h>
71#include <net/route.h>
72#include <net/rss_config.h>
73
74#include <netinet/in.h>
75#include <netinet/in_kdtrace.h>
76#include <netinet/in_pcb.h>
77#include <netinet/in_systm.h>
78#include <netinet/in_var.h>
79#include <netinet/ip.h>
80#ifdef INET6
81#include <netinet/ip6.h>
82#endif
83#include <netinet/ip_icmp.h>
84#include <netinet/icmp_var.h>
85#include <netinet/ip_var.h>
86#include <netinet/ip_options.h>
87#ifdef INET6
88#include <netinet6/ip6_var.h>
89#endif
90#include <netinet/udp.h>
91#include <netinet/udp_var.h>
92#include <netinet/udplite.h>
93#include <netinet/in_rss.h>
94
95#include <netipsec/ipsec_support.h>
96
97#include <machine/in_cksum.h>
98
99#include <security/mac/mac_framework.h>
100
101/*
102 * UDP and UDP-Lite protocols implementation.
103 * Per RFC 768, August, 1980.
104 * Per RFC 3828, July, 2004.
105 */
106
107/*
108 * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
109 * removes the only data integrity mechanism for packets and malformed
110 * packets that would otherwise be discarded due to bad checksums, and may
111 * cause problems (especially for NFS data blocks).
112 */
113VNET_DEFINE(int, udp_cksum) = 1;
114SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
115    &VNET_NAME(udp_cksum), 0, "compute udp checksum");
116
117int	udp_log_in_vain = 0;
118SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
119    &udp_log_in_vain, 0, "Log all incoming UDP packets");
120
121VNET_DEFINE(int, udp_blackhole) = 0;
122SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
123    &VNET_NAME(udp_blackhole), 0,
124    "Do not send port unreachables for refused connects");
125
126u_long	udp_sendspace = 9216;		/* really max datagram size */
127SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
128    &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
129
130u_long	udp_recvspace = 40 * (1024 +
131#ifdef INET6
132				      sizeof(struct sockaddr_in6)
133#else
134				      sizeof(struct sockaddr_in)
135#endif
136				      );	/* 40 1K datagrams */
137
138SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
139    &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
140
141VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
142VNET_DEFINE(struct inpcbinfo, udbinfo);
143VNET_DEFINE(struct inpcbhead, ulitecb);
144VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
145static VNET_DEFINE(uma_zone_t, udpcb_zone);
146#define	V_udpcb_zone			VNET(udpcb_zone)
147
148#ifndef UDBHASHSIZE
149#define	UDBHASHSIZE	128
150#endif
151
152VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
153VNET_PCPUSTAT_SYSINIT(udpstat);
154SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
155    udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
156
157#ifdef VIMAGE
158VNET_PCPUSTAT_SYSUNINIT(udpstat);
159#endif /* VIMAGE */
160#ifdef INET
161static void	udp_detach(struct socket *so);
162static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
163		    struct mbuf *, struct thread *);
164#endif
165
166static void
167udp_zone_change(void *tag)
168{
169
170	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
171	uma_zone_set_max(V_udpcb_zone, maxsockets);
172}
173
174static int
175udp_inpcb_init(void *mem, int size, int flags)
176{
177	struct inpcb *inp;
178
179	inp = mem;
180	INP_LOCK_INIT(inp, "inp", "udpinp");
181	return (0);
182}
183
184static int
185udplite_inpcb_init(void *mem, int size, int flags)
186{
187	struct inpcb *inp;
188
189	inp = mem;
190	INP_LOCK_INIT(inp, "inp", "udpliteinp");
191	return (0);
192}
193
194void
195udp_init(void)
196{
197
198	/*
199	 * For now default to 2-tuple UDP hashing - until the fragment
200	 * reassembly code can also update the flowid.
201	 *
202	 * Once we can calculate the flowid that way and re-establish
203	 * a 4-tuple, flip this to 4-tuple.
204	 */
205	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
206	    "udp_inpcb", udp_inpcb_init, NULL, 0,
207	    IPI_HASHFIELDS_2TUPLE);
208	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
209	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210	uma_zone_set_max(V_udpcb_zone, maxsockets);
211	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
212	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
213	    EVENTHANDLER_PRI_ANY);
214}
215
216void
217udplite_init(void)
218{
219
220	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
221	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
222	    0, IPI_HASHFIELDS_2TUPLE);
223}
224
225/*
226 * Kernel module interface for updating udpstat.  The argument is an index
227 * into udpstat treated as an array of u_long.  While this encodes the
228 * general layout of udpstat into the caller, it doesn't encode its location,
229 * so that future changes to add, for example, per-CPU stats support won't
230 * cause binary compatibility problems for kernel modules.
231 */
232void
233kmod_udpstat_inc(int statnum)
234{
235
236	counter_u64_add(VNET(udpstat)[statnum], 1);
237}
238
239int
240udp_newudpcb(struct inpcb *inp)
241{
242	struct udpcb *up;
243
244	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
245	if (up == NULL)
246		return (ENOBUFS);
247	inp->inp_ppcb = up;
248	return (0);
249}
250
251void
252udp_discardcb(struct udpcb *up)
253{
254
255	uma_zfree(V_udpcb_zone, up);
256}
257
258#ifdef VIMAGE
259static void
260udp_destroy(void *unused __unused)
261{
262
263	in_pcbinfo_destroy(&V_udbinfo);
264	uma_zdestroy(V_udpcb_zone);
265}
266VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
267
268static void
269udplite_destroy(void *unused __unused)
270{
271
272	in_pcbinfo_destroy(&V_ulitecbinfo);
273}
274VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
275    NULL);
276#endif
277
278#ifdef INET
279/*
280 * Subroutine of udp_input(), which appends the provided mbuf chain to the
281 * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
282 * contains the source address.  If the socket ends up being an IPv6 socket,
283 * udp_append() will convert to a sockaddr_in6 before passing the address
284 * into the socket code.
285 *
286 * In the normal case udp_append() will return 0, indicating that you
287 * must unlock the inp. However if a tunneling protocol is in place we increment
288 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
289 * then decrement the reference count. If the inp_rele returns 1, indicating the
290 * inp is gone, we return that to the caller to tell them *not* to unlock
291 * the inp. In the case of multi-cast this will cause the distribution
292 * to stop (though most tunneling protocols known currently do *not* use
293 * multicast).
294 */
295static int
296udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
297    struct sockaddr_in *udp_in)
298{
299	struct sockaddr *append_sa;
300	struct socket *so;
301	struct mbuf *opts = NULL;
302#ifdef INET6
303	struct sockaddr_in6 udp_in6;
304#endif
305	struct udpcb *up;
306
307	INP_LOCK_ASSERT(inp);
308
309	/*
310	 * Engage the tunneling protocol.
311	 */
312	up = intoudpcb(inp);
313	if (up->u_tun_func != NULL) {
314		in_pcbref(inp);
315		INP_RUNLOCK(inp);
316		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
317		    up->u_tun_ctx);
318		INP_RLOCK(inp);
319		return (in_pcbrele_rlocked(inp));
320	}
321
322	off += sizeof(struct udphdr);
323
324#if defined(IPSEC) || defined(IPSEC_SUPPORT)
325	/* Check AH/ESP integrity. */
326	if (IPSEC_ENABLED(ipv4) &&
327	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
328		m_freem(n);
329		return (0);
330	}
331	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
332		if (IPSEC_ENABLED(ipv4) &&
333		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
334			return (0);	/* Consumed. */
335	}
336#endif /* IPSEC */
337#ifdef MAC
338	if (mac_inpcb_check_deliver(inp, n) != 0) {
339		m_freem(n);
340		return (0);
341	}
342#endif /* MAC */
343	if (inp->inp_flags & INP_CONTROLOPTS ||
344	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
345#ifdef INET6
346		if (inp->inp_vflag & INP_IPV6)
347			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
348		else
349#endif /* INET6 */
350			ip_savecontrol(inp, &opts, ip, n);
351	}
352#ifdef INET6
353	if (inp->inp_vflag & INP_IPV6) {
354		bzero(&udp_in6, sizeof(udp_in6));
355		udp_in6.sin6_len = sizeof(udp_in6);
356		udp_in6.sin6_family = AF_INET6;
357		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
358		append_sa = (struct sockaddr *)&udp_in6;
359	} else
360#endif /* INET6 */
361		append_sa = (struct sockaddr *)udp_in;
362	m_adj(n, off);
363
364	so = inp->inp_socket;
365	SOCKBUF_LOCK(&so->so_rcv);
366	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
367		SOCKBUF_UNLOCK(&so->so_rcv);
368		m_freem(n);
369		if (opts)
370			m_freem(opts);
371		UDPSTAT_INC(udps_fullsock);
372	} else
373		sorwakeup_locked(so);
374	return (0);
375}
376
377int
378udp_input(struct mbuf **mp, int *offp, int proto)
379{
380	struct ip *ip;
381	struct udphdr *uh;
382	struct ifnet *ifp;
383	struct inpcb *inp;
384	uint16_t len, ip_len;
385	struct inpcbinfo *pcbinfo;
386	struct ip save_ip;
387	struct sockaddr_in udp_in;
388	struct mbuf *m;
389	struct m_tag *fwd_tag;
390	int cscov_partial, iphlen;
391
392	m = *mp;
393	iphlen = *offp;
394	ifp = m->m_pkthdr.rcvif;
395	*mp = NULL;
396	UDPSTAT_INC(udps_ipackets);
397
398	/*
399	 * Strip IP options, if any; should skip this, make available to
400	 * user, and use on returned packets, but we don't yet have a way to
401	 * check the checksum with options still present.
402	 */
403	if (iphlen > sizeof (struct ip)) {
404		ip_stripoptions(m);
405		iphlen = sizeof(struct ip);
406	}
407
408	/*
409	 * Get IP and UDP header together in first mbuf.
410	 */
411	ip = mtod(m, struct ip *);
412	if (m->m_len < iphlen + sizeof(struct udphdr)) {
413		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
414			UDPSTAT_INC(udps_hdrops);
415			return (IPPROTO_DONE);
416		}
417		ip = mtod(m, struct ip *);
418	}
419	uh = (struct udphdr *)((caddr_t)ip + iphlen);
420	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
421
422	/*
423	 * Destination port of 0 is illegal, based on RFC768.
424	 */
425	if (uh->uh_dport == 0)
426		goto badunlocked;
427
428	/*
429	 * Construct sockaddr format source address.  Stuff source address
430	 * and datagram in user buffer.
431	 */
432	bzero(&udp_in, sizeof(udp_in));
433	udp_in.sin_len = sizeof(udp_in);
434	udp_in.sin_family = AF_INET;
435	udp_in.sin_port = uh->uh_sport;
436	udp_in.sin_addr = ip->ip_src;
437
438	/*
439	 * Make mbuf data length reflect UDP length.  If not enough data to
440	 * reflect UDP length, drop.
441	 */
442	len = ntohs((u_short)uh->uh_ulen);
443	ip_len = ntohs(ip->ip_len) - iphlen;
444	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
445		/* Zero means checksum over the complete packet. */
446		if (len == 0)
447			len = ip_len;
448		cscov_partial = 0;
449	}
450	if (ip_len != len) {
451		if (len > ip_len || len < sizeof(struct udphdr)) {
452			UDPSTAT_INC(udps_badlen);
453			goto badunlocked;
454		}
455		if (proto == IPPROTO_UDP)
456			m_adj(m, len - ip_len);
457	}
458
459	/*
460	 * Save a copy of the IP header in case we want restore it for
461	 * sending an ICMP error message in response.
462	 */
463	if (!V_udp_blackhole)
464		save_ip = *ip;
465	else
466		memset(&save_ip, 0, sizeof(save_ip));
467
468	/*
469	 * Checksum extended UDP header and data.
470	 */
471	if (uh->uh_sum) {
472		u_short uh_sum;
473
474		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
475		    !cscov_partial) {
476			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
477				uh_sum = m->m_pkthdr.csum_data;
478			else
479				uh_sum = in_pseudo(ip->ip_src.s_addr,
480				    ip->ip_dst.s_addr, htonl((u_short)len +
481				    m->m_pkthdr.csum_data + proto));
482			uh_sum ^= 0xffff;
483		} else {
484			char b[9];
485
486			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
487			bzero(((struct ipovly *)ip)->ih_x1, 9);
488			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
489			    uh->uh_ulen : htons(ip_len);
490			uh_sum = in_cksum(m, len + sizeof (struct ip));
491			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
492		}
493		if (uh_sum) {
494			UDPSTAT_INC(udps_badsum);
495			m_freem(m);
496			return (IPPROTO_DONE);
497		}
498	} else {
499		if (proto == IPPROTO_UDP) {
500			UDPSTAT_INC(udps_nosum);
501		} else {
502			/* UDPLite requires a checksum */
503			/* XXX: What is the right UDPLite MIB counter here? */
504			m_freem(m);
505			return (IPPROTO_DONE);
506		}
507	}
508
509	pcbinfo = udp_get_inpcbinfo(proto);
510	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
511	    in_broadcast(ip->ip_dst, ifp)) {
512		struct inpcb *last;
513		struct inpcbhead *pcblist;
514		struct ip_moptions *imo;
515
516		INP_INFO_RLOCK(pcbinfo);
517		pcblist = udp_get_pcblist(proto);
518		last = NULL;
519		LIST_FOREACH(inp, pcblist, inp_list) {
520			if (inp->inp_lport != uh->uh_dport)
521				continue;
522#ifdef INET6
523			if ((inp->inp_vflag & INP_IPV4) == 0)
524				continue;
525#endif
526			if (inp->inp_laddr.s_addr != INADDR_ANY &&
527			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
528				continue;
529			if (inp->inp_faddr.s_addr != INADDR_ANY &&
530			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
531				continue;
532			if (inp->inp_fport != 0 &&
533			    inp->inp_fport != uh->uh_sport)
534				continue;
535
536			INP_RLOCK(inp);
537
538			/*
539			 * XXXRW: Because we weren't holding either the inpcb
540			 * or the hash lock when we checked for a match
541			 * before, we should probably recheck now that the
542			 * inpcb lock is held.
543			 */
544
545			/*
546			 * Handle socket delivery policy for any-source
547			 * and source-specific multicast. [RFC3678]
548			 */
549			imo = inp->inp_moptions;
550			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
551				struct sockaddr_in	 group;
552				int			 blocked;
553				if (imo == NULL) {
554					INP_RUNLOCK(inp);
555					continue;
556				}
557				bzero(&group, sizeof(struct sockaddr_in));
558				group.sin_len = sizeof(struct sockaddr_in);
559				group.sin_family = AF_INET;
560				group.sin_addr = ip->ip_dst;
561
562				blocked = imo_multi_filter(imo, ifp,
563					(struct sockaddr *)&group,
564					(struct sockaddr *)&udp_in);
565				if (blocked != MCAST_PASS) {
566					if (blocked == MCAST_NOTGMEMBER)
567						IPSTAT_INC(ips_notmember);
568					if (blocked == MCAST_NOTSMEMBER ||
569					    blocked == MCAST_MUTED)
570						UDPSTAT_INC(udps_filtermcast);
571					INP_RUNLOCK(inp);
572					continue;
573				}
574			}
575			if (last != NULL) {
576				struct mbuf *n;
577
578				if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
579					UDP_PROBE(receive, NULL, last, ip,
580					    last, uh);
581					if (udp_append(last, ip, n, iphlen,
582						&udp_in)) {
583						goto inp_lost;
584					}
585				}
586				INP_RUNLOCK(last);
587			}
588			last = inp;
589			/*
590			 * Don't look for additional matches if this one does
591			 * not have either the SO_REUSEPORT or SO_REUSEADDR
592			 * socket options set.  This heuristic avoids
593			 * searching through all pcbs in the common case of a
594			 * non-shared port.  It assumes that an application
595			 * will never clear these options after setting them.
596			 */
597			if ((last->inp_socket->so_options &
598			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
599				break;
600		}
601
602		if (last == NULL) {
603			/*
604			 * No matching pcb found; discard datagram.  (No need
605			 * to send an ICMP Port Unreachable for a broadcast
606			 * or multicast datgram.)
607			 */
608			UDPSTAT_INC(udps_noportbcast);
609			if (inp)
610				INP_RUNLOCK(inp);
611			INP_INFO_RUNLOCK(pcbinfo);
612			goto badunlocked;
613		}
614		UDP_PROBE(receive, NULL, last, ip, last, uh);
615		if (udp_append(last, ip, m, iphlen, &udp_in) == 0)
616			INP_RUNLOCK(last);
617	inp_lost:
618		INP_INFO_RUNLOCK(pcbinfo);
619		return (IPPROTO_DONE);
620	}
621
622	/*
623	 * Locate pcb for datagram.
624	 */
625
626	/*
627	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
628	 */
629	if ((m->m_flags & M_IP_NEXTHOP) &&
630	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
631		struct sockaddr_in *next_hop;
632
633		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
634
635		/*
636		 * Transparently forwarded. Pretend to be the destination.
637		 * Already got one like this?
638		 */
639		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
640		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
641		if (!inp) {
642			/*
643			 * It's new.  Try to find the ambushing socket.
644			 * Because we've rewritten the destination address,
645			 * any hardware-generated hash is ignored.
646			 */
647			inp = in_pcblookup(pcbinfo, ip->ip_src,
648			    uh->uh_sport, next_hop->sin_addr,
649			    next_hop->sin_port ? htons(next_hop->sin_port) :
650			    uh->uh_dport, INPLOOKUP_WILDCARD |
651			    INPLOOKUP_RLOCKPCB, ifp);
652		}
653		/* Remove the tag from the packet. We don't need it anymore. */
654		m_tag_delete(m, fwd_tag);
655		m->m_flags &= ~M_IP_NEXTHOP;
656	} else
657		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
658		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
659		    INPLOOKUP_RLOCKPCB, ifp, m);
660	if (inp == NULL) {
661		if (udp_log_in_vain) {
662			char src[INET_ADDRSTRLEN];
663			char dst[INET_ADDRSTRLEN];
664
665			log(LOG_INFO,
666			    "Connection attempt to UDP %s:%d from %s:%d\n",
667			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
668			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
669		}
670		UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
671		UDPSTAT_INC(udps_noport);
672		if (m->m_flags & (M_BCAST | M_MCAST)) {
673			UDPSTAT_INC(udps_noportbcast);
674			goto badunlocked;
675		}
676		if (V_udp_blackhole)
677			goto badunlocked;
678		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
679			goto badunlocked;
680		*ip = save_ip;
681		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
682		return (IPPROTO_DONE);
683	}
684
685	/*
686	 * Check the minimum TTL for socket.
687	 */
688	INP_RLOCK_ASSERT(inp);
689	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
690		UDP_PROBE(receive, NULL, inp, ip, inp, uh);
691		INP_RUNLOCK(inp);
692		m_freem(m);
693		return (IPPROTO_DONE);
694	}
695	if (cscov_partial) {
696		struct udpcb *up;
697
698		up = intoudpcb(inp);
699		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
700			INP_RUNLOCK(inp);
701			m_freem(m);
702			return (IPPROTO_DONE);
703		}
704	}
705
706	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
707	if (udp_append(inp, ip, m, iphlen, &udp_in) == 0)
708		INP_RUNLOCK(inp);
709	return (IPPROTO_DONE);
710
711badunlocked:
712	m_freem(m);
713	return (IPPROTO_DONE);
714}
715#endif /* INET */
716
717/*
718 * Notify a udp user of an asynchronous error; just wake up so that they can
719 * collect error status.
720 */
721struct inpcb *
722udp_notify(struct inpcb *inp, int errno)
723{
724
725	/*
726	 * While udp_ctlinput() always calls udp_notify() with a read lock
727	 * when invoking it directly, in_pcbnotifyall() currently uses write
728	 * locks due to sharing code with TCP.  For now, accept either a read
729	 * or a write lock, but a read lock is sufficient.
730	 */
731	INP_LOCK_ASSERT(inp);
732	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
733	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
734		RTFREE(inp->inp_route.ro_rt);
735		inp->inp_route.ro_rt = (struct rtentry *)NULL;
736	}
737
738	inp->inp_socket->so_error = errno;
739	sorwakeup(inp->inp_socket);
740	sowwakeup(inp->inp_socket);
741	return (inp);
742}
743
744#ifdef INET
745static void
746udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
747    struct inpcbinfo *pcbinfo)
748{
749	struct ip *ip = vip;
750	struct udphdr *uh;
751	struct in_addr faddr;
752	struct inpcb *inp;
753
754	faddr = ((struct sockaddr_in *)sa)->sin_addr;
755	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
756		return;
757
758	if (PRC_IS_REDIRECT(cmd)) {
759		/* signal EHOSTDOWN, as it flushes the cached route */
760		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
761		return;
762	}
763
764	/*
765	 * Hostdead is ugly because it goes linearly through all PCBs.
766	 *
767	 * XXX: We never get this from ICMP, otherwise it makes an excellent
768	 * DoS attack on machines with many connections.
769	 */
770	if (cmd == PRC_HOSTDEAD)
771		ip = NULL;
772	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
773		return;
774	if (ip != NULL) {
775		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
776		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
777		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
778		if (inp != NULL) {
779			INP_RLOCK_ASSERT(inp);
780			if (inp->inp_socket != NULL) {
781				udp_notify(inp, inetctlerrmap[cmd]);
782			}
783			INP_RUNLOCK(inp);
784		} else {
785			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
786					   ip->ip_src, uh->uh_sport,
787					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
788			if (inp != NULL) {
789				struct udpcb *up;
790
791				up = intoudpcb(inp);
792				if (up->u_icmp_func != NULL) {
793					INP_RUNLOCK(inp);
794					(*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
795				} else {
796					INP_RUNLOCK(inp);
797				}
798			}
799		}
800	} else
801		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
802		    udp_notify);
803}
804void
805udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
806{
807
808	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
809}
810
811void
812udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
813{
814
815	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
816}
817#endif /* INET */
818
819static int
820udp_pcblist(SYSCTL_HANDLER_ARGS)
821{
822	int error, i, n;
823	struct inpcb *inp, **inp_list;
824	inp_gen_t gencnt;
825	struct xinpgen xig;
826
827	/*
828	 * The process of preparing the PCB list is too time-consuming and
829	 * resource-intensive to repeat twice on every request.
830	 */
831	if (req->oldptr == 0) {
832		n = V_udbinfo.ipi_count;
833		n += imax(n / 8, 10);
834		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
835		return (0);
836	}
837
838	if (req->newptr != 0)
839		return (EPERM);
840
841	/*
842	 * OK, now we're committed to doing something.
843	 */
844	INP_INFO_RLOCK(&V_udbinfo);
845	gencnt = V_udbinfo.ipi_gencnt;
846	n = V_udbinfo.ipi_count;
847	INP_INFO_RUNLOCK(&V_udbinfo);
848
849	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
850		+ n * sizeof(struct xinpcb));
851	if (error != 0)
852		return (error);
853
854	bzero(&xig, sizeof(xig));
855	xig.xig_len = sizeof xig;
856	xig.xig_count = n;
857	xig.xig_gen = gencnt;
858	xig.xig_sogen = so_gencnt;
859	error = SYSCTL_OUT(req, &xig, sizeof xig);
860	if (error)
861		return (error);
862
863	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
864	if (inp_list == NULL)
865		return (ENOMEM);
866
867	INP_INFO_RLOCK(&V_udbinfo);
868	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
869	     inp = LIST_NEXT(inp, inp_list)) {
870		INP_WLOCK(inp);
871		if (inp->inp_gencnt <= gencnt &&
872		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
873			in_pcbref(inp);
874			inp_list[i++] = inp;
875		}
876		INP_WUNLOCK(inp);
877	}
878	INP_INFO_RUNLOCK(&V_udbinfo);
879	n = i;
880
881	error = 0;
882	for (i = 0; i < n; i++) {
883		inp = inp_list[i];
884		INP_RLOCK(inp);
885		if (inp->inp_gencnt <= gencnt) {
886			struct xinpcb xi;
887
888			bzero(&xi, sizeof(xi));
889			xi.xi_len = sizeof xi;
890			/* XXX should avoid extra copy */
891			bcopy(inp, &xi.xi_inp, sizeof *inp);
892			if (inp->inp_socket)
893				sotoxsocket(inp->inp_socket, &xi.xi_socket);
894			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
895			INP_RUNLOCK(inp);
896			error = SYSCTL_OUT(req, &xi, sizeof xi);
897		} else
898			INP_RUNLOCK(inp);
899	}
900	INP_INFO_WLOCK(&V_udbinfo);
901	for (i = 0; i < n; i++) {
902		inp = inp_list[i];
903		INP_RLOCK(inp);
904		if (!in_pcbrele_rlocked(inp))
905			INP_RUNLOCK(inp);
906	}
907	INP_INFO_WUNLOCK(&V_udbinfo);
908
909	if (!error) {
910		/*
911		 * Give the user an updated idea of our state.  If the
912		 * generation differs from what we told her before, she knows
913		 * that something happened while we were processing this
914		 * request, and it might be necessary to retry.
915		 */
916		INP_INFO_RLOCK(&V_udbinfo);
917		xig.xig_gen = V_udbinfo.ipi_gencnt;
918		xig.xig_sogen = so_gencnt;
919		xig.xig_count = V_udbinfo.ipi_count;
920		INP_INFO_RUNLOCK(&V_udbinfo);
921		error = SYSCTL_OUT(req, &xig, sizeof xig);
922	}
923	free(inp_list, M_TEMP);
924	return (error);
925}
926
927SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
928    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
929    udp_pcblist, "S,xinpcb", "List of active UDP sockets");
930
931#ifdef INET
932static int
933udp_getcred(SYSCTL_HANDLER_ARGS)
934{
935	struct xucred xuc;
936	struct sockaddr_in addrs[2];
937	struct inpcb *inp;
938	int error;
939
940	error = priv_check(req->td, PRIV_NETINET_GETCRED);
941	if (error)
942		return (error);
943	error = SYSCTL_IN(req, addrs, sizeof(addrs));
944	if (error)
945		return (error);
946	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
947	    addrs[0].sin_addr, addrs[0].sin_port,
948	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
949	if (inp != NULL) {
950		INP_RLOCK_ASSERT(inp);
951		if (inp->inp_socket == NULL)
952			error = ENOENT;
953		if (error == 0)
954			error = cr_canseeinpcb(req->td->td_ucred, inp);
955		if (error == 0)
956			cru2x(inp->inp_cred, &xuc);
957		INP_RUNLOCK(inp);
958	} else
959		error = ENOENT;
960	if (error == 0)
961		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
962	return (error);
963}
964
965SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
966    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
967    udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
968#endif /* INET */
969
970int
971udp_ctloutput(struct socket *so, struct sockopt *sopt)
972{
973	struct inpcb *inp;
974	struct udpcb *up;
975	int isudplite, error, optval;
976
977	error = 0;
978	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
979	inp = sotoinpcb(so);
980	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
981	INP_WLOCK(inp);
982	if (sopt->sopt_level != so->so_proto->pr_protocol) {
983#ifdef INET6
984		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
985			INP_WUNLOCK(inp);
986			error = ip6_ctloutput(so, sopt);
987		}
988#endif
989#if defined(INET) && defined(INET6)
990		else
991#endif
992#ifdef INET
993		{
994			INP_WUNLOCK(inp);
995			error = ip_ctloutput(so, sopt);
996		}
997#endif
998		return (error);
999	}
1000
1001	switch (sopt->sopt_dir) {
1002	case SOPT_SET:
1003		switch (sopt->sopt_name) {
1004#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1005#ifdef INET
1006		case UDP_ENCAP:
1007			if (!IPSEC_ENABLED(ipv4)) {
1008				INP_WUNLOCK(inp);
1009				return (ENOPROTOOPT);
1010			}
1011			error = UDPENCAP_PCBCTL(inp, sopt);
1012			break;
1013#endif /* INET */
1014#endif /* IPSEC */
1015		case UDPLITE_SEND_CSCOV:
1016		case UDPLITE_RECV_CSCOV:
1017			if (!isudplite) {
1018				INP_WUNLOCK(inp);
1019				error = ENOPROTOOPT;
1020				break;
1021			}
1022			INP_WUNLOCK(inp);
1023			error = sooptcopyin(sopt, &optval, sizeof(optval),
1024			    sizeof(optval));
1025			if (error != 0)
1026				break;
1027			inp = sotoinpcb(so);
1028			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1029			INP_WLOCK(inp);
1030			up = intoudpcb(inp);
1031			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1032			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1033				INP_WUNLOCK(inp);
1034				error = EINVAL;
1035				break;
1036			}
1037			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1038				up->u_txcslen = optval;
1039			else
1040				up->u_rxcslen = optval;
1041			INP_WUNLOCK(inp);
1042			break;
1043		default:
1044			INP_WUNLOCK(inp);
1045			error = ENOPROTOOPT;
1046			break;
1047		}
1048		break;
1049	case SOPT_GET:
1050		switch (sopt->sopt_name) {
1051#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1052#ifdef INET
1053		case UDP_ENCAP:
1054			if (!IPSEC_ENABLED(ipv4)) {
1055				INP_WUNLOCK(inp);
1056				return (ENOPROTOOPT);
1057			}
1058			error = UDPENCAP_PCBCTL(inp, sopt);
1059			break;
1060#endif /* INET */
1061#endif /* IPSEC */
1062		case UDPLITE_SEND_CSCOV:
1063		case UDPLITE_RECV_CSCOV:
1064			if (!isudplite) {
1065				INP_WUNLOCK(inp);
1066				error = ENOPROTOOPT;
1067				break;
1068			}
1069			up = intoudpcb(inp);
1070			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1071			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1072				optval = up->u_txcslen;
1073			else
1074				optval = up->u_rxcslen;
1075			INP_WUNLOCK(inp);
1076			error = sooptcopyout(sopt, &optval, sizeof(optval));
1077			break;
1078		default:
1079			INP_WUNLOCK(inp);
1080			error = ENOPROTOOPT;
1081			break;
1082		}
1083		break;
1084	}
1085	return (error);
1086}
1087
1088#ifdef INET
1089#define	UH_WLOCKED	2
1090#define	UH_RLOCKED	1
1091#define	UH_UNLOCKED	0
1092static int
1093udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1094    struct mbuf *control, struct thread *td)
1095{
1096	struct udpiphdr *ui;
1097	int len = m->m_pkthdr.len;
1098	struct in_addr faddr, laddr;
1099	struct cmsghdr *cm;
1100	struct inpcbinfo *pcbinfo;
1101	struct sockaddr_in *sin, src;
1102	int cscov_partial = 0;
1103	int error = 0;
1104	int ipflags;
1105	u_short fport, lport;
1106	int unlock_udbinfo, unlock_inp;
1107	u_char tos;
1108	uint8_t pr;
1109	uint16_t cscov = 0;
1110	uint32_t flowid = 0;
1111	uint8_t flowtype = M_HASHTYPE_NONE;
1112
1113	/*
1114	 * udp_output() may need to temporarily bind or connect the current
1115	 * inpcb.  As such, we don't know up front whether we will need the
1116	 * pcbinfo lock or not.  Do any work to decide what is needed up
1117	 * front before acquiring any locks.
1118	 */
1119	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1120		if (control)
1121			m_freem(control);
1122		m_freem(m);
1123		return (EMSGSIZE);
1124	}
1125
1126	src.sin_family = 0;
1127	sin = (struct sockaddr_in *)addr;
1128	if (sin == NULL ||
1129	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1130		INP_WLOCK(inp);
1131		unlock_inp = UH_WLOCKED;
1132	} else {
1133		INP_RLOCK(inp);
1134		unlock_inp = UH_RLOCKED;
1135	}
1136	tos = inp->inp_ip_tos;
1137	if (control != NULL) {
1138		/*
1139		 * XXX: Currently, we assume all the optional information is
1140		 * stored in a single mbuf.
1141		 */
1142		if (control->m_next) {
1143			if (unlock_inp == UH_WLOCKED)
1144				INP_WUNLOCK(inp);
1145			else
1146				INP_RUNLOCK(inp);
1147			m_freem(control);
1148			m_freem(m);
1149			return (EINVAL);
1150		}
1151		for (; control->m_len > 0;
1152		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1153		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1154			cm = mtod(control, struct cmsghdr *);
1155			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1156			    || cm->cmsg_len > control->m_len) {
1157				error = EINVAL;
1158				break;
1159			}
1160			if (cm->cmsg_level != IPPROTO_IP)
1161				continue;
1162
1163			switch (cm->cmsg_type) {
1164			case IP_SENDSRCADDR:
1165				if (cm->cmsg_len !=
1166				    CMSG_LEN(sizeof(struct in_addr))) {
1167					error = EINVAL;
1168					break;
1169				}
1170				bzero(&src, sizeof(src));
1171				src.sin_family = AF_INET;
1172				src.sin_len = sizeof(src);
1173				src.sin_port = inp->inp_lport;
1174				src.sin_addr =
1175				    *(struct in_addr *)CMSG_DATA(cm);
1176				break;
1177
1178			case IP_TOS:
1179				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1180					error = EINVAL;
1181					break;
1182				}
1183				tos = *(u_char *)CMSG_DATA(cm);
1184				break;
1185
1186			case IP_FLOWID:
1187				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1188					error = EINVAL;
1189					break;
1190				}
1191				flowid = *(uint32_t *) CMSG_DATA(cm);
1192				break;
1193
1194			case IP_FLOWTYPE:
1195				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1196					error = EINVAL;
1197					break;
1198				}
1199				flowtype = *(uint32_t *) CMSG_DATA(cm);
1200				break;
1201
1202#ifdef	RSS
1203			case IP_RSSBUCKETID:
1204				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1205					error = EINVAL;
1206					break;
1207				}
1208				/* This is just a placeholder for now */
1209				break;
1210#endif	/* RSS */
1211			default:
1212				error = ENOPROTOOPT;
1213				break;
1214			}
1215			if (error)
1216				break;
1217		}
1218		m_freem(control);
1219	}
1220	if (error) {
1221		if (unlock_inp == UH_WLOCKED)
1222			INP_WUNLOCK(inp);
1223		else
1224			INP_RUNLOCK(inp);
1225		m_freem(m);
1226		return (error);
1227	}
1228
1229	/*
1230	 * Depending on whether or not the application has bound or connected
1231	 * the socket, we may have to do varying levels of work.  The optimal
1232	 * case is for a connected UDP socket, as a global lock isn't
1233	 * required at all.
1234	 *
1235	 * In order to decide which we need, we require stability of the
1236	 * inpcb binding, which we ensure by acquiring a read lock on the
1237	 * inpcb.  This doesn't strictly follow the lock order, so we play
1238	 * the trylock and retry game; note that we may end up with more
1239	 * conservative locks than required the second time around, so later
1240	 * assertions have to accept that.  Further analysis of the number of
1241	 * misses under contention is required.
1242	 *
1243	 * XXXRW: Check that hash locking update here is correct.
1244	 */
1245	pr = inp->inp_socket->so_proto->pr_protocol;
1246	pcbinfo = udp_get_inpcbinfo(pr);
1247	sin = (struct sockaddr_in *)addr;
1248	if (sin != NULL &&
1249	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1250		INP_HASH_WLOCK(pcbinfo);
1251		unlock_udbinfo = UH_WLOCKED;
1252	} else if ((sin != NULL && (
1253	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1254	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1255	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1256	    (inp->inp_lport == 0))) ||
1257	    (src.sin_family == AF_INET)) {
1258		INP_HASH_RLOCK(pcbinfo);
1259		unlock_udbinfo = UH_RLOCKED;
1260	} else
1261		unlock_udbinfo = UH_UNLOCKED;
1262
1263	/*
1264	 * If the IP_SENDSRCADDR control message was specified, override the
1265	 * source address for this datagram.  Its use is invalidated if the
1266	 * address thus specified is incomplete or clobbers other inpcbs.
1267	 */
1268	laddr = inp->inp_laddr;
1269	lport = inp->inp_lport;
1270	if (src.sin_family == AF_INET) {
1271		INP_HASH_LOCK_ASSERT(pcbinfo);
1272		if ((lport == 0) ||
1273		    (laddr.s_addr == INADDR_ANY &&
1274		     src.sin_addr.s_addr == INADDR_ANY)) {
1275			error = EINVAL;
1276			goto release;
1277		}
1278		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1279		    &laddr.s_addr, &lport, td->td_ucred);
1280		if (error)
1281			goto release;
1282	}
1283
1284	/*
1285	 * If a UDP socket has been connected, then a local address/port will
1286	 * have been selected and bound.
1287	 *
1288	 * If a UDP socket has not been connected to, then an explicit
1289	 * destination address must be used, in which case a local
1290	 * address/port may not have been selected and bound.
1291	 */
1292	if (sin != NULL) {
1293		INP_LOCK_ASSERT(inp);
1294		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1295			error = EISCONN;
1296			goto release;
1297		}
1298
1299		/*
1300		 * Jail may rewrite the destination address, so let it do
1301		 * that before we use it.
1302		 */
1303		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1304		if (error)
1305			goto release;
1306
1307		/*
1308		 * If a local address or port hasn't yet been selected, or if
1309		 * the destination address needs to be rewritten due to using
1310		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1311		 * to do the heavy lifting.  Once a port is selected, we
1312		 * commit the binding back to the socket; we also commit the
1313		 * binding of the address if in jail.
1314		 *
1315		 * If we already have a valid binding and we're not
1316		 * requesting a destination address rewrite, use a fast path.
1317		 */
1318		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1319		    inp->inp_lport == 0 ||
1320		    sin->sin_addr.s_addr == INADDR_ANY ||
1321		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1322			INP_HASH_LOCK_ASSERT(pcbinfo);
1323			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1324			    &lport, &faddr.s_addr, &fport, NULL,
1325			    td->td_ucred);
1326			if (error)
1327				goto release;
1328
1329			/*
1330			 * XXXRW: Why not commit the port if the address is
1331			 * !INADDR_ANY?
1332			 */
1333			/* Commit the local port if newly assigned. */
1334			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1335			    inp->inp_lport == 0) {
1336				INP_WLOCK_ASSERT(inp);
1337				INP_HASH_WLOCK_ASSERT(pcbinfo);
1338				/*
1339				 * Remember addr if jailed, to prevent
1340				 * rebinding.
1341				 */
1342				if (prison_flag(td->td_ucred, PR_IP4))
1343					inp->inp_laddr = laddr;
1344				inp->inp_lport = lport;
1345				if (in_pcbinshash(inp) != 0) {
1346					inp->inp_lport = 0;
1347					error = EAGAIN;
1348					goto release;
1349				}
1350				inp->inp_flags |= INP_ANONPORT;
1351			}
1352		} else {
1353			faddr = sin->sin_addr;
1354			fport = sin->sin_port;
1355		}
1356	} else {
1357		INP_LOCK_ASSERT(inp);
1358		faddr = inp->inp_faddr;
1359		fport = inp->inp_fport;
1360		if (faddr.s_addr == INADDR_ANY) {
1361			error = ENOTCONN;
1362			goto release;
1363		}
1364	}
1365
1366	/*
1367	 * Calculate data length and get a mbuf for UDP, IP, and possible
1368	 * link-layer headers.  Immediate slide the data pointer back forward
1369	 * since we won't use that space at this layer.
1370	 */
1371	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1372	if (m == NULL) {
1373		error = ENOBUFS;
1374		goto release;
1375	}
1376	m->m_data += max_linkhdr;
1377	m->m_len -= max_linkhdr;
1378	m->m_pkthdr.len -= max_linkhdr;
1379
1380	/*
1381	 * Fill in mbuf with extended UDP header and addresses and length put
1382	 * into network format.
1383	 */
1384	ui = mtod(m, struct udpiphdr *);
1385	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1386	ui->ui_v = IPVERSION << 4;
1387	ui->ui_pr = pr;
1388	ui->ui_src = laddr;
1389	ui->ui_dst = faddr;
1390	ui->ui_sport = lport;
1391	ui->ui_dport = fport;
1392	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1393	if (pr == IPPROTO_UDPLITE) {
1394		struct udpcb *up;
1395		uint16_t plen;
1396
1397		up = intoudpcb(inp);
1398		cscov = up->u_txcslen;
1399		plen = (u_short)len + sizeof(struct udphdr);
1400		if (cscov >= plen)
1401			cscov = 0;
1402		ui->ui_len = htons(plen);
1403		ui->ui_ulen = htons(cscov);
1404		/*
1405		 * For UDP-Lite, checksum coverage length of zero means
1406		 * the entire UDPLite packet is covered by the checksum.
1407		 */
1408		cscov_partial = (cscov == 0) ? 0 : 1;
1409	}
1410
1411	/*
1412	 * Set the Don't Fragment bit in the IP header.
1413	 */
1414	if (inp->inp_flags & INP_DONTFRAG) {
1415		struct ip *ip;
1416
1417		ip = (struct ip *)&ui->ui_i;
1418		ip->ip_off |= htons(IP_DF);
1419	}
1420
1421	ipflags = 0;
1422	if (inp->inp_socket->so_options & SO_DONTROUTE)
1423		ipflags |= IP_ROUTETOIF;
1424	if (inp->inp_socket->so_options & SO_BROADCAST)
1425		ipflags |= IP_ALLOWBROADCAST;
1426	if (inp->inp_flags & INP_ONESBCAST)
1427		ipflags |= IP_SENDONES;
1428
1429#ifdef MAC
1430	mac_inpcb_create_mbuf(inp, m);
1431#endif
1432
1433	/*
1434	 * Set up checksum and output datagram.
1435	 */
1436	ui->ui_sum = 0;
1437	if (pr == IPPROTO_UDPLITE) {
1438		if (inp->inp_flags & INP_ONESBCAST)
1439			faddr.s_addr = INADDR_BROADCAST;
1440		if (cscov_partial) {
1441			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1442				ui->ui_sum = 0xffff;
1443		} else {
1444			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1445				ui->ui_sum = 0xffff;
1446		}
1447	} else if (V_udp_cksum) {
1448		if (inp->inp_flags & INP_ONESBCAST)
1449			faddr.s_addr = INADDR_BROADCAST;
1450		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1451		    htons((u_short)len + sizeof(struct udphdr) + pr));
1452		m->m_pkthdr.csum_flags = CSUM_UDP;
1453		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1454	}
1455	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1456	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1457	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1458	UDPSTAT_INC(udps_opackets);
1459
1460	/*
1461	 * Setup flowid / RSS information for outbound socket.
1462	 *
1463	 * Once the UDP code decides to set a flowid some other way,
1464	 * this allows the flowid to be overridden by userland.
1465	 */
1466	if (flowtype != M_HASHTYPE_NONE) {
1467		m->m_pkthdr.flowid = flowid;
1468		M_HASHTYPE_SET(m, flowtype);
1469#ifdef	RSS
1470	} else {
1471		uint32_t hash_val, hash_type;
1472		/*
1473		 * Calculate an appropriate RSS hash for UDP and
1474		 * UDP Lite.
1475		 *
1476		 * The called function will take care of figuring out
1477		 * whether a 2-tuple or 4-tuple hash is required based
1478		 * on the currently configured scheme.
1479		 *
1480		 * Later later on connected socket values should be
1481		 * cached in the inpcb and reused, rather than constantly
1482		 * re-calculating it.
1483		 *
1484		 * UDP Lite is a different protocol number and will
1485		 * likely end up being hashed as a 2-tuple until
1486		 * RSS / NICs grow UDP Lite protocol awareness.
1487		 */
1488		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1489		    pr, &hash_val, &hash_type) == 0) {
1490			m->m_pkthdr.flowid = hash_val;
1491			M_HASHTYPE_SET(m, hash_type);
1492		}
1493#endif
1494	}
1495
1496#ifdef	RSS
1497	/*
1498	 * Don't override with the inp cached flowid value.
1499	 *
1500	 * Depending upon the kind of send being done, the inp
1501	 * flowid/flowtype values may actually not be appropriate
1502	 * for this particular socket send.
1503	 *
1504	 * We should either leave the flowid at zero (which is what is
1505	 * currently done) or set it to some software generated
1506	 * hash value based on the packet contents.
1507	 */
1508	ipflags |= IP_NODEFAULTFLOWID;
1509#endif	/* RSS */
1510
1511	if (unlock_udbinfo == UH_WLOCKED)
1512		INP_HASH_WUNLOCK(pcbinfo);
1513	else if (unlock_udbinfo == UH_RLOCKED)
1514		INP_HASH_RUNLOCK(pcbinfo);
1515	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1516	error = ip_output(m, inp->inp_options,
1517	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1518	    inp->inp_moptions, inp);
1519	if (unlock_inp == UH_WLOCKED)
1520		INP_WUNLOCK(inp);
1521	else
1522		INP_RUNLOCK(inp);
1523	return (error);
1524
1525release:
1526	if (unlock_udbinfo == UH_WLOCKED) {
1527		KASSERT(unlock_inp == UH_WLOCKED,
1528		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1529		INP_HASH_WUNLOCK(pcbinfo);
1530		INP_WUNLOCK(inp);
1531	} else if (unlock_udbinfo == UH_RLOCKED) {
1532		KASSERT(unlock_inp == UH_RLOCKED,
1533		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1534		INP_HASH_RUNLOCK(pcbinfo);
1535		INP_RUNLOCK(inp);
1536	} else if (unlock_inp == UH_WLOCKED)
1537		INP_WUNLOCK(inp);
1538	else
1539		INP_RUNLOCK(inp);
1540	m_freem(m);
1541	return (error);
1542}
1543
1544static void
1545udp_abort(struct socket *so)
1546{
1547	struct inpcb *inp;
1548	struct inpcbinfo *pcbinfo;
1549
1550	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1551	inp = sotoinpcb(so);
1552	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1553	INP_WLOCK(inp);
1554	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1555		INP_HASH_WLOCK(pcbinfo);
1556		in_pcbdisconnect(inp);
1557		inp->inp_laddr.s_addr = INADDR_ANY;
1558		INP_HASH_WUNLOCK(pcbinfo);
1559		soisdisconnected(so);
1560	}
1561	INP_WUNLOCK(inp);
1562}
1563
1564static int
1565udp_attach(struct socket *so, int proto, struct thread *td)
1566{
1567	struct inpcb *inp;
1568	struct inpcbinfo *pcbinfo;
1569	int error;
1570
1571	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1572	inp = sotoinpcb(so);
1573	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1574	error = soreserve(so, udp_sendspace, udp_recvspace);
1575	if (error)
1576		return (error);
1577	INP_INFO_WLOCK(pcbinfo);
1578	error = in_pcballoc(so, pcbinfo);
1579	if (error) {
1580		INP_INFO_WUNLOCK(pcbinfo);
1581		return (error);
1582	}
1583
1584	inp = sotoinpcb(so);
1585	inp->inp_vflag |= INP_IPV4;
1586	inp->inp_ip_ttl = V_ip_defttl;
1587
1588	error = udp_newudpcb(inp);
1589	if (error) {
1590		in_pcbdetach(inp);
1591		in_pcbfree(inp);
1592		INP_INFO_WUNLOCK(pcbinfo);
1593		return (error);
1594	}
1595
1596	INP_WUNLOCK(inp);
1597	INP_INFO_WUNLOCK(pcbinfo);
1598	return (0);
1599}
1600#endif /* INET */
1601
1602int
1603udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1604{
1605	struct inpcb *inp;
1606	struct udpcb *up;
1607
1608	KASSERT(so->so_type == SOCK_DGRAM,
1609	    ("udp_set_kernel_tunneling: !dgram"));
1610	inp = sotoinpcb(so);
1611	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1612	INP_WLOCK(inp);
1613	up = intoudpcb(inp);
1614	if ((up->u_tun_func != NULL) ||
1615	    (up->u_icmp_func != NULL)) {
1616		INP_WUNLOCK(inp);
1617		return (EBUSY);
1618	}
1619	up->u_tun_func = f;
1620	up->u_icmp_func = i;
1621	up->u_tun_ctx = ctx;
1622	INP_WUNLOCK(inp);
1623	return (0);
1624}
1625
1626#ifdef INET
1627static int
1628udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1629{
1630	struct inpcb *inp;
1631	struct inpcbinfo *pcbinfo;
1632	int error;
1633
1634	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1635	inp = sotoinpcb(so);
1636	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1637	INP_WLOCK(inp);
1638	INP_HASH_WLOCK(pcbinfo);
1639	error = in_pcbbind(inp, nam, td->td_ucred);
1640	INP_HASH_WUNLOCK(pcbinfo);
1641	INP_WUNLOCK(inp);
1642	return (error);
1643}
1644
1645static void
1646udp_close(struct socket *so)
1647{
1648	struct inpcb *inp;
1649	struct inpcbinfo *pcbinfo;
1650
1651	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1652	inp = sotoinpcb(so);
1653	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1654	INP_WLOCK(inp);
1655	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1656		INP_HASH_WLOCK(pcbinfo);
1657		in_pcbdisconnect(inp);
1658		inp->inp_laddr.s_addr = INADDR_ANY;
1659		INP_HASH_WUNLOCK(pcbinfo);
1660		soisdisconnected(so);
1661	}
1662	INP_WUNLOCK(inp);
1663}
1664
1665static int
1666udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1667{
1668	struct inpcb *inp;
1669	struct inpcbinfo *pcbinfo;
1670	struct sockaddr_in *sin;
1671	int error;
1672
1673	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1674	inp = sotoinpcb(so);
1675	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1676	INP_WLOCK(inp);
1677	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1678		INP_WUNLOCK(inp);
1679		return (EISCONN);
1680	}
1681	sin = (struct sockaddr_in *)nam;
1682	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1683	if (error != 0) {
1684		INP_WUNLOCK(inp);
1685		return (error);
1686	}
1687	INP_HASH_WLOCK(pcbinfo);
1688	error = in_pcbconnect(inp, nam, td->td_ucred);
1689	INP_HASH_WUNLOCK(pcbinfo);
1690	if (error == 0)
1691		soisconnected(so);
1692	INP_WUNLOCK(inp);
1693	return (error);
1694}
1695
1696static void
1697udp_detach(struct socket *so)
1698{
1699	struct inpcb *inp;
1700	struct inpcbinfo *pcbinfo;
1701	struct udpcb *up;
1702
1703	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1704	inp = sotoinpcb(so);
1705	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1706	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1707	    ("udp_detach: not disconnected"));
1708	INP_INFO_WLOCK(pcbinfo);
1709	INP_WLOCK(inp);
1710	up = intoudpcb(inp);
1711	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1712	inp->inp_ppcb = NULL;
1713	in_pcbdetach(inp);
1714	in_pcbfree(inp);
1715	INP_INFO_WUNLOCK(pcbinfo);
1716	udp_discardcb(up);
1717}
1718
1719static int
1720udp_disconnect(struct socket *so)
1721{
1722	struct inpcb *inp;
1723	struct inpcbinfo *pcbinfo;
1724
1725	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1726	inp = sotoinpcb(so);
1727	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1728	INP_WLOCK(inp);
1729	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1730		INP_WUNLOCK(inp);
1731		return (ENOTCONN);
1732	}
1733	INP_HASH_WLOCK(pcbinfo);
1734	in_pcbdisconnect(inp);
1735	inp->inp_laddr.s_addr = INADDR_ANY;
1736	INP_HASH_WUNLOCK(pcbinfo);
1737	SOCK_LOCK(so);
1738	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1739	SOCK_UNLOCK(so);
1740	INP_WUNLOCK(inp);
1741	return (0);
1742}
1743
1744static int
1745udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1746    struct mbuf *control, struct thread *td)
1747{
1748	struct inpcb *inp;
1749
1750	inp = sotoinpcb(so);
1751	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1752	return (udp_output(inp, m, addr, control, td));
1753}
1754#endif /* INET */
1755
1756int
1757udp_shutdown(struct socket *so)
1758{
1759	struct inpcb *inp;
1760
1761	inp = sotoinpcb(so);
1762	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1763	INP_WLOCK(inp);
1764	socantsendmore(so);
1765	INP_WUNLOCK(inp);
1766	return (0);
1767}
1768
1769#ifdef INET
1770struct pr_usrreqs udp_usrreqs = {
1771	.pru_abort =		udp_abort,
1772	.pru_attach =		udp_attach,
1773	.pru_bind =		udp_bind,
1774	.pru_connect =		udp_connect,
1775	.pru_control =		in_control,
1776	.pru_detach =		udp_detach,
1777	.pru_disconnect =	udp_disconnect,
1778	.pru_peeraddr =		in_getpeeraddr,
1779	.pru_send =		udp_send,
1780	.pru_soreceive =	soreceive_dgram,
1781	.pru_sosend =		sosend_dgram,
1782	.pru_shutdown =		udp_shutdown,
1783	.pru_sockaddr =		in_getsockaddr,
1784	.pru_sosetlabel =	in_pcbsosetlabel,
1785	.pru_close =		udp_close,
1786};
1787#endif /* INET */
1788