fastpath.c revision 295927
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * Copyright (c) 2015 Netflix Inc.
10 * All rights reserved.
11 *
12 * Portions of this software were developed at the Centre for Advanced Internet
13 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
14 * James Healy and David Hayes, made possible in part by a grant from the Cisco
15 * University Research Program Fund at Community Foundation Silicon Valley.
16 *
17 * Portions of this software were developed at the Centre for Advanced
18 * Internet Architectures, Swinburne University of Technology, Melbourne,
19 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
20 *
21 * Portions of this software were developed by Robert N. M. Watson under
22 * contract to Juniper Networks, Inc.
23 *
24 * Portions of this software were developed by Randall R. Stewart while
25 * working for Netflix Inc.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 *    notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 *    notice, this list of conditions and the following disclaimer in the
34 *    documentation and/or other materials provided with the distribution.
35 * 4. Neither the name of the University nor the names of its contributors
36 *    may be used to endorse or promote products derived from this software
37 *    without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
43 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
44 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
45 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
47 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
48 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
49 * SUCH DAMAGE.
50 *
51 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
52 */
53
54#include <sys/cdefs.h>
55__FBSDID("$FreeBSD: head/sys/netinet/tcp_stacks/fastpath.c 295927 2016-02-23 17:53:39Z rrs $");
56
57#include "opt_ipfw.h"		/* for ipfw_fwd	*/
58#include "opt_inet.h"
59#include "opt_inet6.h"
60#include "opt_ipsec.h"
61#include "opt_kdtrace.h"
62#include "opt_tcpdebug.h"
63
64#include <sys/param.h>
65#include <sys/module.h>
66#include <sys/kernel.h>
67#include <sys/hhook.h>
68#include <sys/malloc.h>
69#include <sys/mbuf.h>
70#include <sys/proc.h>		/* for proc0 declaration */
71#include <sys/protosw.h>
72#include <sys/sdt.h>
73#include <sys/signalvar.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sysctl.h>
77#include <sys/syslog.h>
78#include <sys/systm.h>
79
80#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
81
82#include <vm/uma.h>
83
84#include <net/route.h>
85#include <net/vnet.h>
86
87#define TCPSTATES		/* for logging */
88
89#include <netinet/in.h>
90#include <netinet/in_kdtrace.h>
91#include <netinet/in_pcb.h>
92#include <netinet/in_systm.h>
93#include <netinet/ip.h>
94#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
95#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
96#include <netinet/ip_var.h>
97#include <netinet/ip_options.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/in6_pcb.h>
101#include <netinet6/ip6_var.h>
102#include <netinet/tcp.h>
103#include <netinet/tcp_fsm.h>
104#include <netinet/tcp_seq.h>
105#include <netinet/tcp_timer.h>
106#include <netinet/tcp_var.h>
107#include <netinet6/tcp6_var.h>
108#include <netinet/tcpip.h>
109#include <netinet/tcp_syncache.h>
110#include <netinet/cc/cc.h>
111#ifdef TCPDEBUG
112#include <netinet/tcp_debug.h>
113#endif /* TCPDEBUG */
114#ifdef TCP_OFFLOAD
115#include <netinet/tcp_offload.h>
116#endif
117
118#ifdef IPSEC
119#include <netipsec/ipsec.h>
120#include <netipsec/ipsec6.h>
121#endif /*IPSEC*/
122
123#include <machine/in_cksum.h>
124
125#include <security/mac/mac_framework.h>
126
127const int tcprexmtthresh;
128
129VNET_DECLARE(int, tcp_autorcvbuf_inc);
130#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
131VNET_DECLARE(int, tcp_autorcvbuf_max);
132#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
133VNET_DECLARE(int, tcp_do_rfc3042);
134#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
135VNET_DECLARE(int, tcp_do_autorcvbuf);
136#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
137VNET_DECLARE(int, tcp_insecure_rst);
138#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
139VNET_DECLARE(int, tcp_insecure_syn);
140#define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
141
142static void	 tcp_do_segment_fastslow(struct mbuf *, struct tcphdr *,
143			struct socket *, struct tcpcb *, int, int, uint8_t,
144			int);
145
146static void	 tcp_do_segment_fastack(struct mbuf *, struct tcphdr *,
147			struct socket *, struct tcpcb *, int, int, uint8_t,
148			int);
149
150/*
151 * Indicate whether this ack should be delayed.  We can delay the ack if
152 * following conditions are met:
153 *	- There is no delayed ack timer in progress.
154 *	- Our last ack wasn't a 0-sized window. We never want to delay
155 *	  the ack that opens up a 0-sized window.
156 *	- LRO wasn't used for this segment. We make sure by checking that the
157 *	  segment size is not larger than the MSS.
158 */
159#define DELAY_ACK(tp, tlen)						\
160	((!tcp_timer_active(tp, TT_DELACK) &&				\
161	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
162	    (tlen <= tp->t_maxseg) &&					\
163	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
164
165/*
166 * So how is this faster than the normal fast ack?
167 * It basically allows us to also stay in the fastpath
168 * when a window-update ack also arrives. In testing
169 * we saw only 25-30% of connections doing fastpath
170 * due to the fact that along with moving forward
171 * in sequence the window was also updated.
172 */
173static void
174tcp_do_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
175	       struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
176	       int ti_locked, u_long tiwin)
177{
178	int acked;
179	int winup_only=0;
180#ifdef TCPDEBUG
181	/*
182	 * The size of tcp_saveipgen must be the size of the max ip header,
183	 * now IPv6.
184	 */
185	u_char tcp_saveipgen[IP6_HDR_LEN];
186	struct tcphdr tcp_savetcp;
187	short ostate = 0;
188#endif
189        /*
190	 * The following if statment will be true if
191	 * we are doing the win_up_in_fp <and>
192	 * - We have more new data (SEQ_LT(tp->snd_wl1, th->th_seq)) <or>
193	 * - No more new data, but we have an ack for new data
194	 *   (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack))
195	 * - No more new data, the same ack point but the window grew
196	 *   (tp->snd_wl1 == th->th_seq && tp->snd_wl2 == th->th_ack && twin > tp->snd_wnd)
197	 */
198	if ((SEQ_LT(tp->snd_wl1, th->th_seq) ||
199	     (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
200					    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
201		/* keep track of pure window updates */
202		if (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
203			winup_only = 1;
204			TCPSTAT_INC(tcps_rcvwinupd);
205		}
206		tp->snd_wnd = tiwin;
207		tp->snd_wl1 = th->th_seq;
208		tp->snd_wl2 = th->th_ack;
209		if (tp->snd_wnd > tp->max_sndwnd)
210			tp->max_sndwnd = tp->snd_wnd;
211	}
212	/*
213	 * If last ACK falls within this segment's sequence numbers,
214	 * record the timestamp.
215	 * NOTE that the test is modified according to the latest
216	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
217	 */
218	if ((to->to_flags & TOF_TS) != 0 &&
219	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
220		tp->ts_recent_age = tcp_ts_getticks();
221		tp->ts_recent = to->to_tsval;
222	}
223	/*
224	 * This is a pure ack for outstanding data.
225	 */
226	if (ti_locked == TI_RLOCKED) {
227		INP_INFO_RUNLOCK(&V_tcbinfo);
228	}
229	ti_locked = TI_UNLOCKED;
230
231	TCPSTAT_INC(tcps_predack);
232
233	/*
234	 * "bad retransmit" recovery.
235	 */
236	if (tp->t_rxtshift == 1 &&
237	    tp->t_flags & TF_PREVVALID &&
238	    (int)(ticks - tp->t_badrxtwin) < 0) {
239		cc_cong_signal(tp, th, CC_RTO_ERR);
240	}
241
242	/*
243	 * Recalculate the transmit timer / rtt.
244	 *
245	 * Some boxes send broken timestamp replies
246	 * during the SYN+ACK phase, ignore
247	 * timestamps of 0 or we could calculate a
248	 * huge RTT and blow up the retransmit timer.
249	 */
250	if ((to->to_flags & TOF_TS) != 0 &&
251	    to->to_tsecr) {
252		u_int t;
253
254		t = tcp_ts_getticks() - to->to_tsecr;
255		if (!tp->t_rttlow || tp->t_rttlow > t)
256			tp->t_rttlow = t;
257		tcp_xmit_timer(tp,
258			       TCP_TS_TO_TICKS(t) + 1);
259	} else if (tp->t_rtttime &&
260		   SEQ_GT(th->th_ack, tp->t_rtseq)) {
261		if (!tp->t_rttlow ||
262		    tp->t_rttlow > ticks - tp->t_rtttime)
263			tp->t_rttlow = ticks - tp->t_rtttime;
264		tcp_xmit_timer(tp,
265			       ticks - tp->t_rtttime);
266	}
267	if (winup_only == 0) {
268		acked = BYTES_THIS_ACK(tp, th);
269
270		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
271		hhook_run_tcp_est_in(tp, th, to);
272
273		TCPSTAT_ADD(tcps_rcvackbyte, acked);
274		sbdrop(&so->so_snd, acked);
275		if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
276		    SEQ_LEQ(th->th_ack, tp->snd_recover))
277			tp->snd_recover = th->th_ack - 1;
278
279		/*
280		 * Let the congestion control algorithm update
281		 * congestion control related information. This
282		 * typically means increasing the congestion
283		 * window.
284		 */
285		cc_ack_received(tp, th, CC_ACK);
286
287		tp->snd_una = th->th_ack;
288		/*
289		 * Pull snd_wl2 up to prevent seq wrap relative
290		 * to th_ack.
291		 */
292		tp->snd_wl2 = th->th_ack;
293		tp->t_dupacks = 0;
294		m_freem(m);
295
296		/*
297		 * If all outstanding data are acked, stop
298		 * retransmit timer, otherwise restart timer
299		 * using current (possibly backed-off) value.
300		 * If process is waiting for space,
301		 * wakeup/selwakeup/signal.  If data
302		 * are ready to send, let tcp_output
303		 * decide between more output or persist.
304		 */
305#ifdef TCPDEBUG
306		if (so->so_options & SO_DEBUG)
307			tcp_trace(TA_INPUT, ostate, tp,
308				  (void *)tcp_saveipgen,
309				  &tcp_savetcp, 0);
310#endif
311		if (tp->snd_una == tp->snd_max)
312			tcp_timer_activate(tp, TT_REXMT, 0);
313		else if (!tcp_timer_active(tp, TT_PERSIST))
314			tcp_timer_activate(tp, TT_REXMT,
315					   tp->t_rxtcur);
316	} else {
317		/*
318		 * Window update only, just free the mbufs and
319		 * send out whatever we can.
320		 */
321		m_freem(m);
322	}
323	sowwakeup(so);
324	if (sbavail(&so->so_snd))
325		(void) tcp_output(tp);
326	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
327					    __func__, ti_locked));
328	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
329	INP_WLOCK_ASSERT(tp->t_inpcb);
330
331	if (tp->t_flags & TF_DELACK) {
332		tp->t_flags &= ~TF_DELACK;
333		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
334	}
335	INP_WUNLOCK(tp->t_inpcb);
336}
337
338/*
339 * Here nothing is really faster, its just that we
340 * have broken out the fast-data path also just like
341 * the fast-ack.
342 */
343static void
344tcp_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
345		   struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
346		   int ti_locked, u_long tiwin)
347{
348	int newsize = 0;	/* automatic sockbuf scaling */
349#ifdef TCPDEBUG
350	/*
351	 * The size of tcp_saveipgen must be the size of the max ip header,
352	 * now IPv6.
353	 */
354	u_char tcp_saveipgen[IP6_HDR_LEN];
355	struct tcphdr tcp_savetcp;
356	short ostate = 0;
357#endif
358	/*
359	 * If last ACK falls within this segment's sequence numbers,
360	 * record the timestamp.
361	 * NOTE that the test is modified according to the latest
362	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
363	 */
364	if ((to->to_flags & TOF_TS) != 0 &&
365	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
366		tp->ts_recent_age = tcp_ts_getticks();
367		tp->ts_recent = to->to_tsval;
368	}
369
370	/*
371	 * This is a pure, in-sequence data packet with
372	 * nothing on the reassembly queue and we have enough
373	 * buffer space to take it.
374	 */
375	if (ti_locked == TI_RLOCKED) {
376		INP_INFO_RUNLOCK(&V_tcbinfo);
377	}
378	ti_locked = TI_UNLOCKED;
379
380	/* Clean receiver SACK report if present */
381	if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
382		tcp_clean_sackreport(tp);
383	TCPSTAT_INC(tcps_preddat);
384	tp->rcv_nxt += tlen;
385	/*
386	 * Pull snd_wl1 up to prevent seq wrap relative to
387	 * th_seq.
388	 */
389	tp->snd_wl1 = th->th_seq;
390	/*
391	 * Pull rcv_up up to prevent seq wrap relative to
392	 * rcv_nxt.
393	 */
394	tp->rcv_up = tp->rcv_nxt;
395	TCPSTAT_ADD(tcps_rcvbyte, tlen);
396#ifdef TCPDEBUG
397	if (so->so_options & SO_DEBUG)
398		tcp_trace(TA_INPUT, ostate, tp,
399			  (void *)tcp_saveipgen, &tcp_savetcp, 0);
400#endif
401	/*
402	 * Automatic sizing of receive socket buffer.  Often the send
403	 * buffer size is not optimally adjusted to the actual network
404	 * conditions at hand (delay bandwidth product).  Setting the
405	 * buffer size too small limits throughput on links with high
406	 * bandwidth and high delay (eg. trans-continental/oceanic links).
407	 *
408	 * On the receive side the socket buffer memory is only rarely
409	 * used to any significant extent.  This allows us to be much
410	 * more aggressive in scaling the receive socket buffer.  For
411	 * the case that the buffer space is actually used to a large
412	 * extent and we run out of kernel memory we can simply drop
413	 * the new segments; TCP on the sender will just retransmit it
414	 * later.  Setting the buffer size too big may only consume too
415	 * much kernel memory if the application doesn't read() from
416	 * the socket or packet loss or reordering makes use of the
417	 * reassembly queue.
418	 *
419	 * The criteria to step up the receive buffer one notch are:
420	 *  1. Application has not set receive buffer size with
421	 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
422	 *  2. the number of bytes received during the time it takes
423	 *     one timestamp to be reflected back to us (the RTT);
424	 *  3. received bytes per RTT is within seven eighth of the
425	 *     current socket buffer size;
426	 *  4. receive buffer size has not hit maximal automatic size;
427	 *
428	 * This algorithm does one step per RTT at most and only if
429	 * we receive a bulk stream w/o packet losses or reorderings.
430	 * Shrinking the buffer during idle times is not necessary as
431	 * it doesn't consume any memory when idle.
432	 *
433	 * TODO: Only step up if the application is actually serving
434	 * the buffer to better manage the socket buffer resources.
435	 */
436	if (V_tcp_do_autorcvbuf &&
437	    (to->to_flags & TOF_TS) &&
438	    to->to_tsecr &&
439	    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
440		if (TSTMP_GT(to->to_tsecr, tp->rfbuf_ts) &&
441		    to->to_tsecr - tp->rfbuf_ts < hz) {
442			if (tp->rfbuf_cnt >
443			    (so->so_rcv.sb_hiwat / 8 * 7) &&
444			    so->so_rcv.sb_hiwat <
445			    V_tcp_autorcvbuf_max) {
446				newsize =
447					min(so->so_rcv.sb_hiwat +
448					    V_tcp_autorcvbuf_inc,
449					    V_tcp_autorcvbuf_max);
450			}
451			/* Start over with next RTT. */
452			tp->rfbuf_ts = 0;
453			tp->rfbuf_cnt = 0;
454		} else
455			tp->rfbuf_cnt += tlen;	/* add up */
456	}
457
458	/* Add data to socket buffer. */
459	SOCKBUF_LOCK(&so->so_rcv);
460	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
461		m_freem(m);
462	} else {
463		/*
464		 * Set new socket buffer size.
465		 * Give up when limit is reached.
466		 */
467		if (newsize)
468			if (!sbreserve_locked(&so->so_rcv,
469					      newsize, so, NULL))
470				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
471		m_adj(m, drop_hdrlen);	/* delayed header drop */
472		sbappendstream_locked(&so->so_rcv, m, 0);
473	}
474	/* NB: sorwakeup_locked() does an implicit unlock. */
475	sorwakeup_locked(so);
476	if (DELAY_ACK(tp, tlen)) {
477		tp->t_flags |= TF_DELACK;
478	} else {
479		tp->t_flags |= TF_ACKNOW;
480		tcp_output(tp);
481	}
482	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
483					    __func__, ti_locked));
484	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
485	INP_WLOCK_ASSERT(tp->t_inpcb);
486
487	if (tp->t_flags & TF_DELACK) {
488		tp->t_flags &= ~TF_DELACK;
489		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
490	}
491	INP_WUNLOCK(tp->t_inpcb);
492}
493
494/*
495 * The slow-path is the clone of the long long part
496 * of tcp_do_segment past all the fast-path stuff. We
497 * use it here by two different callers, the fast/slow and
498 * the fastack only.
499 */
500static void
501tcp_do_slowpath(struct mbuf *m, struct tcphdr *th, struct socket *so,
502		struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
503		int ti_locked, u_long tiwin, int thflags)
504{
505	int  acked, ourfinisacked, needoutput = 0;
506	int rstreason, todrop, win;
507	char *s;
508	struct in_conninfo *inc;
509	struct mbuf *mfree = NULL;
510#ifdef TCPDEBUG
511	/*
512	 * The size of tcp_saveipgen must be the size of the max ip header,
513	 * now IPv6.
514	 */
515	u_char tcp_saveipgen[IP6_HDR_LEN];
516	struct tcphdr tcp_savetcp;
517	short ostate = 0;
518#endif
519	/*
520	 * Calculate amount of space in receive window,
521	 * and then do TCP input processing.
522	 * Receive window is amount of space in rcv queue,
523	 * but not less than advertised window.
524	 */
525	inc = &tp->t_inpcb->inp_inc;
526	win = sbspace(&so->so_rcv);
527	if (win < 0)
528		win = 0;
529	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
530
531	/* Reset receive buffer auto scaling when not in bulk receive mode. */
532	tp->rfbuf_ts = 0;
533	tp->rfbuf_cnt = 0;
534
535	switch (tp->t_state) {
536
537	/*
538	 * If the state is SYN_RECEIVED:
539	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
540	 */
541	case TCPS_SYN_RECEIVED:
542		if ((thflags & TH_ACK) &&
543		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
544		     SEQ_GT(th->th_ack, tp->snd_max))) {
545				rstreason = BANDLIM_RST_OPENPORT;
546				goto dropwithreset;
547		}
548		break;
549
550	/*
551	 * If the state is SYN_SENT:
552	 *	if seg contains an ACK, but not for our SYN, drop the input.
553	 *	if seg contains a RST, then drop the connection.
554	 *	if seg does not contain SYN, then drop it.
555	 * Otherwise this is an acceptable SYN segment
556	 *	initialize tp->rcv_nxt and tp->irs
557	 *	if seg contains ack then advance tp->snd_una
558	 *	if seg contains an ECE and ECN support is enabled, the stream
559	 *	    is ECN capable.
560	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
561	 *	arrange for segment to be acked (eventually)
562	 *	continue processing rest of data/controls, beginning with URG
563	 */
564	case TCPS_SYN_SENT:
565		if ((thflags & TH_ACK) &&
566		    (SEQ_LEQ(th->th_ack, tp->iss) ||
567		     SEQ_GT(th->th_ack, tp->snd_max))) {
568			rstreason = BANDLIM_UNLIMITED;
569			goto dropwithreset;
570		}
571		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
572			TCP_PROBE5(connect__refused, NULL, tp,
573			    mtod(m, const char *), tp, th);
574			tp = tcp_drop(tp, ECONNREFUSED);
575		}
576		if (thflags & TH_RST)
577			goto drop;
578		if (!(thflags & TH_SYN))
579			goto drop;
580
581		tp->irs = th->th_seq;
582		tcp_rcvseqinit(tp);
583		if (thflags & TH_ACK) {
584			TCPSTAT_INC(tcps_connects);
585			soisconnected(so);
586#ifdef MAC
587			mac_socketpeer_set_from_mbuf(m, so);
588#endif
589			/* Do window scaling on this connection? */
590			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
591				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
592				tp->rcv_scale = tp->request_r_scale;
593			}
594			tp->rcv_adv += imin(tp->rcv_wnd,
595			    TCP_MAXWIN << tp->rcv_scale);
596			tp->snd_una++;		/* SYN is acked */
597			/*
598			 * If there's data, delay ACK; if there's also a FIN
599			 * ACKNOW will be turned on later.
600			 */
601			if (DELAY_ACK(tp, tlen) && tlen != 0)
602				tcp_timer_activate(tp, TT_DELACK,
603				    tcp_delacktime);
604			else
605				tp->t_flags |= TF_ACKNOW;
606
607			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
608				tp->t_flags |= TF_ECN_PERMIT;
609				TCPSTAT_INC(tcps_ecn_shs);
610			}
611
612			/*
613			 * Received <SYN,ACK> in SYN_SENT[*] state.
614			 * Transitions:
615			 *	SYN_SENT  --> ESTABLISHED
616			 *	SYN_SENT* --> FIN_WAIT_1
617			 */
618			tp->t_starttime = ticks;
619			if (tp->t_flags & TF_NEEDFIN) {
620				tcp_state_change(tp, TCPS_FIN_WAIT_1);
621				tp->t_flags &= ~TF_NEEDFIN;
622				thflags &= ~TH_SYN;
623			} else {
624				tcp_state_change(tp, TCPS_ESTABLISHED);
625				TCP_PROBE5(connect__established, NULL, tp,
626				    mtod(m, const char *), tp, th);
627				cc_conn_init(tp);
628				tcp_timer_activate(tp, TT_KEEP,
629				    TP_KEEPIDLE(tp));
630			}
631		} else {
632			/*
633			 * Received initial SYN in SYN-SENT[*] state =>
634			 * simultaneous open.
635			 * If it succeeds, connection is * half-synchronized.
636			 * Otherwise, do 3-way handshake:
637			 *        SYN-SENT -> SYN-RECEIVED
638			 *        SYN-SENT* -> SYN-RECEIVED*
639			 */
640			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
641			tcp_timer_activate(tp, TT_REXMT, 0);
642			tcp_state_change(tp, TCPS_SYN_RECEIVED);
643		}
644
645		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
646		    "ti_locked %d", __func__, ti_locked));
647		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
648		INP_WLOCK_ASSERT(tp->t_inpcb);
649
650		/*
651		 * Advance th->th_seq to correspond to first data byte.
652		 * If data, trim to stay within window,
653		 * dropping FIN if necessary.
654		 */
655		th->th_seq++;
656		if (tlen > tp->rcv_wnd) {
657			todrop = tlen - tp->rcv_wnd;
658			m_adj(m, -todrop);
659			tlen = tp->rcv_wnd;
660			thflags &= ~TH_FIN;
661			TCPSTAT_INC(tcps_rcvpackafterwin);
662			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
663		}
664		tp->snd_wl1 = th->th_seq - 1;
665		tp->rcv_up = th->th_seq;
666		/*
667		 * Client side of transaction: already sent SYN and data.
668		 * If the remote host used T/TCP to validate the SYN,
669		 * our data will be ACK'd; if so, enter normal data segment
670		 * processing in the middle of step 5, ack processing.
671		 * Otherwise, goto step 6.
672		 */
673		if (thflags & TH_ACK)
674			goto process_ACK;
675
676		goto step6;
677
678	/*
679	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
680	 *      do normal processing.
681	 *
682	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
683	 */
684	case TCPS_LAST_ACK:
685	case TCPS_CLOSING:
686		break;  /* continue normal processing */
687	}
688
689	/*
690	 * States other than LISTEN or SYN_SENT.
691	 * First check the RST flag and sequence number since reset segments
692	 * are exempt from the timestamp and connection count tests.  This
693	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
694	 * below which allowed reset segments in half the sequence space
695	 * to fall though and be processed (which gives forged reset
696	 * segments with a random sequence number a 50 percent chance of
697	 * killing a connection).
698	 * Then check timestamp, if present.
699	 * Then check the connection count, if present.
700	 * Then check that at least some bytes of segment are within
701	 * receive window.  If segment begins before rcv_nxt,
702	 * drop leading data (and SYN); if nothing left, just ack.
703	 */
704	if (thflags & TH_RST) {
705		/*
706		 * RFC5961 Section 3.2
707		 *
708		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
709		 * - If RST is in window, we send challenge ACK.
710		 *
711		 * Note: to take into account delayed ACKs, we should
712		 *   test against last_ack_sent instead of rcv_nxt.
713		 * Note 2: we handle special case of closed window, not
714		 *   covered by the RFC.
715		 */
716		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
717		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
718		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
719			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
720			KASSERT(ti_locked == TI_RLOCKED,
721			    ("%s: TH_RST ti_locked %d, th %p tp %p",
722			    __func__, ti_locked, th, tp));
723			KASSERT(tp->t_state != TCPS_SYN_SENT,
724			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
725			    __func__, th, tp));
726
727			if (V_tcp_insecure_rst ||
728			    tp->last_ack_sent == th->th_seq) {
729				TCPSTAT_INC(tcps_drops);
730				/* Drop the connection. */
731				switch (tp->t_state) {
732				case TCPS_SYN_RECEIVED:
733					so->so_error = ECONNREFUSED;
734					goto close;
735				case TCPS_ESTABLISHED:
736				case TCPS_FIN_WAIT_1:
737				case TCPS_FIN_WAIT_2:
738				case TCPS_CLOSE_WAIT:
739					so->so_error = ECONNRESET;
740				close:
741					tcp_state_change(tp, TCPS_CLOSED);
742					/* FALLTHROUGH */
743				default:
744					tp = tcp_close(tp);
745				}
746			} else {
747				TCPSTAT_INC(tcps_badrst);
748				/* Send challenge ACK. */
749				tcp_respond(tp, mtod(m, void *), th, m,
750				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
751				tp->last_ack_sent = tp->rcv_nxt;
752				m = NULL;
753			}
754		}
755		goto drop;
756	}
757
758	/*
759	 * RFC5961 Section 4.2
760	 * Send challenge ACK for any SYN in synchronized state.
761	 */
762	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT) {
763		KASSERT(ti_locked == TI_RLOCKED,
764		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
765		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
766
767		TCPSTAT_INC(tcps_badsyn);
768		if (V_tcp_insecure_syn &&
769		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
770		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
771			tp = tcp_drop(tp, ECONNRESET);
772			rstreason = BANDLIM_UNLIMITED;
773		} else {
774			/* Send challenge ACK. */
775			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
776			    tp->snd_nxt, TH_ACK);
777			tp->last_ack_sent = tp->rcv_nxt;
778			m = NULL;
779		}
780		goto drop;
781	}
782
783	/*
784	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
785	 * and it's less than ts_recent, drop it.
786	 */
787	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
788	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
789
790		/* Check to see if ts_recent is over 24 days old.  */
791		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
792			/*
793			 * Invalidate ts_recent.  If this segment updates
794			 * ts_recent, the age will be reset later and ts_recent
795			 * will get a valid value.  If it does not, setting
796			 * ts_recent to zero will at least satisfy the
797			 * requirement that zero be placed in the timestamp
798			 * echo reply when ts_recent isn't valid.  The
799			 * age isn't reset until we get a valid ts_recent
800			 * because we don't want out-of-order segments to be
801			 * dropped when ts_recent is old.
802			 */
803			tp->ts_recent = 0;
804		} else {
805			TCPSTAT_INC(tcps_rcvduppack);
806			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
807			TCPSTAT_INC(tcps_pawsdrop);
808			if (tlen)
809				goto dropafterack;
810			goto drop;
811		}
812	}
813
814	/*
815	 * In the SYN-RECEIVED state, validate that the packet belongs to
816	 * this connection before trimming the data to fit the receive
817	 * window.  Check the sequence number versus IRS since we know
818	 * the sequence numbers haven't wrapped.  This is a partial fix
819	 * for the "LAND" DoS attack.
820	 */
821	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
822		rstreason = BANDLIM_RST_OPENPORT;
823		goto dropwithreset;
824	}
825
826	todrop = tp->rcv_nxt - th->th_seq;
827	if (todrop > 0) {
828		if (thflags & TH_SYN) {
829			thflags &= ~TH_SYN;
830			th->th_seq++;
831			if (th->th_urp > 1)
832				th->th_urp--;
833			else
834				thflags &= ~TH_URG;
835			todrop--;
836		}
837		/*
838		 * Following if statement from Stevens, vol. 2, p. 960.
839		 */
840		if (todrop > tlen
841		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
842			/*
843			 * Any valid FIN must be to the left of the window.
844			 * At this point the FIN must be a duplicate or out
845			 * of sequence; drop it.
846			 */
847			thflags &= ~TH_FIN;
848
849			/*
850			 * Send an ACK to resynchronize and drop any data.
851			 * But keep on processing for RST or ACK.
852			 */
853			tp->t_flags |= TF_ACKNOW;
854			todrop = tlen;
855			TCPSTAT_INC(tcps_rcvduppack);
856			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
857		} else {
858			TCPSTAT_INC(tcps_rcvpartduppack);
859			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
860		}
861		drop_hdrlen += todrop;	/* drop from the top afterwards */
862		th->th_seq += todrop;
863		tlen -= todrop;
864		if (th->th_urp > todrop)
865			th->th_urp -= todrop;
866		else {
867			thflags &= ~TH_URG;
868			th->th_urp = 0;
869		}
870	}
871
872	/*
873	 * If new data are received on a connection after the
874	 * user processes are gone, then RST the other end.
875	 */
876	if ((so->so_state & SS_NOFDREF) &&
877	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
878		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
879		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
880		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
881
882		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
883			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
884			    "after socket was closed, "
885			    "sending RST and removing tcpcb\n",
886			    s, __func__, tcpstates[tp->t_state], tlen);
887			free(s, M_TCPLOG);
888		}
889		tp = tcp_close(tp);
890		TCPSTAT_INC(tcps_rcvafterclose);
891		rstreason = BANDLIM_UNLIMITED;
892		goto dropwithreset;
893	}
894
895	/*
896	 * If segment ends after window, drop trailing data
897	 * (and PUSH and FIN); if nothing left, just ACK.
898	 */
899	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
900	if (todrop > 0) {
901		TCPSTAT_INC(tcps_rcvpackafterwin);
902		if (todrop >= tlen) {
903			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
904			/*
905			 * If window is closed can only take segments at
906			 * window edge, and have to drop data and PUSH from
907			 * incoming segments.  Continue processing, but
908			 * remember to ack.  Otherwise, drop segment
909			 * and ack.
910			 */
911			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
912				tp->t_flags |= TF_ACKNOW;
913				TCPSTAT_INC(tcps_rcvwinprobe);
914			} else
915				goto dropafterack;
916		} else
917			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
918		m_adj(m, -todrop);
919		tlen -= todrop;
920		thflags &= ~(TH_PUSH|TH_FIN);
921	}
922
923	/*
924	 * If last ACK falls within this segment's sequence numbers,
925	 * record its timestamp.
926	 * NOTE:
927	 * 1) That the test incorporates suggestions from the latest
928	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
929	 * 2) That updating only on newer timestamps interferes with
930	 *    our earlier PAWS tests, so this check should be solely
931	 *    predicated on the sequence space of this segment.
932	 * 3) That we modify the segment boundary check to be
933	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
934	 *    instead of RFC1323's
935	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
936	 *    This modified check allows us to overcome RFC1323's
937	 *    limitations as described in Stevens TCP/IP Illustrated
938	 *    Vol. 2 p.869. In such cases, we can still calculate the
939	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
940	 */
941	if ((to->to_flags & TOF_TS) != 0 &&
942	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
943	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
944		((thflags & (TH_SYN|TH_FIN)) != 0))) {
945		tp->ts_recent_age = tcp_ts_getticks();
946		tp->ts_recent = to->to_tsval;
947	}
948
949	/*
950	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
951	 * flag is on (half-synchronized state), then queue data for
952	 * later processing; else drop segment and return.
953	 */
954	if ((thflags & TH_ACK) == 0) {
955		if (tp->t_state == TCPS_SYN_RECEIVED ||
956		    (tp->t_flags & TF_NEEDSYN))
957			goto step6;
958		else if (tp->t_flags & TF_ACKNOW)
959			goto dropafterack;
960		else
961			goto drop;
962	}
963
964	/*
965	 * Ack processing.
966	 */
967	switch (tp->t_state) {
968
969	/*
970	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
971	 * ESTABLISHED state and continue processing.
972	 * The ACK was checked above.
973	 */
974	case TCPS_SYN_RECEIVED:
975
976		TCPSTAT_INC(tcps_connects);
977		soisconnected(so);
978		/* Do window scaling? */
979		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
980			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
981			tp->rcv_scale = tp->request_r_scale;
982			tp->snd_wnd = tiwin;
983		}
984		/*
985		 * Make transitions:
986		 *      SYN-RECEIVED  -> ESTABLISHED
987		 *      SYN-RECEIVED* -> FIN-WAIT-1
988		 */
989		tp->t_starttime = ticks;
990		if (tp->t_flags & TF_NEEDFIN) {
991			tcp_state_change(tp, TCPS_FIN_WAIT_1);
992			tp->t_flags &= ~TF_NEEDFIN;
993		} else {
994			tcp_state_change(tp, TCPS_ESTABLISHED);
995			TCP_PROBE5(accept__established, NULL, tp,
996			    mtod(m, const char *), tp, th);
997			cc_conn_init(tp);
998			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
999		}
1000		/*
1001		 * If segment contains data or ACK, will call tcp_reass()
1002		 * later; if not, do so now to pass queued data to user.
1003		 */
1004		if (tlen == 0 && (thflags & TH_FIN) == 0)
1005			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1006			    (struct mbuf *)0);
1007		tp->snd_wl1 = th->th_seq - 1;
1008		/* FALLTHROUGH */
1009
1010	/*
1011	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1012	 * ACKs.  If the ack is in the range
1013	 *	tp->snd_una < th->th_ack <= tp->snd_max
1014	 * then advance tp->snd_una to th->th_ack and drop
1015	 * data from the retransmission queue.  If this ACK reflects
1016	 * more up to date window information we update our window information.
1017	 */
1018	case TCPS_ESTABLISHED:
1019	case TCPS_FIN_WAIT_1:
1020	case TCPS_FIN_WAIT_2:
1021	case TCPS_CLOSE_WAIT:
1022	case TCPS_CLOSING:
1023	case TCPS_LAST_ACK:
1024		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1025			TCPSTAT_INC(tcps_rcvacktoomuch);
1026			goto dropafterack;
1027		}
1028		if ((tp->t_flags & TF_SACK_PERMIT) &&
1029		    ((to->to_flags & TOF_SACK) ||
1030		     !TAILQ_EMPTY(&tp->snd_holes)))
1031			tcp_sack_doack(tp, to, th->th_ack);
1032		else
1033			/*
1034			 * Reset the value so that previous (valid) value
1035			 * from the last ack with SACK doesn't get used.
1036			 */
1037			tp->sackhint.sacked_bytes = 0;
1038
1039		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1040		hhook_run_tcp_est_in(tp, th, to);
1041
1042		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1043			if (tlen == 0 && tiwin == tp->snd_wnd) {
1044				/*
1045				 * If this is the first time we've seen a
1046				 * FIN from the remote, this is not a
1047				 * duplicate and it needs to be processed
1048				 * normally.  This happens during a
1049				 * simultaneous close.
1050				 */
1051				if ((thflags & TH_FIN) &&
1052				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
1053					tp->t_dupacks = 0;
1054					break;
1055				}
1056				TCPSTAT_INC(tcps_rcvdupack);
1057				/*
1058				 * If we have outstanding data (other than
1059				 * a window probe), this is a completely
1060				 * duplicate ack (ie, window info didn't
1061				 * change and FIN isn't set),
1062				 * the ack is the biggest we've
1063				 * seen and we've seen exactly our rexmt
1064				 * threshhold of them, assume a packet
1065				 * has been dropped and retransmit it.
1066				 * Kludge snd_nxt & the congestion
1067				 * window so we send only this one
1068				 * packet.
1069				 *
1070				 * We know we're losing at the current
1071				 * window size so do congestion avoidance
1072				 * (set ssthresh to half the current window
1073				 * and pull our congestion window back to
1074				 * the new ssthresh).
1075				 *
1076				 * Dup acks mean that packets have left the
1077				 * network (they're now cached at the receiver)
1078				 * so bump cwnd by the amount in the receiver
1079				 * to keep a constant cwnd packets in the
1080				 * network.
1081				 *
1082				 * When using TCP ECN, notify the peer that
1083				 * we reduced the cwnd.
1084				 */
1085				if (!tcp_timer_active(tp, TT_REXMT) ||
1086				    th->th_ack != tp->snd_una)
1087					tp->t_dupacks = 0;
1088				else if (++tp->t_dupacks > tcprexmtthresh ||
1089				     IN_FASTRECOVERY(tp->t_flags)) {
1090					cc_ack_received(tp, th, CC_DUPACK);
1091					if ((tp->t_flags & TF_SACK_PERMIT) &&
1092					    IN_FASTRECOVERY(tp->t_flags)) {
1093						int awnd;
1094
1095						/*
1096						 * Compute the amount of data in flight first.
1097						 * We can inject new data into the pipe iff
1098						 * we have less than 1/2 the original window's
1099						 * worth of data in flight.
1100						 */
1101						if (V_tcp_do_rfc6675_pipe)
1102							awnd = tcp_compute_pipe(tp);
1103						else
1104							awnd = (tp->snd_nxt - tp->snd_fack) +
1105								tp->sackhint.sack_bytes_rexmit;
1106
1107						if (awnd < tp->snd_ssthresh) {
1108							tp->snd_cwnd += tp->t_maxseg;
1109							if (tp->snd_cwnd > tp->snd_ssthresh)
1110								tp->snd_cwnd = tp->snd_ssthresh;
1111						}
1112					} else
1113						tp->snd_cwnd += tp->t_maxseg;
1114					(void) tp->t_fb->tfb_tcp_output(tp);
1115					goto drop;
1116				} else if (tp->t_dupacks == tcprexmtthresh) {
1117					tcp_seq onxt = tp->snd_nxt;
1118
1119					/*
1120					 * If we're doing sack, check to
1121					 * see if we're already in sack
1122					 * recovery. If we're not doing sack,
1123					 * check to see if we're in newreno
1124					 * recovery.
1125					 */
1126					if (tp->t_flags & TF_SACK_PERMIT) {
1127						if (IN_FASTRECOVERY(tp->t_flags)) {
1128							tp->t_dupacks = 0;
1129							break;
1130						}
1131					} else {
1132						if (SEQ_LEQ(th->th_ack,
1133						    tp->snd_recover)) {
1134							tp->t_dupacks = 0;
1135							break;
1136						}
1137					}
1138					/* Congestion signal before ack. */
1139					cc_cong_signal(tp, th, CC_NDUPACK);
1140					cc_ack_received(tp, th, CC_DUPACK);
1141					tcp_timer_activate(tp, TT_REXMT, 0);
1142					tp->t_rtttime = 0;
1143					if (tp->t_flags & TF_SACK_PERMIT) {
1144						TCPSTAT_INC(
1145						    tcps_sack_recovery_episode);
1146						tp->sack_newdata = tp->snd_nxt;
1147						tp->snd_cwnd = tp->t_maxseg;
1148						(void) tp->t_fb->tfb_tcp_output(tp);
1149						goto drop;
1150					}
1151					tp->snd_nxt = th->th_ack;
1152					tp->snd_cwnd = tp->t_maxseg;
1153					(void) tp->t_fb->tfb_tcp_output(tp);
1154					KASSERT(tp->snd_limited <= 2,
1155					    ("%s: tp->snd_limited too big",
1156					    __func__));
1157					tp->snd_cwnd = tp->snd_ssthresh +
1158					     tp->t_maxseg *
1159					     (tp->t_dupacks - tp->snd_limited);
1160					if (SEQ_GT(onxt, tp->snd_nxt))
1161						tp->snd_nxt = onxt;
1162					goto drop;
1163				} else if (V_tcp_do_rfc3042) {
1164					/*
1165					 * Process first and second duplicate
1166					 * ACKs. Each indicates a segment
1167					 * leaving the network, creating room
1168					 * for more. Make sure we can send a
1169					 * packet on reception of each duplicate
1170					 * ACK by increasing snd_cwnd by one
1171					 * segment. Restore the original
1172					 * snd_cwnd after packet transmission.
1173					 */
1174					cc_ack_received(tp, th, CC_DUPACK);
1175					u_long oldcwnd = tp->snd_cwnd;
1176					tcp_seq oldsndmax = tp->snd_max;
1177					u_int sent;
1178					int avail;
1179
1180					KASSERT(tp->t_dupacks == 1 ||
1181					    tp->t_dupacks == 2,
1182					    ("%s: dupacks not 1 or 2",
1183					    __func__));
1184					if (tp->t_dupacks == 1)
1185						tp->snd_limited = 0;
1186					tp->snd_cwnd =
1187					    (tp->snd_nxt - tp->snd_una) +
1188					    (tp->t_dupacks - tp->snd_limited) *
1189					    tp->t_maxseg;
1190					/*
1191					 * Only call tcp_output when there
1192					 * is new data available to be sent.
1193					 * Otherwise we would send pure ACKs.
1194					 */
1195					SOCKBUF_LOCK(&so->so_snd);
1196					avail = sbavail(&so->so_snd) -
1197					    (tp->snd_nxt - tp->snd_una);
1198					SOCKBUF_UNLOCK(&so->so_snd);
1199					if (avail > 0)
1200						(void) tp->t_fb->tfb_tcp_output(tp);
1201					sent = tp->snd_max - oldsndmax;
1202					if (sent > tp->t_maxseg) {
1203						KASSERT((tp->t_dupacks == 2 &&
1204						    tp->snd_limited == 0) ||
1205						   (sent == tp->t_maxseg + 1 &&
1206						    tp->t_flags & TF_SENTFIN),
1207						    ("%s: sent too much",
1208						    __func__));
1209						tp->snd_limited = 2;
1210					} else if (sent > 0)
1211						++tp->snd_limited;
1212					tp->snd_cwnd = oldcwnd;
1213					goto drop;
1214				}
1215			} else
1216				tp->t_dupacks = 0;
1217			break;
1218		}
1219
1220		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1221		    ("%s: th_ack <= snd_una", __func__));
1222
1223		/*
1224		 * If the congestion window was inflated to account
1225		 * for the other side's cached packets, retract it.
1226		 */
1227		if (IN_FASTRECOVERY(tp->t_flags)) {
1228			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1229				if (tp->t_flags & TF_SACK_PERMIT)
1230					tcp_sack_partialack(tp, th);
1231				else
1232					tcp_newreno_partial_ack(tp, th);
1233			} else
1234				cc_post_recovery(tp, th);
1235		}
1236		tp->t_dupacks = 0;
1237		/*
1238		 * If we reach this point, ACK is not a duplicate,
1239		 *     i.e., it ACKs something we sent.
1240		 */
1241		if (tp->t_flags & TF_NEEDSYN) {
1242			/*
1243			 * T/TCP: Connection was half-synchronized, and our
1244			 * SYN has been ACK'd (so connection is now fully
1245			 * synchronized).  Go to non-starred state,
1246			 * increment snd_una for ACK of SYN, and check if
1247			 * we can do window scaling.
1248			 */
1249			tp->t_flags &= ~TF_NEEDSYN;
1250			tp->snd_una++;
1251			/* Do window scaling? */
1252			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1253				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1254				tp->rcv_scale = tp->request_r_scale;
1255				/* Send window already scaled. */
1256			}
1257		}
1258
1259process_ACK:
1260		INP_WLOCK_ASSERT(tp->t_inpcb);
1261
1262		acked = BYTES_THIS_ACK(tp, th);
1263		TCPSTAT_INC(tcps_rcvackpack);
1264		TCPSTAT_ADD(tcps_rcvackbyte, acked);
1265
1266		/*
1267		 * If we just performed our first retransmit, and the ACK
1268		 * arrives within our recovery window, then it was a mistake
1269		 * to do the retransmit in the first place.  Recover our
1270		 * original cwnd and ssthresh, and proceed to transmit where
1271		 * we left off.
1272		 */
1273		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
1274		    (int)(ticks - tp->t_badrxtwin) < 0)
1275			cc_cong_signal(tp, th, CC_RTO_ERR);
1276
1277		/*
1278		 * If we have a timestamp reply, update smoothed
1279		 * round trip time.  If no timestamp is present but
1280		 * transmit timer is running and timed sequence
1281		 * number was acked, update smoothed round trip time.
1282		 * Since we now have an rtt measurement, cancel the
1283		 * timer backoff (cf., Phil Karn's retransmit alg.).
1284		 * Recompute the initial retransmit timer.
1285		 *
1286		 * Some boxes send broken timestamp replies
1287		 * during the SYN+ACK phase, ignore
1288		 * timestamps of 0 or we could calculate a
1289		 * huge RTT and blow up the retransmit timer.
1290		 */
1291		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
1292			u_int t;
1293
1294			t = tcp_ts_getticks() - to->to_tsecr;
1295			if (!tp->t_rttlow || tp->t_rttlow > t)
1296				tp->t_rttlow = t;
1297			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
1298		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1299			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1300				tp->t_rttlow = ticks - tp->t_rtttime;
1301			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1302		}
1303
1304		/*
1305		 * If all outstanding data is acked, stop retransmit
1306		 * timer and remember to restart (more output or persist).
1307		 * If there is more data to be acked, restart retransmit
1308		 * timer, using current (possibly backed-off) value.
1309		 */
1310		if (th->th_ack == tp->snd_max) {
1311			tcp_timer_activate(tp, TT_REXMT, 0);
1312			needoutput = 1;
1313		} else if (!tcp_timer_active(tp, TT_PERSIST))
1314			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
1315
1316		/*
1317		 * If no data (only SYN) was ACK'd,
1318		 *    skip rest of ACK processing.
1319		 */
1320		if (acked == 0)
1321			goto step6;
1322
1323		/*
1324		 * Let the congestion control algorithm update congestion
1325		 * control related information. This typically means increasing
1326		 * the congestion window.
1327		 */
1328		cc_ack_received(tp, th, CC_ACK);
1329
1330		SOCKBUF_LOCK(&so->so_snd);
1331		if (acked > sbavail(&so->so_snd)) {
1332			tp->snd_wnd -= sbavail(&so->so_snd);
1333			mfree = sbcut_locked(&so->so_snd,
1334			    (int)sbavail(&so->so_snd));
1335			ourfinisacked = 1;
1336		} else {
1337			mfree = sbcut_locked(&so->so_snd, acked);
1338			tp->snd_wnd -= acked;
1339			ourfinisacked = 0;
1340		}
1341		/* NB: sowwakeup_locked() does an implicit unlock. */
1342		sowwakeup_locked(so);
1343		m_freem(mfree);
1344		/* Detect una wraparound. */
1345		if (!IN_RECOVERY(tp->t_flags) &&
1346		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
1347		    SEQ_LEQ(th->th_ack, tp->snd_recover))
1348			tp->snd_recover = th->th_ack - 1;
1349		/* XXXLAS: Can this be moved up into cc_post_recovery? */
1350		if (IN_RECOVERY(tp->t_flags) &&
1351		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
1352			EXIT_RECOVERY(tp->t_flags);
1353		}
1354		tp->snd_una = th->th_ack;
1355		if (tp->t_flags & TF_SACK_PERMIT) {
1356			if (SEQ_GT(tp->snd_una, tp->snd_recover))
1357				tp->snd_recover = tp->snd_una;
1358		}
1359		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1360			tp->snd_nxt = tp->snd_una;
1361
1362		switch (tp->t_state) {
1363
1364		/*
1365		 * In FIN_WAIT_1 STATE in addition to the processing
1366		 * for the ESTABLISHED state if our FIN is now acknowledged
1367		 * then enter FIN_WAIT_2.
1368		 */
1369		case TCPS_FIN_WAIT_1:
1370			if (ourfinisacked) {
1371				/*
1372				 * If we can't receive any more
1373				 * data, then closing user can proceed.
1374				 * Starting the timer is contrary to the
1375				 * specification, but if we don't get a FIN
1376				 * we'll hang forever.
1377				 *
1378				 * XXXjl:
1379				 * we should release the tp also, and use a
1380				 * compressed state.
1381				 */
1382				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1383					soisdisconnected(so);
1384					tcp_timer_activate(tp, TT_2MSL,
1385					    (tcp_fast_finwait2_recycle ?
1386					    tcp_finwait2_timeout :
1387					    TP_MAXIDLE(tp)));
1388				}
1389				tcp_state_change(tp, TCPS_FIN_WAIT_2);
1390			}
1391			break;
1392
1393		/*
1394		 * In CLOSING STATE in addition to the processing for
1395		 * the ESTABLISHED state if the ACK acknowledges our FIN
1396		 * then enter the TIME-WAIT state, otherwise ignore
1397		 * the segment.
1398		 */
1399		case TCPS_CLOSING:
1400			if (ourfinisacked) {
1401				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1402				tcp_twstart(tp);
1403				INP_INFO_RUNLOCK(&V_tcbinfo);
1404				m_freem(m);
1405				return;
1406			}
1407			break;
1408
1409		/*
1410		 * In LAST_ACK, we may still be waiting for data to drain
1411		 * and/or to be acked, as well as for the ack of our FIN.
1412		 * If our FIN is now acknowledged, delete the TCB,
1413		 * enter the closed state and return.
1414		 */
1415		case TCPS_LAST_ACK:
1416			if (ourfinisacked) {
1417				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1418				tp = tcp_close(tp);
1419				goto drop;
1420			}
1421			break;
1422		}
1423	}
1424
1425step6:
1426	INP_WLOCK_ASSERT(tp->t_inpcb);
1427
1428	/*
1429	 * Update window information.
1430	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1431	 */
1432	if ((thflags & TH_ACK) &&
1433	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1434	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1435	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1436		/* keep track of pure window updates */
1437		if (tlen == 0 &&
1438		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1439			TCPSTAT_INC(tcps_rcvwinupd);
1440		tp->snd_wnd = tiwin;
1441		tp->snd_wl1 = th->th_seq;
1442		tp->snd_wl2 = th->th_ack;
1443		if (tp->snd_wnd > tp->max_sndwnd)
1444			tp->max_sndwnd = tp->snd_wnd;
1445		needoutput = 1;
1446	}
1447
1448	/*
1449	 * Process segments with URG.
1450	 */
1451	if ((thflags & TH_URG) && th->th_urp &&
1452	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1453		/*
1454		 * This is a kludge, but if we receive and accept
1455		 * random urgent pointers, we'll crash in
1456		 * soreceive.  It's hard to imagine someone
1457		 * actually wanting to send this much urgent data.
1458		 */
1459		SOCKBUF_LOCK(&so->so_rcv);
1460		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
1461			th->th_urp = 0;			/* XXX */
1462			thflags &= ~TH_URG;		/* XXX */
1463			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
1464			goto dodata;			/* XXX */
1465		}
1466		/*
1467		 * If this segment advances the known urgent pointer,
1468		 * then mark the data stream.  This should not happen
1469		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1470		 * a FIN has been received from the remote side.
1471		 * In these states we ignore the URG.
1472		 *
1473		 * According to RFC961 (Assigned Protocols),
1474		 * the urgent pointer points to the last octet
1475		 * of urgent data.  We continue, however,
1476		 * to consider it to indicate the first octet
1477		 * of data past the urgent section as the original
1478		 * spec states (in one of two places).
1479		 */
1480		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1481			tp->rcv_up = th->th_seq + th->th_urp;
1482			so->so_oobmark = sbavail(&so->so_rcv) +
1483			    (tp->rcv_up - tp->rcv_nxt) - 1;
1484			if (so->so_oobmark == 0)
1485				so->so_rcv.sb_state |= SBS_RCVATMARK;
1486			sohasoutofband(so);
1487			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1488		}
1489		SOCKBUF_UNLOCK(&so->so_rcv);
1490		/*
1491		 * Remove out of band data so doesn't get presented to user.
1492		 * This can happen independent of advancing the URG pointer,
1493		 * but if two URG's are pending at once, some out-of-band
1494		 * data may creep in... ick.
1495		 */
1496		if (th->th_urp <= (u_long)tlen &&
1497		    !(so->so_options & SO_OOBINLINE)) {
1498			/* hdr drop is delayed */
1499			tcp_pulloutofband(so, th, m, drop_hdrlen);
1500		}
1501	} else {
1502		/*
1503		 * If no out of band data is expected,
1504		 * pull receive urgent pointer along
1505		 * with the receive window.
1506		 */
1507		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1508			tp->rcv_up = tp->rcv_nxt;
1509	}
1510dodata:							/* XXX */
1511	INP_WLOCK_ASSERT(tp->t_inpcb);
1512
1513	/*
1514	 * Process the segment text, merging it into the TCP sequencing queue,
1515	 * and arranging for acknowledgment of receipt if necessary.
1516	 * This process logically involves adjusting tp->rcv_wnd as data
1517	 * is presented to the user (this happens in tcp_usrreq.c,
1518	 * case PRU_RCVD).  If a FIN has already been received on this
1519	 * connection then we just ignore the text.
1520	 */
1521	if ((tlen || (thflags & TH_FIN)) &&
1522	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1523		tcp_seq save_start = th->th_seq;
1524		m_adj(m, drop_hdrlen);	/* delayed header drop */
1525		/*
1526		 * Insert segment which includes th into TCP reassembly queue
1527		 * with control block tp.  Set thflags to whether reassembly now
1528		 * includes a segment with FIN.  This handles the common case
1529		 * inline (segment is the next to be received on an established
1530		 * connection, and the queue is empty), avoiding linkage into
1531		 * and removal from the queue and repetition of various
1532		 * conversions.
1533		 * Set DELACK for segments received in order, but ack
1534		 * immediately when segments are out of order (so
1535		 * fast retransmit can work).
1536		 */
1537		if (th->th_seq == tp->rcv_nxt &&
1538		    LIST_EMPTY(&tp->t_segq) &&
1539		    TCPS_HAVEESTABLISHED(tp->t_state)) {
1540			if (DELAY_ACK(tp, tlen))
1541				tp->t_flags |= TF_DELACK;
1542			else
1543				tp->t_flags |= TF_ACKNOW;
1544			tp->rcv_nxt += tlen;
1545			thflags = th->th_flags & TH_FIN;
1546			TCPSTAT_INC(tcps_rcvpack);
1547			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1548			SOCKBUF_LOCK(&so->so_rcv);
1549			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1550				m_freem(m);
1551			else
1552				sbappendstream_locked(&so->so_rcv, m, 0);
1553			/* NB: sorwakeup_locked() does an implicit unlock. */
1554			sorwakeup_locked(so);
1555		} else {
1556			/*
1557			 * XXX: Due to the header drop above "th" is
1558			 * theoretically invalid by now.  Fortunately
1559			 * m_adj() doesn't actually frees any mbufs
1560			 * when trimming from the head.
1561			 */
1562			thflags = tcp_reass(tp, th, &tlen, m);
1563			tp->t_flags |= TF_ACKNOW;
1564		}
1565		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
1566			tcp_update_sack_list(tp, save_start, save_start + tlen);
1567#if 0
1568		/*
1569		 * Note the amount of data that peer has sent into
1570		 * our window, in order to estimate the sender's
1571		 * buffer size.
1572		 * XXX: Unused.
1573		 */
1574		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
1575			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1576		else
1577			len = so->so_rcv.sb_hiwat;
1578#endif
1579	} else {
1580		m_freem(m);
1581		thflags &= ~TH_FIN;
1582	}
1583
1584	/*
1585	 * If FIN is received ACK the FIN and let the user know
1586	 * that the connection is closing.
1587	 */
1588	if (thflags & TH_FIN) {
1589		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1590			socantrcvmore(so);
1591			/*
1592			 * If connection is half-synchronized
1593			 * (ie NEEDSYN flag on) then delay ACK,
1594			 * so it may be piggybacked when SYN is sent.
1595			 * Otherwise, since we received a FIN then no
1596			 * more input can be expected, send ACK now.
1597			 */
1598			if (tp->t_flags & TF_NEEDSYN)
1599				tp->t_flags |= TF_DELACK;
1600			else
1601				tp->t_flags |= TF_ACKNOW;
1602			tp->rcv_nxt++;
1603		}
1604		switch (tp->t_state) {
1605
1606		/*
1607		 * In SYN_RECEIVED and ESTABLISHED STATES
1608		 * enter the CLOSE_WAIT state.
1609		 */
1610		case TCPS_SYN_RECEIVED:
1611			tp->t_starttime = ticks;
1612			/* FALLTHROUGH */
1613		case TCPS_ESTABLISHED:
1614			tcp_state_change(tp, TCPS_CLOSE_WAIT);
1615			break;
1616
1617		/*
1618		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1619		 * enter the CLOSING state.
1620		 */
1621		case TCPS_FIN_WAIT_1:
1622			tcp_state_change(tp, TCPS_CLOSING);
1623			break;
1624
1625		/*
1626		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1627		 * starting the time-wait timer, turning off the other
1628		 * standard timers.
1629		 */
1630		case TCPS_FIN_WAIT_2:
1631			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1632			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
1633			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
1634			    ti_locked));
1635
1636			tcp_twstart(tp);
1637			INP_INFO_RUNLOCK(&V_tcbinfo);
1638			return;
1639		}
1640	}
1641	if (ti_locked == TI_RLOCKED) {
1642		INP_INFO_RUNLOCK(&V_tcbinfo);
1643	}
1644	ti_locked = TI_UNLOCKED;
1645
1646#ifdef TCPDEBUG
1647	if (so->so_options & SO_DEBUG)
1648		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
1649			  &tcp_savetcp, 0);
1650#endif
1651	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1652
1653	/*
1654	 * Return any desired output.
1655	 */
1656	if (needoutput || (tp->t_flags & TF_ACKNOW))
1657		(void) tp->t_fb->tfb_tcp_output(tp);
1658
1659	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
1660	    __func__, ti_locked));
1661	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1662	INP_WLOCK_ASSERT(tp->t_inpcb);
1663
1664	if (tp->t_flags & TF_DELACK) {
1665		tp->t_flags &= ~TF_DELACK;
1666		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
1667	}
1668	INP_WUNLOCK(tp->t_inpcb);
1669	return;
1670
1671dropafterack:
1672	/*
1673	 * Generate an ACK dropping incoming segment if it occupies
1674	 * sequence space, where the ACK reflects our state.
1675	 *
1676	 * We can now skip the test for the RST flag since all
1677	 * paths to this code happen after packets containing
1678	 * RST have been dropped.
1679	 *
1680	 * In the SYN-RECEIVED state, don't send an ACK unless the
1681	 * segment we received passes the SYN-RECEIVED ACK test.
1682	 * If it fails send a RST.  This breaks the loop in the
1683	 * "LAND" DoS attack, and also prevents an ACK storm
1684	 * between two listening ports that have been sent forged
1685	 * SYN segments, each with the source address of the other.
1686	 */
1687	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
1688	    (SEQ_GT(tp->snd_una, th->th_ack) ||
1689	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
1690		rstreason = BANDLIM_RST_OPENPORT;
1691		goto dropwithreset;
1692	}
1693#ifdef TCPDEBUG
1694	if (so->so_options & SO_DEBUG)
1695		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
1696			  &tcp_savetcp, 0);
1697#endif
1698	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1699	if (ti_locked == TI_RLOCKED) {
1700		INP_INFO_RUNLOCK(&V_tcbinfo);
1701	}
1702	ti_locked = TI_UNLOCKED;
1703
1704	tp->t_flags |= TF_ACKNOW;
1705	(void) tp->t_fb->tfb_tcp_output(tp);
1706	INP_WUNLOCK(tp->t_inpcb);
1707	m_freem(m);
1708	return;
1709
1710dropwithreset:
1711	if (ti_locked == TI_RLOCKED) {
1712		INP_INFO_RUNLOCK(&V_tcbinfo);
1713	}
1714	ti_locked = TI_UNLOCKED;
1715
1716	if (tp != NULL) {
1717		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1718		INP_WUNLOCK(tp->t_inpcb);
1719	} else
1720		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1721	return;
1722
1723drop:
1724	if (ti_locked == TI_RLOCKED) {
1725		INP_INFO_RUNLOCK(&V_tcbinfo);
1726		ti_locked = TI_UNLOCKED;
1727	}
1728#ifdef INVARIANTS
1729	else
1730		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1731#endif
1732
1733	/*
1734	 * Drop space held by incoming segment and return.
1735	 */
1736#ifdef TCPDEBUG
1737	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1738		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
1739			  &tcp_savetcp, 0);
1740#endif
1741	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1742	if (tp != NULL)
1743		INP_WUNLOCK(tp->t_inpcb);
1744	m_freem(m);
1745}
1746
1747
1748/*
1749 * Do fast slow is a combination of the original
1750 * tcp_dosegment and a split fastpath, one function
1751 * for the fast-ack which also includes allowing fastpath
1752 * for window advanced in sequence acks. And also a
1753 * sub-function that handles the insequence data.
1754 */
1755void
1756tcp_do_segment_fastslow(struct mbuf *m, struct tcphdr *th, struct socket *so,
1757			struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1758			int ti_locked)
1759{
1760	int thflags;
1761	u_long tiwin;
1762	char *s;
1763	int can_enter;
1764	struct in_conninfo *inc;
1765	struct tcpopt to;
1766
1767	thflags = th->th_flags;
1768	tp->sackhint.last_sack_ack = 0;
1769	inc = &tp->t_inpcb->inp_inc;
1770	/*
1771	 * If this is either a state-changing packet or current state isn't
1772	 * established, we require a write lock on tcbinfo.  Otherwise, we
1773	 * allow the tcbinfo to be in either alocked or unlocked, as the
1774	 * caller may have unnecessarily acquired a write lock due to a race.
1775	 */
1776	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1777	    tp->t_state != TCPS_ESTABLISHED) {
1778		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1779						  "SYN/FIN/RST/!EST", __func__, ti_locked));
1780		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1781	} else {
1782#ifdef INVARIANTS
1783		if (ti_locked == TI_RLOCKED) {
1784			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1785		} else {
1786			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1787							   "ti_locked: %d", __func__, ti_locked));
1788			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1789		}
1790#endif
1791	}
1792	INP_WLOCK_ASSERT(tp->t_inpcb);
1793	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1794					    __func__));
1795	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1796						__func__));
1797
1798	/*
1799	 * Segment received on connection.
1800	 * Reset idle time and keep-alive timer.
1801	 * XXX: This should be done after segment
1802	 * validation to ignore broken/spoofed segs.
1803	 */
1804	tp->t_rcvtime = ticks;
1805	if (TCPS_HAVEESTABLISHED(tp->t_state))
1806		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1807
1808	/*
1809	 * Unscale the window into a 32-bit value.
1810	 * For the SYN_SENT state the scale is zero.
1811	 */
1812	tiwin = th->th_win << tp->snd_scale;
1813
1814	/*
1815	 * TCP ECN processing.
1816	 */
1817	if (tp->t_flags & TF_ECN_PERMIT) {
1818		if (thflags & TH_CWR)
1819			tp->t_flags &= ~TF_ECN_SND_ECE;
1820		switch (iptos & IPTOS_ECN_MASK) {
1821		case IPTOS_ECN_CE:
1822			tp->t_flags |= TF_ECN_SND_ECE;
1823			TCPSTAT_INC(tcps_ecn_ce);
1824			break;
1825		case IPTOS_ECN_ECT0:
1826			TCPSTAT_INC(tcps_ecn_ect0);
1827			break;
1828		case IPTOS_ECN_ECT1:
1829			TCPSTAT_INC(tcps_ecn_ect1);
1830			break;
1831		}
1832		/* Congestion experienced. */
1833		if (thflags & TH_ECE) {
1834			cc_cong_signal(tp, th, CC_ECN);
1835		}
1836	}
1837
1838	/*
1839	 * Parse options on any incoming segment.
1840	 */
1841	tcp_dooptions(&to, (u_char *)(th + 1),
1842		      (th->th_off << 2) - sizeof(struct tcphdr),
1843		      (thflags & TH_SYN) ? TO_SYN : 0);
1844
1845	/*
1846	 * If echoed timestamp is later than the current time,
1847	 * fall back to non RFC1323 RTT calculation.  Normalize
1848	 * timestamp if syncookies were used when this connection
1849	 * was established.
1850	 */
1851	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1852		to.to_tsecr -= tp->ts_offset;
1853		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1854			to.to_tsecr = 0;
1855	}
1856	/*
1857	 * If timestamps were negotiated during SYN/ACK they should
1858	 * appear on every segment during this session and vice versa.
1859	 */
1860	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1861		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1862			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1863			    "no action\n", s, __func__);
1864			free(s, M_TCPLOG);
1865		}
1866	}
1867	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1868		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1869			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1870			    "no action\n", s, __func__);
1871			free(s, M_TCPLOG);
1872		}
1873	}
1874
1875	/*
1876	 * Process options only when we get SYN/ACK back. The SYN case
1877	 * for incoming connections is handled in tcp_syncache.
1878	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1879	 * or <SYN,ACK>) segment itself is never scaled.
1880	 * XXX this is traditional behavior, may need to be cleaned up.
1881	 */
1882	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1883		if ((to.to_flags & TOF_SCALE) &&
1884		    (tp->t_flags & TF_REQ_SCALE)) {
1885			tp->t_flags |= TF_RCVD_SCALE;
1886			tp->snd_scale = to.to_wscale;
1887		}
1888		/*
1889		 * Initial send window.  It will be updated with
1890		 * the next incoming segment to the scaled value.
1891		 */
1892		tp->snd_wnd = th->th_win;
1893		if (to.to_flags & TOF_TS) {
1894			tp->t_flags |= TF_RCVD_TSTMP;
1895			tp->ts_recent = to.to_tsval;
1896			tp->ts_recent_age = tcp_ts_getticks();
1897		}
1898		if (to.to_flags & TOF_MSS)
1899			tcp_mss(tp, to.to_mss);
1900		if ((tp->t_flags & TF_SACK_PERMIT) &&
1901		    (to.to_flags & TOF_SACKPERM) == 0)
1902			tp->t_flags &= ~TF_SACK_PERMIT;
1903	}
1904	can_enter = 0;
1905	if (__predict_true((tlen == 0))) {
1906		/*
1907		 * The ack moved forward and we have a window (non-zero)
1908		 * <or>
1909		 * The ack did not move forward, but the window increased.
1910		 */
1911		if (__predict_true((SEQ_GT(th->th_ack, tp->snd_una) && tiwin) ||
1912				   ((th->th_ack == tp->snd_una) && tiwin && (tiwin > tp->snd_wnd)))) {
1913			can_enter = 1;
1914		}
1915	} else {
1916		/*
1917		 * Data incoming, use the old entry criteria
1918		 * for fast-path with data.
1919		 */
1920		if ((tiwin && tiwin == tp->snd_wnd)) {
1921			can_enter = 1;
1922		}
1923	}
1924	/*
1925	 * Header prediction: check for the two common cases
1926	 * of a uni-directional data xfer.  If the packet has
1927	 * no control flags, is in-sequence, the window didn't
1928	 * change and we're not retransmitting, it's a
1929	 * candidate.  If the length is zero and the ack moved
1930	 * forward, we're the sender side of the xfer.  Just
1931	 * free the data acked & wake any higher level process
1932	 * that was blocked waiting for space.  If the length
1933	 * is non-zero and the ack didn't move, we're the
1934	 * receiver side.  If we're getting packets in-order
1935	 * (the reassembly queue is empty), add the data to
1936	 * the socket buffer and note that we need a delayed ack.
1937	 * Make sure that the hidden state-flags are also off.
1938	 * Since we check for TCPS_ESTABLISHED first, it can only
1939	 * be TH_NEEDSYN.
1940	 */
1941	if (__predict_true(tp->t_state == TCPS_ESTABLISHED &&
1942	    th->th_seq == tp->rcv_nxt &&
1943	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1944	    tp->snd_nxt == tp->snd_max &&
1945	    can_enter &&
1946	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1947	    LIST_EMPTY(&tp->t_segq) &&
1948	    ((to.to_flags & TOF_TS) == 0 ||
1949	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)))) {
1950		if (__predict_true((tlen == 0) &&
1951		    (SEQ_LEQ(th->th_ack, tp->snd_max) &&
1952		     !IN_RECOVERY(tp->t_flags) &&
1953		     (to.to_flags & TOF_SACK) == 0 &&
1954		     TAILQ_EMPTY(&tp->snd_holes)))) {
1955			/* We are done */
1956			tcp_do_fastack(m, th, so, tp, &to, drop_hdrlen, tlen,
1957				       ti_locked, tiwin);
1958			return;
1959		} else if ((tlen) &&
1960			   (th->th_ack == tp->snd_una &&
1961			    tlen <= sbspace(&so->so_rcv))) {
1962			tcp_do_fastnewdata(m, th, so, tp, &to, drop_hdrlen, tlen,
1963					   ti_locked, tiwin);
1964			/* We are done */
1965			return;
1966		}
1967	}
1968	tcp_do_slowpath(m, th, so, tp, &to, drop_hdrlen, tlen,
1969			ti_locked, tiwin, thflags);
1970}
1971
1972
1973/*
1974 * This subfunction is used to try to highly optimize the
1975 * fast path. We again allow window updates that are
1976 * in sequence to remain in the fast-path. We also add
1977 * in the __predict's to attempt to help the compiler.
1978 * Note that if we return a 0, then we can *not* process
1979 * it and the caller should push the packet into the
1980 * slow-path.
1981 */
1982static int
1983tcp_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
1984	       struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
1985	       int ti_locked, u_long tiwin)
1986{
1987	int acked;
1988	int winup_only=0;
1989#ifdef TCPDEBUG
1990	/*
1991	 * The size of tcp_saveipgen must be the size of the max ip header,
1992	 * now IPv6.
1993	 */
1994	u_char tcp_saveipgen[IP6_HDR_LEN];
1995	struct tcphdr tcp_savetcp;
1996	short ostate = 0;
1997#endif
1998
1999
2000	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
2001		/* Old ack, behind (or duplicate to) the last one rcv'd */
2002		return (0);
2003	}
2004	if (__predict_false(th->th_ack == tp->snd_una) &&
2005	    __predict_false(tiwin <= tp->snd_wnd)) {
2006		/* duplicate ack <or> a shrinking dup ack with shrinking window */
2007		return (0);
2008	}
2009	if (__predict_false(tiwin == 0)) {
2010		/* zero window */
2011		return (0);
2012	}
2013	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
2014		/* Above what we have sent? */
2015		return (0);
2016	}
2017	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
2018		/* We are retransmitting */
2019		return (0);
2020	}
2021	if (__predict_false(tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN))) {
2022		/* We need a SYN or a FIN, unlikely.. */
2023		return (0);
2024	}
2025	if((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
2026		/* Timestamp is behind .. old ack with seq wrap? */
2027		return (0);
2028	}
2029	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
2030		/* Still recovering */
2031		return (0);
2032	}
2033	if (__predict_false(to->to_flags & TOF_SACK)) {
2034		/* Sack included in the ack..  */
2035		return (0);
2036	}
2037	if (!TAILQ_EMPTY(&tp->snd_holes)) {
2038		/* We have sack holes on our scoreboard */
2039		return (0);
2040	}
2041	/* Ok if we reach here, we can process a fast-ack */
2042
2043	/* Did the window get updated? */
2044	if (tiwin != tp->snd_wnd) {
2045		/* keep track of pure window updates */
2046		if (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
2047			winup_only = 1;
2048			TCPSTAT_INC(tcps_rcvwinupd);
2049		}
2050		tp->snd_wnd = tiwin;
2051		tp->snd_wl1 = th->th_seq;
2052		if (tp->snd_wnd > tp->max_sndwnd)
2053			tp->max_sndwnd = tp->snd_wnd;
2054	}
2055	/*
2056	 * Pull snd_wl2 up to prevent seq wrap relative
2057	 * to th_ack.
2058	 */
2059	tp->snd_wl2 = th->th_ack;
2060	/*
2061	 * If last ACK falls within this segment's sequence numbers,
2062	 * record the timestamp.
2063	 * NOTE that the test is modified according to the latest
2064	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2065	 */
2066	if ((to->to_flags & TOF_TS) != 0 &&
2067	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2068		tp->ts_recent_age = tcp_ts_getticks();
2069		tp->ts_recent = to->to_tsval;
2070	}
2071	/*
2072	 * This is a pure ack for outstanding data.
2073	 */
2074	if (ti_locked == TI_RLOCKED) {
2075		INP_INFO_RUNLOCK(&V_tcbinfo);
2076	}
2077	ti_locked = TI_UNLOCKED;
2078
2079	TCPSTAT_INC(tcps_predack);
2080
2081	/*
2082	 * "bad retransmit" recovery.
2083	 */
2084	if (tp->t_rxtshift == 1 &&
2085	    tp->t_flags & TF_PREVVALID &&
2086	    (int)(ticks - tp->t_badrxtwin) < 0) {
2087		cc_cong_signal(tp, th, CC_RTO_ERR);
2088	}
2089
2090	/*
2091	 * Recalculate the transmit timer / rtt.
2092	 *
2093	 * Some boxes send broken timestamp replies
2094	 * during the SYN+ACK phase, ignore
2095	 * timestamps of 0 or we could calculate a
2096	 * huge RTT and blow up the retransmit timer.
2097	 */
2098	if ((to->to_flags & TOF_TS) != 0 &&
2099	    to->to_tsecr) {
2100		u_int t;
2101
2102		t = tcp_ts_getticks() - to->to_tsecr;
2103		if (!tp->t_rttlow || tp->t_rttlow > t)
2104			tp->t_rttlow = t;
2105		tcp_xmit_timer(tp,
2106			       TCP_TS_TO_TICKS(t) + 1);
2107	} else if (tp->t_rtttime &&
2108		   SEQ_GT(th->th_ack, tp->t_rtseq)) {
2109		if (!tp->t_rttlow ||
2110		    tp->t_rttlow > ticks - tp->t_rtttime)
2111			tp->t_rttlow = ticks - tp->t_rtttime;
2112		tcp_xmit_timer(tp,
2113			       ticks - tp->t_rtttime);
2114	}
2115	if (winup_only == 0) {
2116		acked = BYTES_THIS_ACK(tp, th);
2117
2118		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2119		hhook_run_tcp_est_in(tp, th, to);
2120
2121		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2122		sbdrop(&so->so_snd, acked);
2123		if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2124		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2125			tp->snd_recover = th->th_ack - 1;
2126
2127		/*
2128		 * Let the congestion control algorithm update
2129		 * congestion control related information. This
2130		 * typically means increasing the congestion
2131		 * window.
2132		 */
2133		cc_ack_received(tp, th, CC_ACK);
2134
2135		tp->snd_una = th->th_ack;
2136		tp->t_dupacks = 0;
2137		m_freem(m);
2138
2139		/*
2140		 * If all outstanding data are acked, stop
2141		 * retransmit timer, otherwise restart timer
2142		 * using current (possibly backed-off) value.
2143		 * If process is waiting for space,
2144		 * wakeup/selwakeup/signal.  If data
2145		 * are ready to send, let tcp_output
2146		 * decide between more output or persist.
2147		 */
2148#ifdef TCPDEBUG
2149		if (so->so_options & SO_DEBUG)
2150			tcp_trace(TA_INPUT, ostate, tp,
2151				  (void *)tcp_saveipgen,
2152				  &tcp_savetcp, 0);
2153#endif
2154		if (tp->snd_una == tp->snd_max)
2155			tcp_timer_activate(tp, TT_REXMT, 0);
2156		else if (!tcp_timer_active(tp, TT_PERSIST))
2157			tcp_timer_activate(tp, TT_REXMT,
2158					   tp->t_rxtcur);
2159		/* Wake up the socket if we have room to write more */
2160		sowwakeup(so);
2161	} else {
2162		/*
2163		 * Window update only, just free the mbufs and
2164		 * send out whatever we can.
2165		 */
2166		m_freem(m);
2167	}
2168	if (sbavail(&so->so_snd))
2169		(void) tcp_output(tp);
2170	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2171					    __func__, ti_locked));
2172	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2173	INP_WLOCK_ASSERT(tp->t_inpcb);
2174
2175	if (tp->t_flags & TF_DELACK) {
2176		tp->t_flags &= ~TF_DELACK;
2177		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2178	}
2179	INP_WUNLOCK(tp->t_inpcb);
2180	return (1);
2181}
2182
2183/*
2184 * This tcp-do-segment concentrates on making the fastest
2185 * ack processing path. It does not have a fast-path for
2186 * data (it possibly could which would then eliminate the
2187 * need for fast-slow above). For a content distributor having
2188 * large outgoing elephants and very very little coming in
2189 * having no fastpath for data does not really help (since you
2190 * don't get much data in). The most important thing is
2191 * processing ack's quickly and getting the rest of the data
2192 * output to the peer as quickly as possible. This routine
2193 * seems to be about an overall 3% faster then the old
2194 * tcp_do_segment and keeps us in the fast-path for packets
2195 * much more (by allowing window updates to also stay in the fastpath).
2196 */
2197void
2198tcp_do_segment_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
2199		       struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
2200		       int ti_locked)
2201{
2202	int thflags;
2203	u_long tiwin;
2204	char *s;
2205	struct in_conninfo *inc;
2206	struct tcpopt to;
2207
2208	thflags = th->th_flags;
2209	tp->sackhint.last_sack_ack = 0;
2210	inc = &tp->t_inpcb->inp_inc;
2211	/*
2212	 * If this is either a state-changing packet or current state isn't
2213	 * established, we require a write lock on tcbinfo.  Otherwise, we
2214	 * allow the tcbinfo to be in either alocked or unlocked, as the
2215	 * caller may have unnecessarily acquired a write lock due to a race.
2216	 */
2217	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
2218	    tp->t_state != TCPS_ESTABLISHED) {
2219		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
2220						  "SYN/FIN/RST/!EST", __func__, ti_locked));
2221		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2222	} else {
2223#ifdef INVARIANTS
2224		if (ti_locked == TI_RLOCKED) {
2225			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2226		} else {
2227			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
2228							   "ti_locked: %d", __func__, ti_locked));
2229			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2230		}
2231#endif
2232	}
2233	INP_WLOCK_ASSERT(tp->t_inpcb);
2234	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
2235					    __func__));
2236	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
2237						__func__));
2238
2239	/*
2240	 * Segment received on connection.
2241	 * Reset idle time and keep-alive timer.
2242	 * XXX: This should be done after segment
2243	 * validation to ignore broken/spoofed segs.
2244	 */
2245	tp->t_rcvtime = ticks;
2246	if (TCPS_HAVEESTABLISHED(tp->t_state))
2247		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2248
2249	/*
2250	 * Unscale the window into a 32-bit value.
2251	 * For the SYN_SENT state the scale is zero.
2252	 */
2253	tiwin = th->th_win << tp->snd_scale;
2254
2255	/*
2256	 * TCP ECN processing.
2257	 */
2258	if (tp->t_flags & TF_ECN_PERMIT) {
2259		if (thflags & TH_CWR)
2260			tp->t_flags &= ~TF_ECN_SND_ECE;
2261		switch (iptos & IPTOS_ECN_MASK) {
2262		case IPTOS_ECN_CE:
2263			tp->t_flags |= TF_ECN_SND_ECE;
2264			TCPSTAT_INC(tcps_ecn_ce);
2265			break;
2266		case IPTOS_ECN_ECT0:
2267			TCPSTAT_INC(tcps_ecn_ect0);
2268			break;
2269		case IPTOS_ECN_ECT1:
2270			TCPSTAT_INC(tcps_ecn_ect1);
2271			break;
2272		}
2273		/* Congestion experienced. */
2274		if (thflags & TH_ECE) {
2275			cc_cong_signal(tp, th, CC_ECN);
2276		}
2277	}
2278
2279	/*
2280	 * Parse options on any incoming segment.
2281	 */
2282	tcp_dooptions(&to, (u_char *)(th + 1),
2283		      (th->th_off << 2) - sizeof(struct tcphdr),
2284		      (thflags & TH_SYN) ? TO_SYN : 0);
2285
2286	/*
2287	 * If echoed timestamp is later than the current time,
2288	 * fall back to non RFC1323 RTT calculation.  Normalize
2289	 * timestamp if syncookies were used when this connection
2290	 * was established.
2291	 */
2292	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
2293		to.to_tsecr -= tp->ts_offset;
2294		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
2295			to.to_tsecr = 0;
2296	}
2297	/*
2298	 * If timestamps were negotiated during SYN/ACK they should
2299	 * appear on every segment during this session and vice versa.
2300	 */
2301	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
2302		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2303			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
2304			    "no action\n", s, __func__);
2305			free(s, M_TCPLOG);
2306		}
2307	}
2308	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
2309		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2310			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
2311			    "no action\n", s, __func__);
2312			free(s, M_TCPLOG);
2313		}
2314	}
2315
2316	/*
2317	 * Process options only when we get SYN/ACK back. The SYN case
2318	 * for incoming connections is handled in tcp_syncache.
2319	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
2320	 * or <SYN,ACK>) segment itself is never scaled.
2321	 * XXX this is traditional behavior, may need to be cleaned up.
2322	 */
2323	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2324		if ((to.to_flags & TOF_SCALE) &&
2325		    (tp->t_flags & TF_REQ_SCALE)) {
2326			tp->t_flags |= TF_RCVD_SCALE;
2327			tp->snd_scale = to.to_wscale;
2328		}
2329		/*
2330		 * Initial send window.  It will be updated with
2331		 * the next incoming segment to the scaled value.
2332		 */
2333		tp->snd_wnd = th->th_win;
2334		if (to.to_flags & TOF_TS) {
2335			tp->t_flags |= TF_RCVD_TSTMP;
2336			tp->ts_recent = to.to_tsval;
2337			tp->ts_recent_age = tcp_ts_getticks();
2338		}
2339		if (to.to_flags & TOF_MSS)
2340			tcp_mss(tp, to.to_mss);
2341		if ((tp->t_flags & TF_SACK_PERMIT) &&
2342		    (to.to_flags & TOF_SACKPERM) == 0)
2343			tp->t_flags &= ~TF_SACK_PERMIT;
2344	}
2345	/*
2346	 * Header prediction: check for the two common cases
2347	 * of a uni-directional data xfer.  If the packet has
2348	 * no control flags, is in-sequence, the window didn't
2349	 * change and we're not retransmitting, it's a
2350	 * candidate.  If the length is zero and the ack moved
2351	 * forward, we're the sender side of the xfer.  Just
2352	 * free the data acked & wake any higher level process
2353	 * that was blocked waiting for space.  If the length
2354	 * is non-zero and the ack didn't move, we're the
2355	 * receiver side.  If we're getting packets in-order
2356	 * (the reassembly queue is empty), add the data to
2357	 * the socket buffer and note that we need a delayed ack.
2358	 * Make sure that the hidden state-flags are also off.
2359	 * Since we check for TCPS_ESTABLISHED first, it can only
2360	 * be TH_NEEDSYN.
2361	 */
2362	if (__predict_true(tp->t_state == TCPS_ESTABLISHED) &&
2363	    __predict_true(((to.to_flags & TOF_SACK) == 0)) &&
2364	    __predict_true(tlen == 0) &&
2365	    __predict_true((thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK) &&
2366	    __predict_true(LIST_EMPTY(&tp->t_segq)) &&
2367	    __predict_true(th->th_seq == tp->rcv_nxt)) {
2368		    if (tcp_fastack(m, th, so, tp, &to, drop_hdrlen, tlen,
2369				    ti_locked, tiwin)) {
2370			    return;
2371		    }
2372	}
2373	tcp_do_slowpath(m, th, so, tp, &to, drop_hdrlen, tlen,
2374			ti_locked, tiwin, thflags);
2375}
2376
2377struct tcp_function_block __tcp_fastslow = {
2378	"fastslow",
2379	tcp_output,
2380	tcp_do_segment_fastslow,
2381	tcp_default_ctloutput,
2382	NULL,
2383	NULL,
2384	NULL,
2385	NULL,
2386	NULL,
2387	NULL,
2388	NULL,
2389	0,
2390	0
2391
2392};
2393
2394struct tcp_function_block __tcp_fastack = {
2395	"fastack",
2396	tcp_output,
2397	tcp_do_segment_fastack,
2398	tcp_default_ctloutput,
2399	NULL,
2400	NULL,
2401	NULL,
2402	NULL,
2403	NULL,
2404	NULL,
2405	NULL,
2406	0,
2407	0
2408};
2409
2410static int
2411tcp_addfastpaths(module_t mod, int type, void *data)
2412{
2413	int err=0;
2414
2415	switch (type) {
2416	case MOD_LOAD:
2417		err = register_tcp_functions(&__tcp_fastack, M_WAITOK);
2418		if (err) {
2419			printf("Failed to register fastack module -- err:%d\n", err);
2420			return(err);
2421		}
2422		err = register_tcp_functions(&__tcp_fastslow, M_WAITOK);
2423		if (err) {
2424			printf("Failed to register fastslow module -- err:%d\n", err);
2425			deregister_tcp_functions(&__tcp_fastack);
2426			return(err);
2427		}
2428		break;
2429	case MOD_QUIESCE:
2430		if ((__tcp_fastslow.tfb_refcnt) ||( __tcp_fastack.tfb_refcnt)) {
2431			return(EBUSY);
2432		}
2433		break;
2434	case MOD_UNLOAD:
2435		err = deregister_tcp_functions(&__tcp_fastack);
2436		if (err == EBUSY)
2437			break;
2438		err = deregister_tcp_functions(&__tcp_fastslow);
2439		if (err == EBUSY)
2440			break;
2441		err = 0;
2442		break;
2443	default:
2444		return (EOPNOTSUPP);
2445	}
2446	return (err);
2447}
2448
2449static moduledata_t new_tcp_fastpaths = {
2450	.name = "tcp_fastpaths",
2451	.evhand = tcp_addfastpaths,
2452	.priv = 0
2453};
2454
2455MODULE_VERSION(kern_tcpfastpaths, 1);
2456DECLARE_MODULE(kern_tcpfastpaths, new_tcp_fastpaths, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
2457