1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 2007-2008,2010
5 *	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * Copyright (c) 2010-2011 Juniper Networks, Inc.
9 * Copyright (c) 2015 Netflix Inc.
10 * All rights reserved.
11 *
12 * Portions of this software were developed at the Centre for Advanced Internet
13 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
14 * James Healy and David Hayes, made possible in part by a grant from the Cisco
15 * University Research Program Fund at Community Foundation Silicon Valley.
16 *
17 * Portions of this software were developed at the Centre for Advanced
18 * Internet Architectures, Swinburne University of Technology, Melbourne,
19 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
20 *
21 * Portions of this software were developed by Robert N. M. Watson under
22 * contract to Juniper Networks, Inc.
23 *
24 * Portions of this software were developed by Randall R. Stewart while
25 * working for Netflix Inc.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 *    notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 *    notice, this list of conditions and the following disclaimer in the
34 *    documentation and/or other materials provided with the distribution.
35 * 4. Neither the name of the University nor the names of its contributors
36 *    may be used to endorse or promote products derived from this software
37 *    without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
43 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
44 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
45 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
47 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
48 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
49 * SUCH DAMAGE.
50 *
51 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
52 */
53
54#include <sys/cdefs.h>
55__FBSDID("$FreeBSD: stable/11/sys/netinet/tcp_stacks/fastpath.c 344511 2019-02-25 10:38:37Z tuexen $");
56
57#include "opt_inet.h"
58#include "opt_inet6.h"
59#include "opt_tcpdebug.h"
60
61#include <sys/param.h>
62#include <sys/module.h>
63#include <sys/kernel.h>
64#include <sys/hhook.h>
65#include <sys/malloc.h>
66#include <sys/mbuf.h>
67#include <sys/proc.h>		/* for proc0 declaration */
68#include <sys/protosw.h>
69#include <sys/sdt.h>
70#include <sys/signalvar.h>
71#include <sys/socket.h>
72#include <sys/socketvar.h>
73#include <sys/sysctl.h>
74#include <sys/syslog.h>
75#include <sys/systm.h>
76
77#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
78
79#include <vm/uma.h>
80
81#include <net/route.h>
82#include <net/vnet.h>
83
84#define TCPSTATES		/* for logging */
85
86#include <netinet/in.h>
87#include <netinet/in_kdtrace.h>
88#include <netinet/in_pcb.h>
89#include <netinet/in_systm.h>
90#include <netinet/ip.h>
91#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
92#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
93#include <netinet/ip_var.h>
94#include <netinet/ip_options.h>
95#include <netinet/ip6.h>
96#include <netinet/icmp6.h>
97#include <netinet6/in6_pcb.h>
98#include <netinet6/ip6_var.h>
99#include <netinet/tcp.h>
100#include <netinet/tcp_fsm.h>
101#include <netinet/tcp_seq.h>
102#include <netinet/tcp_timer.h>
103#include <netinet/tcp_var.h>
104#include <netinet6/tcp6_var.h>
105#include <netinet/tcpip.h>
106#include <netinet/tcp_syncache.h>
107#include <netinet/cc/cc.h>
108#ifdef TCPDEBUG
109#include <netinet/tcp_debug.h>
110#endif /* TCPDEBUG */
111#ifdef TCP_OFFLOAD
112#include <netinet/tcp_offload.h>
113#endif
114
115#include <machine/in_cksum.h>
116
117#include <security/mac/mac_framework.h>
118
119VNET_DECLARE(int, tcp_autorcvbuf_inc);
120#define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
121VNET_DECLARE(int, tcp_autorcvbuf_max);
122#define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
123VNET_DECLARE(int, tcp_do_rfc3042);
124#define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
125VNET_DECLARE(int, tcp_do_autorcvbuf);
126#define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
127VNET_DECLARE(int, tcp_insecure_rst);
128#define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
129VNET_DECLARE(int, tcp_insecure_syn);
130#define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
131VNET_DECLARE(int, drop_synfin);
132#define	V_drop_synfin	VNET(drop_synfin)
133
134static void	 tcp_do_segment_fastslow(struct mbuf *, struct tcphdr *,
135			struct socket *, struct tcpcb *, int, int, uint8_t,
136			int);
137
138static void	 tcp_do_segment_fastack(struct mbuf *, struct tcphdr *,
139			struct socket *, struct tcpcb *, int, int, uint8_t,
140			int);
141
142/*
143 * Indicate whether this ack should be delayed.  We can delay the ack if
144 * following conditions are met:
145 *	- There is no delayed ack timer in progress.
146 *	- Our last ack wasn't a 0-sized window. We never want to delay
147 *	  the ack that opens up a 0-sized window.
148 *	- LRO wasn't used for this segment. We make sure by checking that the
149 *	  segment size is not larger than the MSS.
150 */
151#define DELAY_ACK(tp, tlen)						\
152	((!tcp_timer_active(tp, TT_DELACK) &&				\
153	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
154	    (tlen <= tp->t_maxseg) &&					\
155	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
156
157/*
158 * So how is this faster than the normal fast ack?
159 * It basically allows us to also stay in the fastpath
160 * when a window-update ack also arrives. In testing
161 * we saw only 25-30% of connections doing fastpath
162 * due to the fact that along with moving forward
163 * in sequence the window was also updated.
164 */
165static void
166tcp_do_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
167	       struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
168	       int ti_locked, u_long tiwin)
169{
170	int acked;
171	int winup_only=0;
172#ifdef TCPDEBUG
173	/*
174	 * The size of tcp_saveipgen must be the size of the max ip header,
175	 * now IPv6.
176	 */
177	u_char tcp_saveipgen[IP6_HDR_LEN];
178	struct tcphdr tcp_savetcp;
179	short ostate = 0;
180#endif
181        /*
182	 * The following if statement will be true if
183	 * we are doing the win_up_in_fp <and>
184	 * - We have more new data (SEQ_LT(tp->snd_wl1, th->th_seq)) <or>
185	 * - No more new data, but we have an ack for new data
186	 *   (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack))
187	 * - No more new data, the same ack point but the window grew
188	 *   (tp->snd_wl1 == th->th_seq && tp->snd_wl2 == th->th_ack && twin > tp->snd_wnd)
189	 */
190	if ((SEQ_LT(tp->snd_wl1, th->th_seq) ||
191	     (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
192					    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
193		/* keep track of pure window updates */
194		if (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
195			winup_only = 1;
196			TCPSTAT_INC(tcps_rcvwinupd);
197		}
198		tp->snd_wnd = tiwin;
199		tp->snd_wl1 = th->th_seq;
200		tp->snd_wl2 = th->th_ack;
201		if (tp->snd_wnd > tp->max_sndwnd)
202			tp->max_sndwnd = tp->snd_wnd;
203	}
204	/*
205	 * If last ACK falls within this segment's sequence numbers,
206	 * record the timestamp.
207	 * NOTE that the test is modified according to the latest
208	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
209	 */
210	if ((to->to_flags & TOF_TS) != 0 &&
211	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
212		tp->ts_recent_age = tcp_ts_getticks();
213		tp->ts_recent = to->to_tsval;
214	}
215	/*
216	 * This is a pure ack for outstanding data.
217	 */
218	if (ti_locked == TI_RLOCKED) {
219		INP_INFO_RUNLOCK(&V_tcbinfo);
220	}
221	ti_locked = TI_UNLOCKED;
222
223	TCPSTAT_INC(tcps_predack);
224
225	/*
226	 * "bad retransmit" recovery.
227	 */
228	if (tp->t_rxtshift == 1 &&
229	    tp->t_flags & TF_PREVVALID &&
230	    (int)(ticks - tp->t_badrxtwin) < 0) {
231		cc_cong_signal(tp, th, CC_RTO_ERR);
232	}
233
234	/*
235	 * Recalculate the transmit timer / rtt.
236	 *
237	 * Some boxes send broken timestamp replies
238	 * during the SYN+ACK phase, ignore
239	 * timestamps of 0 or we could calculate a
240	 * huge RTT and blow up the retransmit timer.
241	 */
242	if ((to->to_flags & TOF_TS) != 0 &&
243	    to->to_tsecr) {
244		u_int t;
245
246		t = tcp_ts_getticks() - to->to_tsecr;
247		if (!tp->t_rttlow || tp->t_rttlow > t)
248			tp->t_rttlow = t;
249		tcp_xmit_timer(tp,
250			       TCP_TS_TO_TICKS(t) + 1);
251	} else if (tp->t_rtttime &&
252		   SEQ_GT(th->th_ack, tp->t_rtseq)) {
253		if (!tp->t_rttlow ||
254		    tp->t_rttlow > ticks - tp->t_rtttime)
255			tp->t_rttlow = ticks - tp->t_rtttime;
256		tcp_xmit_timer(tp,
257			       ticks - tp->t_rtttime);
258	}
259	if (winup_only == 0) {
260		acked = BYTES_THIS_ACK(tp, th);
261
262		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
263		hhook_run_tcp_est_in(tp, th, to);
264
265		TCPSTAT_ADD(tcps_rcvackbyte, acked);
266		sbdrop(&so->so_snd, acked);
267		if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
268		    SEQ_LEQ(th->th_ack, tp->snd_recover))
269			tp->snd_recover = th->th_ack - 1;
270
271		/*
272		 * Let the congestion control algorithm update
273		 * congestion control related information. This
274		 * typically means increasing the congestion
275		 * window.
276		 */
277		cc_ack_received(tp, th, CC_ACK);
278
279		tp->snd_una = th->th_ack;
280		/*
281		 * Pull snd_wl2 up to prevent seq wrap relative
282		 * to th_ack.
283		 */
284		tp->snd_wl2 = th->th_ack;
285		tp->t_dupacks = 0;
286
287		/*
288		 * If all outstanding data are acked, stop
289		 * retransmit timer, otherwise restart timer
290		 * using current (possibly backed-off) value.
291		 * If process is waiting for space,
292		 * wakeup/selwakeup/signal.  If data
293		 * are ready to send, let tcp_output
294		 * decide between more output or persist.
295		 */
296#ifdef TCPDEBUG
297		if (so->so_options & SO_DEBUG)
298			tcp_trace(TA_INPUT, ostate, tp,
299				  (void *)tcp_saveipgen,
300				  &tcp_savetcp, 0);
301#endif
302		TCP_PROBE3(debug__input, tp, th, m);
303		m_freem(m);
304		if (tp->snd_una == tp->snd_max)
305			tcp_timer_activate(tp, TT_REXMT, 0);
306		else if (!tcp_timer_active(tp, TT_PERSIST))
307			tcp_timer_activate(tp, TT_REXMT,
308					   tp->t_rxtcur);
309	} else {
310		/*
311		 * Window update only, just free the mbufs and
312		 * send out whatever we can.
313		 */
314		m_freem(m);
315	}
316	sowwakeup(so);
317	if (sbavail(&so->so_snd))
318		(void) tcp_output(tp);
319	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
320					    __func__, ti_locked));
321	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
322	INP_WLOCK_ASSERT(tp->t_inpcb);
323
324	if (tp->t_flags & TF_DELACK) {
325		tp->t_flags &= ~TF_DELACK;
326		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
327	}
328	INP_WUNLOCK(tp->t_inpcb);
329}
330
331/*
332 * Here nothing is really faster, its just that we
333 * have broken out the fast-data path also just like
334 * the fast-ack.
335 */
336static void
337tcp_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
338		   struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
339		   int ti_locked, u_long tiwin)
340{
341	int newsize = 0;	/* automatic sockbuf scaling */
342#ifdef TCPDEBUG
343	/*
344	 * The size of tcp_saveipgen must be the size of the max ip header,
345	 * now IPv6.
346	 */
347	u_char tcp_saveipgen[IP6_HDR_LEN];
348	struct tcphdr tcp_savetcp;
349	short ostate = 0;
350#endif
351	/*
352	 * If last ACK falls within this segment's sequence numbers,
353	 * record the timestamp.
354	 * NOTE that the test is modified according to the latest
355	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
356	 */
357	if ((to->to_flags & TOF_TS) != 0 &&
358	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
359		tp->ts_recent_age = tcp_ts_getticks();
360		tp->ts_recent = to->to_tsval;
361	}
362
363	/*
364	 * This is a pure, in-sequence data packet with
365	 * nothing on the reassembly queue and we have enough
366	 * buffer space to take it.
367	 */
368	if (ti_locked == TI_RLOCKED) {
369		INP_INFO_RUNLOCK(&V_tcbinfo);
370	}
371	ti_locked = TI_UNLOCKED;
372
373	/* Clean receiver SACK report if present */
374	if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
375		tcp_clean_sackreport(tp);
376	TCPSTAT_INC(tcps_preddat);
377	tp->rcv_nxt += tlen;
378	/*
379	 * Pull snd_wl1 up to prevent seq wrap relative to
380	 * th_seq.
381	 */
382	tp->snd_wl1 = th->th_seq;
383	/*
384	 * Pull rcv_up up to prevent seq wrap relative to
385	 * rcv_nxt.
386	 */
387	tp->rcv_up = tp->rcv_nxt;
388	TCPSTAT_ADD(tcps_rcvbyte, tlen);
389#ifdef TCPDEBUG
390	if (so->so_options & SO_DEBUG)
391		tcp_trace(TA_INPUT, ostate, tp,
392			  (void *)tcp_saveipgen, &tcp_savetcp, 0);
393#endif
394	TCP_PROBE3(debug__input, tp, th, m);
395
396	newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
397
398	/* Add data to socket buffer. */
399	SOCKBUF_LOCK(&so->so_rcv);
400	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
401		m_freem(m);
402	} else {
403		/*
404		 * Set new socket buffer size.
405		 * Give up when limit is reached.
406		 */
407		if (newsize)
408			if (!sbreserve_locked(&so->so_rcv,
409					      newsize, so, NULL))
410				so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
411		m_adj(m, drop_hdrlen);	/* delayed header drop */
412		sbappendstream_locked(&so->so_rcv, m, 0);
413	}
414	/* NB: sorwakeup_locked() does an implicit unlock. */
415	sorwakeup_locked(so);
416	if (DELAY_ACK(tp, tlen)) {
417		tp->t_flags |= TF_DELACK;
418	} else {
419		tp->t_flags |= TF_ACKNOW;
420		tcp_output(tp);
421	}
422	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
423					    __func__, ti_locked));
424	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
425	INP_WLOCK_ASSERT(tp->t_inpcb);
426
427	if (tp->t_flags & TF_DELACK) {
428		tp->t_flags &= ~TF_DELACK;
429		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
430	}
431	INP_WUNLOCK(tp->t_inpcb);
432}
433
434/*
435 * The slow-path is the clone of the long long part
436 * of tcp_do_segment past all the fast-path stuff. We
437 * use it here by two different callers, the fast/slow and
438 * the fastack only.
439 */
440static void
441tcp_do_slowpath(struct mbuf *m, struct tcphdr *th, struct socket *so,
442		struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
443		int ti_locked, u_long tiwin, int thflags)
444{
445	int  acked, ourfinisacked, needoutput = 0;
446	int rstreason, todrop, win;
447	char *s;
448	struct in_conninfo *inc;
449	struct mbuf *mfree = NULL;
450#ifdef TCPDEBUG
451	/*
452	 * The size of tcp_saveipgen must be the size of the max ip header,
453	 * now IPv6.
454	 */
455	u_char tcp_saveipgen[IP6_HDR_LEN];
456	struct tcphdr tcp_savetcp;
457	short ostate = 0;
458#endif
459	/*
460	 * Calculate amount of space in receive window,
461	 * and then do TCP input processing.
462	 * Receive window is amount of space in rcv queue,
463	 * but not less than advertised window.
464	 */
465	inc = &tp->t_inpcb->inp_inc;
466	win = sbspace(&so->so_rcv);
467	if (win < 0)
468		win = 0;
469	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
470
471	switch (tp->t_state) {
472
473	/*
474	 * If the state is SYN_RECEIVED:
475	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
476	 */
477	case TCPS_SYN_RECEIVED:
478		if ((thflags & TH_ACK) &&
479		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
480		     SEQ_GT(th->th_ack, tp->snd_max))) {
481				rstreason = BANDLIM_RST_OPENPORT;
482				goto dropwithreset;
483		}
484		break;
485
486	/*
487	 * If the state is SYN_SENT:
488	 *	if seg contains a RST, then drop the connection.
489	 *	if seg does not contain SYN, then drop it.
490	 * Otherwise this is an acceptable SYN segment
491	 *	initialize tp->rcv_nxt and tp->irs
492	 *	if seg contains ack then advance tp->snd_una
493	 *	if seg contains an ECE and ECN support is enabled, the stream
494	 *	    is ECN capable.
495	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
496	 *	arrange for segment to be acked (eventually)
497	 *	continue processing rest of data/controls, beginning with URG
498	 */
499	case TCPS_SYN_SENT:
500		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
501			TCP_PROBE5(connect__refused, NULL, tp, m, tp, th);
502			tp = tcp_drop(tp, ECONNREFUSED);
503		}
504		if (thflags & TH_RST)
505			goto drop;
506		if (!(thflags & TH_SYN))
507			goto drop;
508
509		tp->irs = th->th_seq;
510		tcp_rcvseqinit(tp);
511		if (thflags & TH_ACK) {
512			TCPSTAT_INC(tcps_connects);
513			soisconnected(so);
514#ifdef MAC
515			mac_socketpeer_set_from_mbuf(m, so);
516#endif
517			/* Do window scaling on this connection? */
518			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
519				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
520				tp->rcv_scale = tp->request_r_scale;
521			}
522			tp->rcv_adv += imin(tp->rcv_wnd,
523			    TCP_MAXWIN << tp->rcv_scale);
524			tp->snd_una++;		/* SYN is acked */
525			/*
526			 * If there's data, delay ACK; if there's also a FIN
527			 * ACKNOW will be turned on later.
528			 */
529			if (DELAY_ACK(tp, tlen) && tlen != 0)
530				tcp_timer_activate(tp, TT_DELACK,
531				    tcp_delacktime);
532			else
533				tp->t_flags |= TF_ACKNOW;
534
535			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
536				tp->t_flags |= TF_ECN_PERMIT;
537				TCPSTAT_INC(tcps_ecn_shs);
538			}
539
540			/*
541			 * Received <SYN,ACK> in SYN_SENT[*] state.
542			 * Transitions:
543			 *	SYN_SENT  --> ESTABLISHED
544			 *	SYN_SENT* --> FIN_WAIT_1
545			 */
546			tp->t_starttime = ticks;
547			if (tp->t_flags & TF_NEEDFIN) {
548				tcp_state_change(tp, TCPS_FIN_WAIT_1);
549				tp->t_flags &= ~TF_NEEDFIN;
550				thflags &= ~TH_SYN;
551			} else {
552				tcp_state_change(tp, TCPS_ESTABLISHED);
553				TCP_PROBE5(connect__established, NULL, tp,
554				    m, tp, th);
555				cc_conn_init(tp);
556				tcp_timer_activate(tp, TT_KEEP,
557				    TP_KEEPIDLE(tp));
558			}
559		} else {
560			/*
561			 * Received initial SYN in SYN-SENT[*] state =>
562			 * simultaneous open.
563			 * If it succeeds, connection is * half-synchronized.
564			 * Otherwise, do 3-way handshake:
565			 *        SYN-SENT -> SYN-RECEIVED
566			 *        SYN-SENT* -> SYN-RECEIVED*
567			 */
568			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
569			tcp_timer_activate(tp, TT_REXMT, 0);
570			tcp_state_change(tp, TCPS_SYN_RECEIVED);
571		}
572
573		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
574		    "ti_locked %d", __func__, ti_locked));
575		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
576		INP_WLOCK_ASSERT(tp->t_inpcb);
577
578		/*
579		 * Advance th->th_seq to correspond to first data byte.
580		 * If data, trim to stay within window,
581		 * dropping FIN if necessary.
582		 */
583		th->th_seq++;
584		if (tlen > tp->rcv_wnd) {
585			todrop = tlen - tp->rcv_wnd;
586			m_adj(m, -todrop);
587			tlen = tp->rcv_wnd;
588			thflags &= ~TH_FIN;
589			TCPSTAT_INC(tcps_rcvpackafterwin);
590			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
591		}
592		tp->snd_wl1 = th->th_seq - 1;
593		tp->rcv_up = th->th_seq;
594		/*
595		 * Client side of transaction: already sent SYN and data.
596		 * If the remote host used T/TCP to validate the SYN,
597		 * our data will be ACK'd; if so, enter normal data segment
598		 * processing in the middle of step 5, ack processing.
599		 * Otherwise, goto step 6.
600		 */
601		if (thflags & TH_ACK)
602			goto process_ACK;
603
604		goto step6;
605
606	/*
607	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
608	 *      do normal processing.
609	 *
610	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
611	 */
612	case TCPS_LAST_ACK:
613	case TCPS_CLOSING:
614		break;  /* continue normal processing */
615	}
616
617	/*
618	 * States other than LISTEN or SYN_SENT.
619	 * First check the RST flag and sequence number since reset segments
620	 * are exempt from the timestamp and connection count tests.  This
621	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
622	 * below which allowed reset segments in half the sequence space
623	 * to fall though and be processed (which gives forged reset
624	 * segments with a random sequence number a 50 percent chance of
625	 * killing a connection).
626	 * Then check timestamp, if present.
627	 * Then check the connection count, if present.
628	 * Then check that at least some bytes of segment are within
629	 * receive window.  If segment begins before rcv_nxt,
630	 * drop leading data (and SYN); if nothing left, just ack.
631	 */
632	if (thflags & TH_RST) {
633		/*
634		 * RFC5961 Section 3.2
635		 *
636		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
637		 * - If RST is in window, we send challenge ACK.
638		 *
639		 * Note: to take into account delayed ACKs, we should
640		 *   test against last_ack_sent instead of rcv_nxt.
641		 * Note 2: we handle special case of closed window, not
642		 *   covered by the RFC.
643		 */
644		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
645		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
646		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
647			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
648			KASSERT(ti_locked == TI_RLOCKED,
649			    ("%s: TH_RST ti_locked %d, th %p tp %p",
650			    __func__, ti_locked, th, tp));
651			KASSERT(tp->t_state != TCPS_SYN_SENT,
652			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
653			    __func__, th, tp));
654
655			if (V_tcp_insecure_rst ||
656			    tp->last_ack_sent == th->th_seq) {
657				TCPSTAT_INC(tcps_drops);
658				/* Drop the connection. */
659				switch (tp->t_state) {
660				case TCPS_SYN_RECEIVED:
661					so->so_error = ECONNREFUSED;
662					goto close;
663				case TCPS_ESTABLISHED:
664				case TCPS_FIN_WAIT_1:
665				case TCPS_FIN_WAIT_2:
666				case TCPS_CLOSE_WAIT:
667				case TCPS_CLOSING:
668				case TCPS_LAST_ACK:
669					so->so_error = ECONNRESET;
670				close:
671					/* FALLTHROUGH */
672				default:
673					tp = tcp_close(tp);
674				}
675			} else {
676				TCPSTAT_INC(tcps_badrst);
677				/* Send challenge ACK. */
678				tcp_respond(tp, mtod(m, void *), th, m,
679				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
680				tp->last_ack_sent = tp->rcv_nxt;
681				m = NULL;
682			}
683		}
684		goto drop;
685	}
686
687	/*
688	 * RFC5961 Section 4.2
689	 * Send challenge ACK for any SYN in synchronized state.
690	 */
691	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT) {
692		KASSERT(ti_locked == TI_RLOCKED,
693		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
694		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
695
696		TCPSTAT_INC(tcps_badsyn);
697		if (V_tcp_insecure_syn &&
698		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
699		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
700			tp = tcp_drop(tp, ECONNRESET);
701			rstreason = BANDLIM_UNLIMITED;
702		} else {
703			/* Send challenge ACK. */
704			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
705			    tp->snd_nxt, TH_ACK);
706			tp->last_ack_sent = tp->rcv_nxt;
707			m = NULL;
708		}
709		goto drop;
710	}
711
712	/*
713	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
714	 * and it's less than ts_recent, drop it.
715	 */
716	if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
717	    TSTMP_LT(to->to_tsval, tp->ts_recent)) {
718
719		/* Check to see if ts_recent is over 24 days old.  */
720		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
721			/*
722			 * Invalidate ts_recent.  If this segment updates
723			 * ts_recent, the age will be reset later and ts_recent
724			 * will get a valid value.  If it does not, setting
725			 * ts_recent to zero will at least satisfy the
726			 * requirement that zero be placed in the timestamp
727			 * echo reply when ts_recent isn't valid.  The
728			 * age isn't reset until we get a valid ts_recent
729			 * because we don't want out-of-order segments to be
730			 * dropped when ts_recent is old.
731			 */
732			tp->ts_recent = 0;
733		} else {
734			TCPSTAT_INC(tcps_rcvduppack);
735			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
736			TCPSTAT_INC(tcps_pawsdrop);
737			if (tlen)
738				goto dropafterack;
739			goto drop;
740		}
741	}
742
743	/*
744	 * In the SYN-RECEIVED state, validate that the packet belongs to
745	 * this connection before trimming the data to fit the receive
746	 * window.  Check the sequence number versus IRS since we know
747	 * the sequence numbers haven't wrapped.  This is a partial fix
748	 * for the "LAND" DoS attack.
749	 */
750	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
751		rstreason = BANDLIM_RST_OPENPORT;
752		goto dropwithreset;
753	}
754
755	todrop = tp->rcv_nxt - th->th_seq;
756	if (todrop > 0) {
757		if (thflags & TH_SYN) {
758			thflags &= ~TH_SYN;
759			th->th_seq++;
760			if (th->th_urp > 1)
761				th->th_urp--;
762			else
763				thflags &= ~TH_URG;
764			todrop--;
765		}
766		/*
767		 * Following if statement from Stevens, vol. 2, p. 960.
768		 */
769		if (todrop > tlen
770		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
771			/*
772			 * Any valid FIN must be to the left of the window.
773			 * At this point the FIN must be a duplicate or out
774			 * of sequence; drop it.
775			 */
776			thflags &= ~TH_FIN;
777
778			/*
779			 * Send an ACK to resynchronize and drop any data.
780			 * But keep on processing for RST or ACK.
781			 */
782			tp->t_flags |= TF_ACKNOW;
783			todrop = tlen;
784			TCPSTAT_INC(tcps_rcvduppack);
785			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
786		} else {
787			TCPSTAT_INC(tcps_rcvpartduppack);
788			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
789		}
790		drop_hdrlen += todrop;	/* drop from the top afterwards */
791		th->th_seq += todrop;
792		tlen -= todrop;
793		if (th->th_urp > todrop)
794			th->th_urp -= todrop;
795		else {
796			thflags &= ~TH_URG;
797			th->th_urp = 0;
798		}
799	}
800
801	/*
802	 * If new data are received on a connection after the
803	 * user processes are gone, then RST the other end.
804	 */
805	if ((so->so_state & SS_NOFDREF) &&
806	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
807		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
808		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
809		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
810
811		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
812			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
813			    "after socket was closed, "
814			    "sending RST and removing tcpcb\n",
815			    s, __func__, tcpstates[tp->t_state], tlen);
816			free(s, M_TCPLOG);
817		}
818		tp = tcp_close(tp);
819		TCPSTAT_INC(tcps_rcvafterclose);
820		rstreason = BANDLIM_UNLIMITED;
821		goto dropwithreset;
822	}
823
824	/*
825	 * If segment ends after window, drop trailing data
826	 * (and PUSH and FIN); if nothing left, just ACK.
827	 */
828	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
829	if (todrop > 0) {
830		TCPSTAT_INC(tcps_rcvpackafterwin);
831		if (todrop >= tlen) {
832			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
833			/*
834			 * If window is closed can only take segments at
835			 * window edge, and have to drop data and PUSH from
836			 * incoming segments.  Continue processing, but
837			 * remember to ack.  Otherwise, drop segment
838			 * and ack.
839			 */
840			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
841				tp->t_flags |= TF_ACKNOW;
842				TCPSTAT_INC(tcps_rcvwinprobe);
843			} else
844				goto dropafterack;
845		} else
846			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
847		m_adj(m, -todrop);
848		tlen -= todrop;
849		thflags &= ~(TH_PUSH|TH_FIN);
850	}
851
852	/*
853	 * If last ACK falls within this segment's sequence numbers,
854	 * record its timestamp.
855	 * NOTE:
856	 * 1) That the test incorporates suggestions from the latest
857	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
858	 * 2) That updating only on newer timestamps interferes with
859	 *    our earlier PAWS tests, so this check should be solely
860	 *    predicated on the sequence space of this segment.
861	 * 3) That we modify the segment boundary check to be
862	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
863	 *    instead of RFC1323's
864	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
865	 *    This modified check allows us to overcome RFC1323's
866	 *    limitations as described in Stevens TCP/IP Illustrated
867	 *    Vol. 2 p.869. In such cases, we can still calculate the
868	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
869	 */
870	if ((to->to_flags & TOF_TS) != 0 &&
871	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
872	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
873		((thflags & (TH_SYN|TH_FIN)) != 0))) {
874		tp->ts_recent_age = tcp_ts_getticks();
875		tp->ts_recent = to->to_tsval;
876	}
877
878	/*
879	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
880	 * flag is on (half-synchronized state), then queue data for
881	 * later processing; else drop segment and return.
882	 */
883	if ((thflags & TH_ACK) == 0) {
884		if (tp->t_state == TCPS_SYN_RECEIVED ||
885		    (tp->t_flags & TF_NEEDSYN))
886			goto step6;
887		else if (tp->t_flags & TF_ACKNOW)
888			goto dropafterack;
889		else
890			goto drop;
891	}
892
893	/*
894	 * Ack processing.
895	 */
896	switch (tp->t_state) {
897
898	/*
899	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
900	 * ESTABLISHED state and continue processing.
901	 * The ACK was checked above.
902	 */
903	case TCPS_SYN_RECEIVED:
904
905		TCPSTAT_INC(tcps_connects);
906		soisconnected(so);
907		/* Do window scaling? */
908		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
909			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
910			tp->rcv_scale = tp->request_r_scale;
911			tp->snd_wnd = tiwin;
912		}
913		/*
914		 * Make transitions:
915		 *      SYN-RECEIVED  -> ESTABLISHED
916		 *      SYN-RECEIVED* -> FIN-WAIT-1
917		 */
918		tp->t_starttime = ticks;
919		if (tp->t_flags & TF_NEEDFIN) {
920			tcp_state_change(tp, TCPS_FIN_WAIT_1);
921			tp->t_flags &= ~TF_NEEDFIN;
922		} else {
923			tcp_state_change(tp, TCPS_ESTABLISHED);
924			TCP_PROBE5(accept__established, NULL, tp,
925			    m, tp, th);
926			cc_conn_init(tp);
927			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
928		}
929		/*
930		 * If segment contains data or ACK, will call tcp_reass()
931		 * later; if not, do so now to pass queued data to user.
932		 */
933		if (tlen == 0 && (thflags & TH_FIN) == 0)
934			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
935			    (struct mbuf *)0);
936		tp->snd_wl1 = th->th_seq - 1;
937		/* FALLTHROUGH */
938
939	/*
940	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
941	 * ACKs.  If the ack is in the range
942	 *	tp->snd_una < th->th_ack <= tp->snd_max
943	 * then advance tp->snd_una to th->th_ack and drop
944	 * data from the retransmission queue.  If this ACK reflects
945	 * more up to date window information we update our window information.
946	 */
947	case TCPS_ESTABLISHED:
948	case TCPS_FIN_WAIT_1:
949	case TCPS_FIN_WAIT_2:
950	case TCPS_CLOSE_WAIT:
951	case TCPS_CLOSING:
952	case TCPS_LAST_ACK:
953		if (SEQ_GT(th->th_ack, tp->snd_max)) {
954			TCPSTAT_INC(tcps_rcvacktoomuch);
955			goto dropafterack;
956		}
957		if ((tp->t_flags & TF_SACK_PERMIT) &&
958		    ((to->to_flags & TOF_SACK) ||
959		     !TAILQ_EMPTY(&tp->snd_holes)))
960			tcp_sack_doack(tp, to, th->th_ack);
961		else
962			/*
963			 * Reset the value so that previous (valid) value
964			 * from the last ack with SACK doesn't get used.
965			 */
966			tp->sackhint.sacked_bytes = 0;
967
968		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
969		hhook_run_tcp_est_in(tp, th, to);
970
971		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
972			if (tlen == 0 && tiwin == tp->snd_wnd) {
973				/*
974				 * If this is the first time we've seen a
975				 * FIN from the remote, this is not a
976				 * duplicate and it needs to be processed
977				 * normally.  This happens during a
978				 * simultaneous close.
979				 */
980				if ((thflags & TH_FIN) &&
981				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
982					tp->t_dupacks = 0;
983					break;
984				}
985				TCPSTAT_INC(tcps_rcvdupack);
986				/*
987				 * If we have outstanding data (other than
988				 * a window probe), this is a completely
989				 * duplicate ack (ie, window info didn't
990				 * change and FIN isn't set),
991				 * the ack is the biggest we've
992				 * seen and we've seen exactly our rexmt
993				 * threshold of them, assume a packet
994				 * has been dropped and retransmit it.
995				 * Kludge snd_nxt & the congestion
996				 * window so we send only this one
997				 * packet.
998				 *
999				 * We know we're losing at the current
1000				 * window size so do congestion avoidance
1001				 * (set ssthresh to half the current window
1002				 * and pull our congestion window back to
1003				 * the new ssthresh).
1004				 *
1005				 * Dup acks mean that packets have left the
1006				 * network (they're now cached at the receiver)
1007				 * so bump cwnd by the amount in the receiver
1008				 * to keep a constant cwnd packets in the
1009				 * network.
1010				 *
1011				 * When using TCP ECN, notify the peer that
1012				 * we reduced the cwnd.
1013				 */
1014				if (!tcp_timer_active(tp, TT_REXMT) ||
1015				    th->th_ack != tp->snd_una)
1016					tp->t_dupacks = 0;
1017				else if (++tp->t_dupacks > tcprexmtthresh ||
1018				     IN_FASTRECOVERY(tp->t_flags)) {
1019					cc_ack_received(tp, th, CC_DUPACK);
1020					if ((tp->t_flags & TF_SACK_PERMIT) &&
1021					    IN_FASTRECOVERY(tp->t_flags)) {
1022						int awnd;
1023
1024						/*
1025						 * Compute the amount of data in flight first.
1026						 * We can inject new data into the pipe iff
1027						 * we have less than 1/2 the original window's
1028						 * worth of data in flight.
1029						 */
1030						if (V_tcp_do_rfc6675_pipe)
1031							awnd = tcp_compute_pipe(tp);
1032						else
1033							awnd = (tp->snd_nxt - tp->snd_fack) +
1034								tp->sackhint.sack_bytes_rexmit;
1035
1036						if (awnd < tp->snd_ssthresh) {
1037							tp->snd_cwnd += tp->t_maxseg;
1038							if (tp->snd_cwnd > tp->snd_ssthresh)
1039								tp->snd_cwnd = tp->snd_ssthresh;
1040						}
1041					} else
1042						tp->snd_cwnd += tp->t_maxseg;
1043					(void) tp->t_fb->tfb_tcp_output(tp);
1044					goto drop;
1045				} else if (tp->t_dupacks == tcprexmtthresh) {
1046					tcp_seq onxt = tp->snd_nxt;
1047
1048					/*
1049					 * If we're doing sack, check to
1050					 * see if we're already in sack
1051					 * recovery. If we're not doing sack,
1052					 * check to see if we're in newreno
1053					 * recovery.
1054					 */
1055					if (tp->t_flags & TF_SACK_PERMIT) {
1056						if (IN_FASTRECOVERY(tp->t_flags)) {
1057							tp->t_dupacks = 0;
1058							break;
1059						}
1060					} else {
1061						if (SEQ_LEQ(th->th_ack,
1062						    tp->snd_recover)) {
1063							tp->t_dupacks = 0;
1064							break;
1065						}
1066					}
1067					/* Congestion signal before ack. */
1068					cc_cong_signal(tp, th, CC_NDUPACK);
1069					cc_ack_received(tp, th, CC_DUPACK);
1070					tcp_timer_activate(tp, TT_REXMT, 0);
1071					tp->t_rtttime = 0;
1072					if (tp->t_flags & TF_SACK_PERMIT) {
1073						TCPSTAT_INC(
1074						    tcps_sack_recovery_episode);
1075						tp->sack_newdata = tp->snd_nxt;
1076						tp->snd_cwnd = tp->t_maxseg;
1077						(void) tp->t_fb->tfb_tcp_output(tp);
1078						goto drop;
1079					}
1080					tp->snd_nxt = th->th_ack;
1081					tp->snd_cwnd = tp->t_maxseg;
1082					(void) tp->t_fb->tfb_tcp_output(tp);
1083					KASSERT(tp->snd_limited <= 2,
1084					    ("%s: tp->snd_limited too big",
1085					    __func__));
1086					tp->snd_cwnd = tp->snd_ssthresh +
1087					     tp->t_maxseg *
1088					     (tp->t_dupacks - tp->snd_limited);
1089					if (SEQ_GT(onxt, tp->snd_nxt))
1090						tp->snd_nxt = onxt;
1091					goto drop;
1092				} else if (V_tcp_do_rfc3042) {
1093					/*
1094					 * Process first and second duplicate
1095					 * ACKs. Each indicates a segment
1096					 * leaving the network, creating room
1097					 * for more. Make sure we can send a
1098					 * packet on reception of each duplicate
1099					 * ACK by increasing snd_cwnd by one
1100					 * segment. Restore the original
1101					 * snd_cwnd after packet transmission.
1102					 */
1103					cc_ack_received(tp, th, CC_DUPACK);
1104					u_long oldcwnd = tp->snd_cwnd;
1105					tcp_seq oldsndmax = tp->snd_max;
1106					u_int sent;
1107					int avail;
1108
1109					KASSERT(tp->t_dupacks == 1 ||
1110					    tp->t_dupacks == 2,
1111					    ("%s: dupacks not 1 or 2",
1112					    __func__));
1113					if (tp->t_dupacks == 1)
1114						tp->snd_limited = 0;
1115					tp->snd_cwnd =
1116					    (tp->snd_nxt - tp->snd_una) +
1117					    (tp->t_dupacks - tp->snd_limited) *
1118					    tp->t_maxseg;
1119					/*
1120					 * Only call tcp_output when there
1121					 * is new data available to be sent.
1122					 * Otherwise we would send pure ACKs.
1123					 */
1124					SOCKBUF_LOCK(&so->so_snd);
1125					avail = sbavail(&so->so_snd) -
1126					    (tp->snd_nxt - tp->snd_una);
1127					SOCKBUF_UNLOCK(&so->so_snd);
1128					if (avail > 0)
1129						(void) tp->t_fb->tfb_tcp_output(tp);
1130					sent = tp->snd_max - oldsndmax;
1131					if (sent > tp->t_maxseg) {
1132						KASSERT((tp->t_dupacks == 2 &&
1133						    tp->snd_limited == 0) ||
1134						   (sent == tp->t_maxseg + 1 &&
1135						    tp->t_flags & TF_SENTFIN),
1136						    ("%s: sent too much",
1137						    __func__));
1138						tp->snd_limited = 2;
1139					} else if (sent > 0)
1140						++tp->snd_limited;
1141					tp->snd_cwnd = oldcwnd;
1142					goto drop;
1143				}
1144			} else
1145				tp->t_dupacks = 0;
1146			break;
1147		}
1148
1149		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1150		    ("%s: th_ack <= snd_una", __func__));
1151
1152		/*
1153		 * If the congestion window was inflated to account
1154		 * for the other side's cached packets, retract it.
1155		 */
1156		if (IN_FASTRECOVERY(tp->t_flags)) {
1157			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1158				if (tp->t_flags & TF_SACK_PERMIT)
1159					tcp_sack_partialack(tp, th);
1160				else
1161					tcp_newreno_partial_ack(tp, th);
1162			} else
1163				cc_post_recovery(tp, th);
1164		}
1165		tp->t_dupacks = 0;
1166		/*
1167		 * If we reach this point, ACK is not a duplicate,
1168		 *     i.e., it ACKs something we sent.
1169		 */
1170		if (tp->t_flags & TF_NEEDSYN) {
1171			/*
1172			 * T/TCP: Connection was half-synchronized, and our
1173			 * SYN has been ACK'd (so connection is now fully
1174			 * synchronized).  Go to non-starred state,
1175			 * increment snd_una for ACK of SYN, and check if
1176			 * we can do window scaling.
1177			 */
1178			tp->t_flags &= ~TF_NEEDSYN;
1179			tp->snd_una++;
1180			/* Do window scaling? */
1181			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1182				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1183				tp->rcv_scale = tp->request_r_scale;
1184				/* Send window already scaled. */
1185			}
1186		}
1187
1188process_ACK:
1189		INP_WLOCK_ASSERT(tp->t_inpcb);
1190
1191		acked = BYTES_THIS_ACK(tp, th);
1192		TCPSTAT_INC(tcps_rcvackpack);
1193		TCPSTAT_ADD(tcps_rcvackbyte, acked);
1194
1195		/*
1196		 * If we just performed our first retransmit, and the ACK
1197		 * arrives within our recovery window, then it was a mistake
1198		 * to do the retransmit in the first place.  Recover our
1199		 * original cwnd and ssthresh, and proceed to transmit where
1200		 * we left off.
1201		 */
1202		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
1203		    (int)(ticks - tp->t_badrxtwin) < 0)
1204			cc_cong_signal(tp, th, CC_RTO_ERR);
1205
1206		/*
1207		 * If we have a timestamp reply, update smoothed
1208		 * round trip time.  If no timestamp is present but
1209		 * transmit timer is running and timed sequence
1210		 * number was acked, update smoothed round trip time.
1211		 * Since we now have an rtt measurement, cancel the
1212		 * timer backoff (cf., Phil Karn's retransmit alg.).
1213		 * Recompute the initial retransmit timer.
1214		 *
1215		 * Some boxes send broken timestamp replies
1216		 * during the SYN+ACK phase, ignore
1217		 * timestamps of 0 or we could calculate a
1218		 * huge RTT and blow up the retransmit timer.
1219		 */
1220		if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
1221			u_int t;
1222
1223			t = tcp_ts_getticks() - to->to_tsecr;
1224			if (!tp->t_rttlow || tp->t_rttlow > t)
1225				tp->t_rttlow = t;
1226			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
1227		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1228			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1229				tp->t_rttlow = ticks - tp->t_rtttime;
1230			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1231		}
1232
1233		/*
1234		 * If all outstanding data is acked, stop retransmit
1235		 * timer and remember to restart (more output or persist).
1236		 * If there is more data to be acked, restart retransmit
1237		 * timer, using current (possibly backed-off) value.
1238		 */
1239		if (th->th_ack == tp->snd_max) {
1240			tcp_timer_activate(tp, TT_REXMT, 0);
1241			needoutput = 1;
1242		} else if (!tcp_timer_active(tp, TT_PERSIST))
1243			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
1244
1245		/*
1246		 * If no data (only SYN) was ACK'd,
1247		 *    skip rest of ACK processing.
1248		 */
1249		if (acked == 0)
1250			goto step6;
1251
1252		/*
1253		 * Let the congestion control algorithm update congestion
1254		 * control related information. This typically means increasing
1255		 * the congestion window.
1256		 */
1257		cc_ack_received(tp, th, CC_ACK);
1258
1259		SOCKBUF_LOCK(&so->so_snd);
1260		if (acked > sbavail(&so->so_snd)) {
1261			tp->snd_wnd -= sbavail(&so->so_snd);
1262			mfree = sbcut_locked(&so->so_snd,
1263			    (int)sbavail(&so->so_snd));
1264			ourfinisacked = 1;
1265		} else {
1266			mfree = sbcut_locked(&so->so_snd, acked);
1267			tp->snd_wnd -= acked;
1268			ourfinisacked = 0;
1269		}
1270		/* NB: sowwakeup_locked() does an implicit unlock. */
1271		sowwakeup_locked(so);
1272		m_freem(mfree);
1273		/* Detect una wraparound. */
1274		if (!IN_RECOVERY(tp->t_flags) &&
1275		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
1276		    SEQ_LEQ(th->th_ack, tp->snd_recover))
1277			tp->snd_recover = th->th_ack - 1;
1278		/* XXXLAS: Can this be moved up into cc_post_recovery? */
1279		if (IN_RECOVERY(tp->t_flags) &&
1280		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
1281			EXIT_RECOVERY(tp->t_flags);
1282		}
1283		tp->snd_una = th->th_ack;
1284		if (tp->t_flags & TF_SACK_PERMIT) {
1285			if (SEQ_GT(tp->snd_una, tp->snd_recover))
1286				tp->snd_recover = tp->snd_una;
1287		}
1288		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1289			tp->snd_nxt = tp->snd_una;
1290
1291		switch (tp->t_state) {
1292
1293		/*
1294		 * In FIN_WAIT_1 STATE in addition to the processing
1295		 * for the ESTABLISHED state if our FIN is now acknowledged
1296		 * then enter FIN_WAIT_2.
1297		 */
1298		case TCPS_FIN_WAIT_1:
1299			if (ourfinisacked) {
1300				/*
1301				 * If we can't receive any more
1302				 * data, then closing user can proceed.
1303				 * Starting the timer is contrary to the
1304				 * specification, but if we don't get a FIN
1305				 * we'll hang forever.
1306				 *
1307				 * XXXjl:
1308				 * we should release the tp also, and use a
1309				 * compressed state.
1310				 */
1311				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1312					soisdisconnected(so);
1313					tcp_timer_activate(tp, TT_2MSL,
1314					    (tcp_fast_finwait2_recycle ?
1315					    tcp_finwait2_timeout :
1316					    TP_MAXIDLE(tp)));
1317				}
1318				tcp_state_change(tp, TCPS_FIN_WAIT_2);
1319			}
1320			break;
1321
1322		/*
1323		 * In CLOSING STATE in addition to the processing for
1324		 * the ESTABLISHED state if the ACK acknowledges our FIN
1325		 * then enter the TIME-WAIT state, otherwise ignore
1326		 * the segment.
1327		 */
1328		case TCPS_CLOSING:
1329			if (ourfinisacked) {
1330				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1331				tcp_twstart(tp);
1332				INP_INFO_RUNLOCK(&V_tcbinfo);
1333				m_freem(m);
1334				return;
1335			}
1336			break;
1337
1338		/*
1339		 * In LAST_ACK, we may still be waiting for data to drain
1340		 * and/or to be acked, as well as for the ack of our FIN.
1341		 * If our FIN is now acknowledged, delete the TCB,
1342		 * enter the closed state and return.
1343		 */
1344		case TCPS_LAST_ACK:
1345			if (ourfinisacked) {
1346				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1347				tp = tcp_close(tp);
1348				goto drop;
1349			}
1350			break;
1351		}
1352	}
1353
1354step6:
1355	INP_WLOCK_ASSERT(tp->t_inpcb);
1356
1357	/*
1358	 * Update window information.
1359	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1360	 */
1361	if ((thflags & TH_ACK) &&
1362	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1363	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1364	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1365		/* keep track of pure window updates */
1366		if (tlen == 0 &&
1367		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1368			TCPSTAT_INC(tcps_rcvwinupd);
1369		tp->snd_wnd = tiwin;
1370		tp->snd_wl1 = th->th_seq;
1371		tp->snd_wl2 = th->th_ack;
1372		if (tp->snd_wnd > tp->max_sndwnd)
1373			tp->max_sndwnd = tp->snd_wnd;
1374		needoutput = 1;
1375	}
1376
1377	/*
1378	 * Process segments with URG.
1379	 */
1380	if ((thflags & TH_URG) && th->th_urp &&
1381	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1382		/*
1383		 * This is a kludge, but if we receive and accept
1384		 * random urgent pointers, we'll crash in
1385		 * soreceive.  It's hard to imagine someone
1386		 * actually wanting to send this much urgent data.
1387		 */
1388		SOCKBUF_LOCK(&so->so_rcv);
1389		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
1390			th->th_urp = 0;			/* XXX */
1391			thflags &= ~TH_URG;		/* XXX */
1392			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
1393			goto dodata;			/* XXX */
1394		}
1395		/*
1396		 * If this segment advances the known urgent pointer,
1397		 * then mark the data stream.  This should not happen
1398		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1399		 * a FIN has been received from the remote side.
1400		 * In these states we ignore the URG.
1401		 *
1402		 * According to RFC961 (Assigned Protocols),
1403		 * the urgent pointer points to the last octet
1404		 * of urgent data.  We continue, however,
1405		 * to consider it to indicate the first octet
1406		 * of data past the urgent section as the original
1407		 * spec states (in one of two places).
1408		 */
1409		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1410			tp->rcv_up = th->th_seq + th->th_urp;
1411			so->so_oobmark = sbavail(&so->so_rcv) +
1412			    (tp->rcv_up - tp->rcv_nxt) - 1;
1413			if (so->so_oobmark == 0)
1414				so->so_rcv.sb_state |= SBS_RCVATMARK;
1415			sohasoutofband(so);
1416			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1417		}
1418		SOCKBUF_UNLOCK(&so->so_rcv);
1419		/*
1420		 * Remove out of band data so doesn't get presented to user.
1421		 * This can happen independent of advancing the URG pointer,
1422		 * but if two URG's are pending at once, some out-of-band
1423		 * data may creep in... ick.
1424		 */
1425		if (th->th_urp <= (u_long)tlen &&
1426		    !(so->so_options & SO_OOBINLINE)) {
1427			/* hdr drop is delayed */
1428			tcp_pulloutofband(so, th, m, drop_hdrlen);
1429		}
1430	} else {
1431		/*
1432		 * If no out of band data is expected,
1433		 * pull receive urgent pointer along
1434		 * with the receive window.
1435		 */
1436		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1437			tp->rcv_up = tp->rcv_nxt;
1438	}
1439dodata:							/* XXX */
1440	INP_WLOCK_ASSERT(tp->t_inpcb);
1441
1442	/*
1443	 * Process the segment text, merging it into the TCP sequencing queue,
1444	 * and arranging for acknowledgment of receipt if necessary.
1445	 * This process logically involves adjusting tp->rcv_wnd as data
1446	 * is presented to the user (this happens in tcp_usrreq.c,
1447	 * case PRU_RCVD).  If a FIN has already been received on this
1448	 * connection then we just ignore the text.
1449	 */
1450	if ((tlen || (thflags & TH_FIN)) &&
1451	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1452		tcp_seq save_start = th->th_seq;
1453		m_adj(m, drop_hdrlen);	/* delayed header drop */
1454		/*
1455		 * Insert segment which includes th into TCP reassembly queue
1456		 * with control block tp.  Set thflags to whether reassembly now
1457		 * includes a segment with FIN.  This handles the common case
1458		 * inline (segment is the next to be received on an established
1459		 * connection, and the queue is empty), avoiding linkage into
1460		 * and removal from the queue and repetition of various
1461		 * conversions.
1462		 * Set DELACK for segments received in order, but ack
1463		 * immediately when segments are out of order (so
1464		 * fast retransmit can work).
1465		 */
1466		if (th->th_seq == tp->rcv_nxt &&
1467		    SEGQ_EMPTY(tp) &&
1468		    TCPS_HAVEESTABLISHED(tp->t_state)) {
1469			if (DELAY_ACK(tp, tlen))
1470				tp->t_flags |= TF_DELACK;
1471			else
1472				tp->t_flags |= TF_ACKNOW;
1473			tp->rcv_nxt += tlen;
1474			thflags = th->th_flags & TH_FIN;
1475			TCPSTAT_INC(tcps_rcvpack);
1476			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1477			SOCKBUF_LOCK(&so->so_rcv);
1478			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1479				m_freem(m);
1480			else
1481				sbappendstream_locked(&so->so_rcv, m, 0);
1482			/* NB: sorwakeup_locked() does an implicit unlock. */
1483			sorwakeup_locked(so);
1484		} else {
1485			/*
1486			 * XXX: Due to the header drop above "th" is
1487			 * theoretically invalid by now.  Fortunately
1488			 * m_adj() doesn't actually frees any mbufs
1489			 * when trimming from the head.
1490			 */
1491			thflags = tcp_reass(tp, th, &save_start, &tlen, m);
1492			tp->t_flags |= TF_ACKNOW;
1493		}
1494		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
1495			tcp_update_sack_list(tp, save_start, save_start + tlen);
1496#if 0
1497		/*
1498		 * Note the amount of data that peer has sent into
1499		 * our window, in order to estimate the sender's
1500		 * buffer size.
1501		 * XXX: Unused.
1502		 */
1503		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
1504			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1505		else
1506			len = so->so_rcv.sb_hiwat;
1507#endif
1508	} else {
1509		m_freem(m);
1510		thflags &= ~TH_FIN;
1511	}
1512
1513	/*
1514	 * If FIN is received ACK the FIN and let the user know
1515	 * that the connection is closing.
1516	 */
1517	if (thflags & TH_FIN) {
1518		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1519			socantrcvmore(so);
1520			/*
1521			 * If connection is half-synchronized
1522			 * (ie NEEDSYN flag on) then delay ACK,
1523			 * so it may be piggybacked when SYN is sent.
1524			 * Otherwise, since we received a FIN then no
1525			 * more input can be expected, send ACK now.
1526			 */
1527			if (tp->t_flags & TF_NEEDSYN)
1528				tp->t_flags |= TF_DELACK;
1529			else
1530				tp->t_flags |= TF_ACKNOW;
1531			tp->rcv_nxt++;
1532		}
1533		switch (tp->t_state) {
1534
1535		/*
1536		 * In SYN_RECEIVED and ESTABLISHED STATES
1537		 * enter the CLOSE_WAIT state.
1538		 */
1539		case TCPS_SYN_RECEIVED:
1540			tp->t_starttime = ticks;
1541			/* FALLTHROUGH */
1542		case TCPS_ESTABLISHED:
1543			tcp_state_change(tp, TCPS_CLOSE_WAIT);
1544			break;
1545
1546		/*
1547		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1548		 * enter the CLOSING state.
1549		 */
1550		case TCPS_FIN_WAIT_1:
1551			tcp_state_change(tp, TCPS_CLOSING);
1552			break;
1553
1554		/*
1555		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1556		 * starting the time-wait timer, turning off the other
1557		 * standard timers.
1558		 */
1559		case TCPS_FIN_WAIT_2:
1560			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1561			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
1562			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
1563			    ti_locked));
1564
1565			tcp_twstart(tp);
1566			INP_INFO_RUNLOCK(&V_tcbinfo);
1567			return;
1568		}
1569	}
1570	if (ti_locked == TI_RLOCKED) {
1571		INP_INFO_RUNLOCK(&V_tcbinfo);
1572	}
1573	ti_locked = TI_UNLOCKED;
1574
1575#ifdef TCPDEBUG
1576	if (so->so_options & SO_DEBUG)
1577		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
1578			  &tcp_savetcp, 0);
1579#endif
1580	TCP_PROBE3(debug__input, tp, th, m);
1581
1582	/*
1583	 * Return any desired output.
1584	 */
1585	if (needoutput || (tp->t_flags & TF_ACKNOW))
1586		(void) tp->t_fb->tfb_tcp_output(tp);
1587
1588	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
1589	    __func__, ti_locked));
1590	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1591	INP_WLOCK_ASSERT(tp->t_inpcb);
1592
1593	if (tp->t_flags & TF_DELACK) {
1594		tp->t_flags &= ~TF_DELACK;
1595		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
1596	}
1597	INP_WUNLOCK(tp->t_inpcb);
1598	return;
1599
1600dropafterack:
1601	/*
1602	 * Generate an ACK dropping incoming segment if it occupies
1603	 * sequence space, where the ACK reflects our state.
1604	 *
1605	 * We can now skip the test for the RST flag since all
1606	 * paths to this code happen after packets containing
1607	 * RST have been dropped.
1608	 *
1609	 * In the SYN-RECEIVED state, don't send an ACK unless the
1610	 * segment we received passes the SYN-RECEIVED ACK test.
1611	 * If it fails send a RST.  This breaks the loop in the
1612	 * "LAND" DoS attack, and also prevents an ACK storm
1613	 * between two listening ports that have been sent forged
1614	 * SYN segments, each with the source address of the other.
1615	 */
1616	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
1617	    (SEQ_GT(tp->snd_una, th->th_ack) ||
1618	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
1619		rstreason = BANDLIM_RST_OPENPORT;
1620		goto dropwithreset;
1621	}
1622#ifdef TCPDEBUG
1623	if (so->so_options & SO_DEBUG)
1624		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
1625			  &tcp_savetcp, 0);
1626#endif
1627	TCP_PROBE3(debug__drop, tp, th, m);
1628	if (ti_locked == TI_RLOCKED) {
1629		INP_INFO_RUNLOCK(&V_tcbinfo);
1630	}
1631	ti_locked = TI_UNLOCKED;
1632
1633	tp->t_flags |= TF_ACKNOW;
1634	(void) tp->t_fb->tfb_tcp_output(tp);
1635	INP_WUNLOCK(tp->t_inpcb);
1636	m_freem(m);
1637	return;
1638
1639dropwithreset:
1640	if (ti_locked == TI_RLOCKED) {
1641		INP_INFO_RUNLOCK(&V_tcbinfo);
1642	}
1643	ti_locked = TI_UNLOCKED;
1644
1645	if (tp != NULL) {
1646		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1647		INP_WUNLOCK(tp->t_inpcb);
1648	} else
1649		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1650	return;
1651
1652drop:
1653	if (ti_locked == TI_RLOCKED) {
1654		INP_INFO_RUNLOCK(&V_tcbinfo);
1655		ti_locked = TI_UNLOCKED;
1656	}
1657#ifdef INVARIANTS
1658	else
1659		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1660#endif
1661
1662	/*
1663	 * Drop space held by incoming segment and return.
1664	 */
1665#ifdef TCPDEBUG
1666	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1667		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
1668			  &tcp_savetcp, 0);
1669#endif
1670	TCP_PROBE3(debug__drop, tp, th, m);
1671	if (tp != NULL)
1672		INP_WUNLOCK(tp->t_inpcb);
1673	m_freem(m);
1674}
1675
1676
1677/*
1678 * Do fast slow is a combination of the original
1679 * tcp_dosegment and a split fastpath, one function
1680 * for the fast-ack which also includes allowing fastpath
1681 * for window advanced in sequence acks. And also a
1682 * sub-function that handles the insequence data.
1683 */
1684void
1685tcp_do_segment_fastslow(struct mbuf *m, struct tcphdr *th, struct socket *so,
1686			struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1687			int ti_locked)
1688{
1689	int thflags;
1690	u_long tiwin;
1691	char *s;
1692	int can_enter;
1693	struct in_conninfo *inc;
1694	struct tcpopt to;
1695
1696	thflags = th->th_flags;
1697	inc = &tp->t_inpcb->inp_inc;
1698	/*
1699	 * If this is either a state-changing packet or current state isn't
1700	 * established, we require a write lock on tcbinfo.  Otherwise, we
1701	 * allow the tcbinfo to be in either alocked or unlocked, as the
1702	 * caller may have unnecessarily acquired a write lock due to a race.
1703	 */
1704	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1705	    tp->t_state != TCPS_ESTABLISHED) {
1706		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1707						  "SYN/FIN/RST/!EST", __func__, ti_locked));
1708		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1709	} else {
1710#ifdef INVARIANTS
1711		if (ti_locked == TI_RLOCKED) {
1712			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1713		} else {
1714			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1715							   "ti_locked: %d", __func__, ti_locked));
1716			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1717		}
1718#endif
1719	}
1720	INP_WLOCK_ASSERT(tp->t_inpcb);
1721	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1722					    __func__));
1723	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1724						__func__));
1725
1726	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1727		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1728			log(LOG_DEBUG, "%s; %s: "
1729			    "SYN|FIN segment ignored (based on "
1730			    "sysctl setting)\n", s, __func__);
1731			free(s, M_TCPLOG);
1732		}
1733		if (ti_locked == TI_RLOCKED) {
1734			INP_INFO_RUNLOCK(&V_tcbinfo);
1735		}
1736		INP_WUNLOCK(tp->t_inpcb);
1737		m_freem(m);
1738		return;
1739	}
1740
1741	/*
1742	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1743	 * check SEQ.ACK first.
1744	 */
1745	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1746	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1747		tcp_dropwithreset(m, th, tp, tlen, BANDLIM_UNLIMITED);
1748		if (ti_locked == TI_RLOCKED) {
1749			INP_INFO_RUNLOCK(&V_tcbinfo);
1750		}
1751		INP_WUNLOCK(tp->t_inpcb);
1752		return;
1753	}
1754
1755	tp->sackhint.last_sack_ack = 0;
1756
1757	/*
1758	 * Segment received on connection.
1759	 * Reset idle time and keep-alive timer.
1760	 * XXX: This should be done after segment
1761	 * validation to ignore broken/spoofed segs.
1762	 */
1763	tp->t_rcvtime = ticks;
1764	if (TCPS_HAVEESTABLISHED(tp->t_state))
1765		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1766
1767	/*
1768	 * Unscale the window into a 32-bit value.
1769	 * For the SYN_SENT state the scale is zero.
1770	 */
1771	tiwin = th->th_win << tp->snd_scale;
1772
1773	/*
1774	 * TCP ECN processing.
1775	 */
1776	if (tp->t_flags & TF_ECN_PERMIT) {
1777		if (thflags & TH_CWR)
1778			tp->t_flags &= ~TF_ECN_SND_ECE;
1779		switch (iptos & IPTOS_ECN_MASK) {
1780		case IPTOS_ECN_CE:
1781			tp->t_flags |= TF_ECN_SND_ECE;
1782			TCPSTAT_INC(tcps_ecn_ce);
1783			break;
1784		case IPTOS_ECN_ECT0:
1785			TCPSTAT_INC(tcps_ecn_ect0);
1786			break;
1787		case IPTOS_ECN_ECT1:
1788			TCPSTAT_INC(tcps_ecn_ect1);
1789			break;
1790		}
1791		/* Congestion experienced. */
1792		if (thflags & TH_ECE) {
1793			cc_cong_signal(tp, th, CC_ECN);
1794		}
1795	}
1796
1797	/*
1798	 * Parse options on any incoming segment.
1799	 */
1800	tcp_dooptions(&to, (u_char *)(th + 1),
1801		      (th->th_off << 2) - sizeof(struct tcphdr),
1802		      (thflags & TH_SYN) ? TO_SYN : 0);
1803
1804	/*
1805	 * If echoed timestamp is later than the current time,
1806	 * fall back to non RFC1323 RTT calculation.  Normalize
1807	 * timestamp if syncookies were used when this connection
1808	 * was established.
1809	 */
1810	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1811		to.to_tsecr -= tp->ts_offset;
1812		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1813			to.to_tsecr = 0;
1814	}
1815
1816	/*
1817	 * Process options only when we get SYN/ACK back. The SYN case
1818	 * for incoming connections is handled in tcp_syncache.
1819	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1820	 * or <SYN,ACK>) segment itself is never scaled.
1821	 * XXX this is traditional behavior, may need to be cleaned up.
1822	 */
1823	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1824		if ((to.to_flags & TOF_SCALE) &&
1825		    (tp->t_flags & TF_REQ_SCALE)) {
1826			tp->t_flags |= TF_RCVD_SCALE;
1827			tp->snd_scale = to.to_wscale;
1828		}
1829		/*
1830		 * Initial send window.  It will be updated with
1831		 * the next incoming segment to the scaled value.
1832		 */
1833		tp->snd_wnd = th->th_win;
1834		if (to.to_flags & TOF_TS) {
1835			tp->t_flags |= TF_RCVD_TSTMP;
1836			tp->ts_recent = to.to_tsval;
1837			tp->ts_recent_age = tcp_ts_getticks();
1838		}
1839		if (to.to_flags & TOF_MSS)
1840			tcp_mss(tp, to.to_mss);
1841		if ((tp->t_flags & TF_SACK_PERMIT) &&
1842		    (to.to_flags & TOF_SACKPERM) == 0)
1843			tp->t_flags &= ~TF_SACK_PERMIT;
1844	}
1845
1846	/*
1847	 * If timestamps were negotiated during SYN/ACK they should
1848	 * appear on every segment during this session and vice versa.
1849	 */
1850	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1851		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1852			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1853			    "no action\n", s, __func__);
1854			free(s, M_TCPLOG);
1855		}
1856	}
1857	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1858		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1859			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1860			    "no action\n", s, __func__);
1861			free(s, M_TCPLOG);
1862		}
1863	}
1864
1865	can_enter = 0;
1866	if (__predict_true((tlen == 0))) {
1867		/*
1868		 * The ack moved forward and we have a window (non-zero)
1869		 * <or>
1870		 * The ack did not move forward, but the window increased.
1871		 */
1872		if (__predict_true((SEQ_GT(th->th_ack, tp->snd_una) && tiwin) ||
1873				   ((th->th_ack == tp->snd_una) && tiwin && (tiwin > tp->snd_wnd)))) {
1874			can_enter = 1;
1875		}
1876	} else {
1877		/*
1878		 * Data incoming, use the old entry criteria
1879		 * for fast-path with data.
1880		 */
1881		if ((tiwin && tiwin == tp->snd_wnd)) {
1882			can_enter = 1;
1883		}
1884	}
1885	/*
1886	 * Header prediction: check for the two common cases
1887	 * of a uni-directional data xfer.  If the packet has
1888	 * no control flags, is in-sequence, the window didn't
1889	 * change and we're not retransmitting, it's a
1890	 * candidate.  If the length is zero and the ack moved
1891	 * forward, we're the sender side of the xfer.  Just
1892	 * free the data acked & wake any higher level process
1893	 * that was blocked waiting for space.  If the length
1894	 * is non-zero and the ack didn't move, we're the
1895	 * receiver side.  If we're getting packets in-order
1896	 * (the reassembly queue is empty), add the data to
1897	 * the socket buffer and note that we need a delayed ack.
1898	 * Make sure that the hidden state-flags are also off.
1899	 * Since we check for TCPS_ESTABLISHED first, it can only
1900	 * be TH_NEEDSYN.
1901	 */
1902	if (__predict_true(tp->t_state == TCPS_ESTABLISHED &&
1903	    th->th_seq == tp->rcv_nxt &&
1904	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1905	    tp->snd_nxt == tp->snd_max &&
1906	    can_enter &&
1907	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1908	    SEGQ_EMPTY(tp) &&
1909	    ((to.to_flags & TOF_TS) == 0 ||
1910	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)))) {
1911		if (__predict_true((tlen == 0) &&
1912		    (SEQ_LEQ(th->th_ack, tp->snd_max) &&
1913		     !IN_RECOVERY(tp->t_flags) &&
1914		     (to.to_flags & TOF_SACK) == 0 &&
1915		     TAILQ_EMPTY(&tp->snd_holes)))) {
1916			/* We are done */
1917			tcp_do_fastack(m, th, so, tp, &to, drop_hdrlen, tlen,
1918				       ti_locked, tiwin);
1919			return;
1920		} else if ((tlen) &&
1921			   (th->th_ack == tp->snd_una &&
1922			    tlen <= sbspace(&so->so_rcv))) {
1923			tcp_do_fastnewdata(m, th, so, tp, &to, drop_hdrlen, tlen,
1924					   ti_locked, tiwin);
1925			/* We are done */
1926			return;
1927		}
1928	}
1929	tcp_do_slowpath(m, th, so, tp, &to, drop_hdrlen, tlen,
1930			ti_locked, tiwin, thflags);
1931}
1932
1933
1934/*
1935 * This subfunction is used to try to highly optimize the
1936 * fast path. We again allow window updates that are
1937 * in sequence to remain in the fast-path. We also add
1938 * in the __predict's to attempt to help the compiler.
1939 * Note that if we return a 0, then we can *not* process
1940 * it and the caller should push the packet into the
1941 * slow-path.
1942 */
1943static int
1944tcp_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
1945	       struct tcpcb *tp, struct tcpopt *to, int drop_hdrlen, int tlen,
1946	       int ti_locked, u_long tiwin)
1947{
1948	int acked;
1949	int winup_only=0;
1950#ifdef TCPDEBUG
1951	/*
1952	 * The size of tcp_saveipgen must be the size of the max ip header,
1953	 * now IPv6.
1954	 */
1955	u_char tcp_saveipgen[IP6_HDR_LEN];
1956	struct tcphdr tcp_savetcp;
1957	short ostate = 0;
1958#endif
1959
1960
1961	if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
1962		/* Old ack, behind (or duplicate to) the last one rcv'd */
1963		return (0);
1964	}
1965	if (__predict_false(th->th_ack == tp->snd_una) &&
1966	    __predict_false(tiwin <= tp->snd_wnd)) {
1967		/* duplicate ack <or> a shrinking dup ack with shrinking window */
1968		return (0);
1969	}
1970	if (__predict_false(tiwin == 0)) {
1971		/* zero window */
1972		return (0);
1973	}
1974	if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
1975		/* Above what we have sent? */
1976		return (0);
1977	}
1978	if (__predict_false(tp->snd_nxt != tp->snd_max)) {
1979		/* We are retransmitting */
1980		return (0);
1981	}
1982	if (__predict_false(tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN))) {
1983		/* We need a SYN or a FIN, unlikely.. */
1984		return (0);
1985	}
1986	if((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
1987		/* Timestamp is behind .. old ack with seq wrap? */
1988		return (0);
1989	}
1990	if (__predict_false(IN_RECOVERY(tp->t_flags))) {
1991		/* Still recovering */
1992		return (0);
1993	}
1994	if (__predict_false(to->to_flags & TOF_SACK)) {
1995		/* Sack included in the ack..  */
1996		return (0);
1997	}
1998	if (!TAILQ_EMPTY(&tp->snd_holes)) {
1999		/* We have sack holes on our scoreboard */
2000		return (0);
2001	}
2002	/* Ok if we reach here, we can process a fast-ack */
2003
2004	/* Did the window get updated? */
2005	if (tiwin != tp->snd_wnd) {
2006		/* keep track of pure window updates */
2007		if (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) {
2008			winup_only = 1;
2009			TCPSTAT_INC(tcps_rcvwinupd);
2010		}
2011		tp->snd_wnd = tiwin;
2012		tp->snd_wl1 = th->th_seq;
2013		if (tp->snd_wnd > tp->max_sndwnd)
2014			tp->max_sndwnd = tp->snd_wnd;
2015	}
2016	/*
2017	 * Pull snd_wl2 up to prevent seq wrap relative
2018	 * to th_ack.
2019	 */
2020	tp->snd_wl2 = th->th_ack;
2021	/*
2022	 * If last ACK falls within this segment's sequence numbers,
2023	 * record the timestamp.
2024	 * NOTE that the test is modified according to the latest
2025	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2026	 */
2027	if ((to->to_flags & TOF_TS) != 0 &&
2028	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2029		tp->ts_recent_age = tcp_ts_getticks();
2030		tp->ts_recent = to->to_tsval;
2031	}
2032	/*
2033	 * This is a pure ack for outstanding data.
2034	 */
2035	if (ti_locked == TI_RLOCKED) {
2036		INP_INFO_RUNLOCK(&V_tcbinfo);
2037	}
2038	ti_locked = TI_UNLOCKED;
2039
2040	TCPSTAT_INC(tcps_predack);
2041
2042	/*
2043	 * "bad retransmit" recovery.
2044	 */
2045	if (tp->t_rxtshift == 1 &&
2046	    tp->t_flags & TF_PREVVALID &&
2047	    (int)(ticks - tp->t_badrxtwin) < 0) {
2048		cc_cong_signal(tp, th, CC_RTO_ERR);
2049	}
2050
2051	/*
2052	 * Recalculate the transmit timer / rtt.
2053	 *
2054	 * Some boxes send broken timestamp replies
2055	 * during the SYN+ACK phase, ignore
2056	 * timestamps of 0 or we could calculate a
2057	 * huge RTT and blow up the retransmit timer.
2058	 */
2059	if ((to->to_flags & TOF_TS) != 0 &&
2060	    to->to_tsecr) {
2061		u_int t;
2062
2063		t = tcp_ts_getticks() - to->to_tsecr;
2064		if (!tp->t_rttlow || tp->t_rttlow > t)
2065			tp->t_rttlow = t;
2066		tcp_xmit_timer(tp,
2067			       TCP_TS_TO_TICKS(t) + 1);
2068	} else if (tp->t_rtttime &&
2069		   SEQ_GT(th->th_ack, tp->t_rtseq)) {
2070		if (!tp->t_rttlow ||
2071		    tp->t_rttlow > ticks - tp->t_rtttime)
2072			tp->t_rttlow = ticks - tp->t_rtttime;
2073		tcp_xmit_timer(tp,
2074			       ticks - tp->t_rtttime);
2075	}
2076	if (winup_only == 0) {
2077		acked = BYTES_THIS_ACK(tp, th);
2078
2079		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2080		hhook_run_tcp_est_in(tp, th, to);
2081
2082		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2083		sbdrop(&so->so_snd, acked);
2084		if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2085		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2086			tp->snd_recover = th->th_ack - 1;
2087
2088		/*
2089		 * Let the congestion control algorithm update
2090		 * congestion control related information. This
2091		 * typically means increasing the congestion
2092		 * window.
2093		 */
2094		cc_ack_received(tp, th, CC_ACK);
2095
2096		tp->snd_una = th->th_ack;
2097		tp->t_dupacks = 0;
2098
2099		/*
2100		 * If all outstanding data are acked, stop
2101		 * retransmit timer, otherwise restart timer
2102		 * using current (possibly backed-off) value.
2103		 * If process is waiting for space,
2104		 * wakeup/selwakeup/signal.  If data
2105		 * are ready to send, let tcp_output
2106		 * decide between more output or persist.
2107		 */
2108#ifdef TCPDEBUG
2109		if (so->so_options & SO_DEBUG)
2110			tcp_trace(TA_INPUT, ostate, tp,
2111				  (void *)tcp_saveipgen,
2112				  &tcp_savetcp, 0);
2113#endif
2114		TCP_PROBE3(debug__input, tp, th, m);
2115		m_freem(m);
2116		if (tp->snd_una == tp->snd_max)
2117			tcp_timer_activate(tp, TT_REXMT, 0);
2118		else if (!tcp_timer_active(tp, TT_PERSIST))
2119			tcp_timer_activate(tp, TT_REXMT,
2120					   tp->t_rxtcur);
2121		/* Wake up the socket if we have room to write more */
2122		sowwakeup(so);
2123	} else {
2124		/*
2125		 * Window update only, just free the mbufs and
2126		 * send out whatever we can.
2127		 */
2128		m_freem(m);
2129	}
2130	if (sbavail(&so->so_snd))
2131		(void) tcp_output(tp);
2132	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2133					    __func__, ti_locked));
2134	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2135	INP_WLOCK_ASSERT(tp->t_inpcb);
2136
2137	if (tp->t_flags & TF_DELACK) {
2138		tp->t_flags &= ~TF_DELACK;
2139		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2140	}
2141	INP_WUNLOCK(tp->t_inpcb);
2142	return (1);
2143}
2144
2145/*
2146 * This tcp-do-segment concentrates on making the fastest
2147 * ack processing path. It does not have a fast-path for
2148 * data (it possibly could which would then eliminate the
2149 * need for fast-slow above). For a content distributor having
2150 * large outgoing elephants and very very little coming in
2151 * having no fastpath for data does not really help (since you
2152 * don't get much data in). The most important thing is
2153 * processing ack's quickly and getting the rest of the data
2154 * output to the peer as quickly as possible. This routine
2155 * seems to be about an overall 3% faster then the old
2156 * tcp_do_segment and keeps us in the fast-path for packets
2157 * much more (by allowing window updates to also stay in the fastpath).
2158 */
2159void
2160tcp_do_segment_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
2161		       struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
2162		       int ti_locked)
2163{
2164	int thflags;
2165	u_long tiwin;
2166	char *s;
2167	struct in_conninfo *inc;
2168	struct tcpopt to;
2169
2170	thflags = th->th_flags;
2171	inc = &tp->t_inpcb->inp_inc;
2172	/*
2173	 * If this is either a state-changing packet or current state isn't
2174	 * established, we require a write lock on tcbinfo.  Otherwise, we
2175	 * allow the tcbinfo to be in either alocked or unlocked, as the
2176	 * caller may have unnecessarily acquired a write lock due to a race.
2177	 */
2178	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
2179	    tp->t_state != TCPS_ESTABLISHED) {
2180		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
2181						  "SYN/FIN/RST/!EST", __func__, ti_locked));
2182		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2183	} else {
2184#ifdef INVARIANTS
2185		if (ti_locked == TI_RLOCKED) {
2186			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2187		} else {
2188			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
2189							   "ti_locked: %d", __func__, ti_locked));
2190			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2191		}
2192#endif
2193	}
2194	INP_WLOCK_ASSERT(tp->t_inpcb);
2195	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
2196					    __func__));
2197	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
2198						__func__));
2199
2200	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
2201		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2202			log(LOG_DEBUG, "%s; %s: "
2203			    "SYN|FIN segment ignored (based on "
2204			    "sysctl setting)\n", s, __func__);
2205			free(s, M_TCPLOG);
2206		}
2207		if (ti_locked == TI_RLOCKED) {
2208			INP_INFO_RUNLOCK(&V_tcbinfo);
2209		}
2210		INP_WUNLOCK(tp->t_inpcb);
2211		m_freem(m);
2212		return;
2213	}
2214
2215	/*
2216	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
2217	 * check SEQ.ACK first.
2218	 */
2219	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
2220	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
2221		tcp_dropwithreset(m, th, tp, tlen, BANDLIM_UNLIMITED);
2222		if (ti_locked == TI_RLOCKED) {
2223			INP_INFO_RUNLOCK(&V_tcbinfo);
2224		}
2225		INP_WUNLOCK(tp->t_inpcb);
2226		return;
2227	}
2228
2229	tp->sackhint.last_sack_ack = 0;
2230
2231	/*
2232	 * Segment received on connection.
2233	 * Reset idle time and keep-alive timer.
2234	 * XXX: This should be done after segment
2235	 * validation to ignore broken/spoofed segs.
2236	 */
2237	tp->t_rcvtime = ticks;
2238	if (TCPS_HAVEESTABLISHED(tp->t_state))
2239		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2240
2241	/*
2242	 * Unscale the window into a 32-bit value.
2243	 * For the SYN_SENT state the scale is zero.
2244	 */
2245	tiwin = th->th_win << tp->snd_scale;
2246
2247	/*
2248	 * TCP ECN processing.
2249	 */
2250	if (tp->t_flags & TF_ECN_PERMIT) {
2251		if (thflags & TH_CWR)
2252			tp->t_flags &= ~TF_ECN_SND_ECE;
2253		switch (iptos & IPTOS_ECN_MASK) {
2254		case IPTOS_ECN_CE:
2255			tp->t_flags |= TF_ECN_SND_ECE;
2256			TCPSTAT_INC(tcps_ecn_ce);
2257			break;
2258		case IPTOS_ECN_ECT0:
2259			TCPSTAT_INC(tcps_ecn_ect0);
2260			break;
2261		case IPTOS_ECN_ECT1:
2262			TCPSTAT_INC(tcps_ecn_ect1);
2263			break;
2264		}
2265		/* Congestion experienced. */
2266		if (thflags & TH_ECE) {
2267			cc_cong_signal(tp, th, CC_ECN);
2268		}
2269	}
2270
2271	/*
2272	 * Parse options on any incoming segment.
2273	 */
2274	tcp_dooptions(&to, (u_char *)(th + 1),
2275		      (th->th_off << 2) - sizeof(struct tcphdr),
2276		      (thflags & TH_SYN) ? TO_SYN : 0);
2277
2278	/*
2279	 * If echoed timestamp is later than the current time,
2280	 * fall back to non RFC1323 RTT calculation.  Normalize
2281	 * timestamp if syncookies were used when this connection
2282	 * was established.
2283	 */
2284	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
2285		to.to_tsecr -= tp->ts_offset;
2286		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
2287			to.to_tsecr = 0;
2288	}
2289
2290	/*
2291	 * Process options only when we get SYN/ACK back. The SYN case
2292	 * for incoming connections is handled in tcp_syncache.
2293	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
2294	 * or <SYN,ACK>) segment itself is never scaled.
2295	 * XXX this is traditional behavior, may need to be cleaned up.
2296	 */
2297	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2298		if ((to.to_flags & TOF_SCALE) &&
2299		    (tp->t_flags & TF_REQ_SCALE)) {
2300			tp->t_flags |= TF_RCVD_SCALE;
2301			tp->snd_scale = to.to_wscale;
2302		}
2303		/*
2304		 * Initial send window.  It will be updated with
2305		 * the next incoming segment to the scaled value.
2306		 */
2307		tp->snd_wnd = th->th_win;
2308		if (to.to_flags & TOF_TS) {
2309			tp->t_flags |= TF_RCVD_TSTMP;
2310			tp->ts_recent = to.to_tsval;
2311			tp->ts_recent_age = tcp_ts_getticks();
2312		}
2313		if (to.to_flags & TOF_MSS)
2314			tcp_mss(tp, to.to_mss);
2315		if ((tp->t_flags & TF_SACK_PERMIT) &&
2316		    (to.to_flags & TOF_SACKPERM) == 0)
2317			tp->t_flags &= ~TF_SACK_PERMIT;
2318	}
2319
2320	/*
2321	 * If timestamps were negotiated during SYN/ACK they should
2322	 * appear on every segment during this session and vice versa.
2323	 */
2324	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
2325		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2326			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
2327			    "no action\n", s, __func__);
2328			free(s, M_TCPLOG);
2329		}
2330	}
2331	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
2332		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2333			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
2334			    "no action\n", s, __func__);
2335			free(s, M_TCPLOG);
2336		}
2337	}
2338
2339	/*
2340	 * Header prediction: check for the two common cases
2341	 * of a uni-directional data xfer.  If the packet has
2342	 * no control flags, is in-sequence, the window didn't
2343	 * change and we're not retransmitting, it's a
2344	 * candidate.  If the length is zero and the ack moved
2345	 * forward, we're the sender side of the xfer.  Just
2346	 * free the data acked & wake any higher level process
2347	 * that was blocked waiting for space.  If the length
2348	 * is non-zero and the ack didn't move, we're the
2349	 * receiver side.  If we're getting packets in-order
2350	 * (the reassembly queue is empty), add the data to
2351	 * the socket buffer and note that we need a delayed ack.
2352	 * Make sure that the hidden state-flags are also off.
2353	 * Since we check for TCPS_ESTABLISHED first, it can only
2354	 * be TH_NEEDSYN.
2355	 */
2356	if (__predict_true(tp->t_state == TCPS_ESTABLISHED) &&
2357	    __predict_true(((to.to_flags & TOF_SACK) == 0)) &&
2358	    __predict_true(tlen == 0) &&
2359	    __predict_true((thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK) &&
2360	    __predict_true(SEGQ_EMPTY(tp)) &&
2361	    __predict_true(th->th_seq == tp->rcv_nxt)) {
2362		    if (tcp_fastack(m, th, so, tp, &to, drop_hdrlen, tlen,
2363				    ti_locked, tiwin)) {
2364			    return;
2365		    }
2366	}
2367	tcp_do_slowpath(m, th, so, tp, &to, drop_hdrlen, tlen,
2368			ti_locked, tiwin, thflags);
2369}
2370
2371struct tcp_function_block __tcp_fastslow = {
2372	.tfb_tcp_block_name = "fastslow",
2373	.tfb_tcp_output = tcp_output,
2374	.tfb_tcp_do_segment = tcp_do_segment_fastslow,
2375	.tfb_tcp_ctloutput = tcp_default_ctloutput,
2376};
2377
2378struct tcp_function_block __tcp_fastack = {
2379	.tfb_tcp_block_name = "fastack",
2380	.tfb_tcp_output = tcp_output,
2381	.tfb_tcp_do_segment = tcp_do_segment_fastack,
2382	.tfb_tcp_ctloutput = tcp_default_ctloutput
2383};
2384
2385static int
2386tcp_addfastpaths(module_t mod, int type, void *data)
2387{
2388	int err=0;
2389
2390	switch (type) {
2391	case MOD_LOAD:
2392		err = register_tcp_functions(&__tcp_fastack, M_WAITOK);
2393		if (err) {
2394			printf("Failed to register fastack module -- err:%d\n", err);
2395			return(err);
2396		}
2397		err = register_tcp_functions(&__tcp_fastslow, M_WAITOK);
2398		if (err) {
2399			printf("Failed to register fastslow module -- err:%d\n", err);
2400			deregister_tcp_functions(&__tcp_fastack);
2401			return(err);
2402		}
2403		break;
2404	case MOD_QUIESCE:
2405		if ((__tcp_fastslow.tfb_refcnt) ||( __tcp_fastack.tfb_refcnt)) {
2406			return(EBUSY);
2407		}
2408		break;
2409	case MOD_UNLOAD:
2410		err = deregister_tcp_functions(&__tcp_fastack);
2411		if (err == EBUSY)
2412			break;
2413		err = deregister_tcp_functions(&__tcp_fastslow);
2414		if (err == EBUSY)
2415			break;
2416		err = 0;
2417		break;
2418	default:
2419		return (EOPNOTSUPP);
2420	}
2421	return (err);
2422}
2423
2424static moduledata_t new_tcp_fastpaths = {
2425	.name = "tcp_fastpaths",
2426	.evhand = tcp_addfastpaths,
2427	.priv = 0
2428};
2429
2430MODULE_VERSION(kern_tcpfastpaths, 1);
2431DECLARE_MODULE(kern_tcpfastpaths, new_tcp_fastpaths, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
2432