1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 *	The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	@(#)tcp_sack.c	8.12 (Berkeley) 5/24/95
31 */
32
33/*-
34 *	@@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
35 *
36 * NRL grants permission for redistribution and use in source and binary
37 * forms, with or without modification, of the software and documentation
38 * created at NRL provided that the following conditions are met:
39 *
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 *    must display the following acknowledgements:
47 *	This product includes software developed by the University of
48 *	California, Berkeley and its contributors.
49 *	This product includes software developed at the Information
50 *	Technology Division, US Naval Research Laboratory.
51 * 4. Neither the name of the NRL nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
56 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
58 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
59 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
62 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
63 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
64 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
65 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 *
67 * The views and conclusions contained in the software and documentation
68 * are those of the authors and should not be interpreted as representing
69 * official policies, either expressed or implied, of the US Naval
70 * Research Laboratory (NRL).
71 */
72
73#include <sys/cdefs.h>
74__FBSDID("$FreeBSD: stable/11/sys/netinet/tcp_sack.c 360282 2020-04-24 21:30:31Z tuexen $");
75
76#include "opt_inet.h"
77#include "opt_inet6.h"
78#include "opt_tcpdebug.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/sysctl.h>
84#include <sys/malloc.h>
85#include <sys/mbuf.h>
86#include <sys/proc.h>		/* for proc0 declaration */
87#include <sys/protosw.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/syslog.h>
91#include <sys/systm.h>
92
93#include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94
95#include <vm/uma.h>
96
97#include <net/if.h>
98#include <net/if_var.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/in_systm.h>
104#include <netinet/ip.h>
105#include <netinet/in_var.h>
106#include <netinet/in_pcb.h>
107#include <netinet/ip_var.h>
108#include <netinet/ip6.h>
109#include <netinet/icmp6.h>
110#include <netinet6/nd6.h>
111#include <netinet6/ip6_var.h>
112#include <netinet6/in6_pcb.h>
113#include <netinet/tcp.h>
114#include <netinet/tcp_fsm.h>
115#include <netinet/tcp_seq.h>
116#include <netinet/tcp_timer.h>
117#include <netinet/tcp_var.h>
118#include <netinet6/tcp6_var.h>
119#include <netinet/tcpip.h>
120#ifdef TCPDEBUG
121#include <netinet/tcp_debug.h>
122#endif /* TCPDEBUG */
123
124#include <machine/in_cksum.h>
125
126VNET_DECLARE(struct uma_zone *, sack_hole_zone);
127#define	V_sack_hole_zone		VNET(sack_hole_zone)
128
129SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
130VNET_DEFINE(int, tcp_do_sack) = 1;
131#define	V_tcp_do_sack			VNET(tcp_do_sack)
132SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
133    &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
134
135VNET_DEFINE(int, tcp_sack_maxholes) = 128;
136#define	V_tcp_sack_maxholes		VNET(tcp_sack_maxholes)
137SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
138    &VNET_NAME(tcp_sack_maxholes), 0,
139    "Maximum number of TCP SACK holes allowed per connection");
140
141VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
142#define	V_tcp_sack_globalmaxholes	VNET(tcp_sack_globalmaxholes)
143SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
144    &VNET_NAME(tcp_sack_globalmaxholes), 0,
145    "Global maximum number of TCP SACK holes");
146
147VNET_DEFINE(int, tcp_sack_globalholes) = 0;
148#define	V_tcp_sack_globalholes		VNET(tcp_sack_globalholes)
149SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
150    &VNET_NAME(tcp_sack_globalholes), 0,
151    "Global number of TCP SACK holes currently allocated");
152
153
154/*
155 * This function will find overlaps with the currently stored sackblocks
156 * and add any overlap as a dsack block upfront
157 */
158void
159tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
160{
161	struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
162	int i, j, n, identical;
163	tcp_seq start, end;
164
165	INP_WLOCK_ASSERT(tp->t_inpcb);
166
167	KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
168
169	if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
170	    ((rcv_end == tp->rcv_nxt) &&
171	     (tp->rcv_numsacks > 0 ) &&
172	     (tp->sackblks[0].end == tp->rcv_nxt))) {
173		saved_blks[0].start = rcv_start;
174		saved_blks[0].end = rcv_end;
175	} else {
176		saved_blks[0].start = saved_blks[0].end = 0;
177	}
178
179	head_blk.start = head_blk.end = 0;
180	mid_blk.start = rcv_start;
181	mid_blk.end = rcv_end;
182	identical = 0;
183
184	for (i = 0; i < tp->rcv_numsacks; i++) {
185		start = tp->sackblks[i].start;
186		end = tp->sackblks[i].end;
187		if (SEQ_LT(rcv_end, start)) {
188			/* pkt left to sack blk */
189			continue;
190		}
191		if (SEQ_GT(rcv_start, end)) {
192			/* pkt right to sack blk */
193			continue;
194		}
195		if (SEQ_GT(tp->rcv_nxt, end)) {
196			if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
197			    (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
198			    (head_blk.start == head_blk.end))) {
199				head_blk.start = SEQ_MAX(rcv_start, start);
200				head_blk.end = SEQ_MIN(rcv_end, end);
201			}
202			continue;
203		}
204		if (((head_blk.start == head_blk.end) ||
205		     SEQ_LT(start, head_blk.start)) &&
206		     (SEQ_GT(end, rcv_start) &&
207		      SEQ_LEQ(start, rcv_end))) {
208			head_blk.start = start;
209			head_blk.end = end;
210		}
211		mid_blk.start = SEQ_MIN(mid_blk.start, start);
212		mid_blk.end = SEQ_MAX(mid_blk.end, end);
213		if ((mid_blk.start == start) &&
214		    (mid_blk.end == end))
215			identical = 1;
216	}
217	if (SEQ_LT(head_blk.start, head_blk.end)) {
218		/* store overlapping range */
219		saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
220		saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
221	}
222	n = 1;
223	/*
224	 * Second, if not ACKed, store the SACK block that
225	 * overlaps with the DSACK block unless it is identical
226	 */
227	if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
228	    !((mid_blk.start == saved_blks[0].start) &&
229	    (mid_blk.end == saved_blks[0].end))) ||
230	    identical == 1) {
231		saved_blks[n].start = mid_blk.start;
232		saved_blks[n++].end = mid_blk.end;
233	}
234	for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
235		if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
236		      SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
237		    (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
238		saved_blks[n++] = tp->sackblks[j];
239	}
240	j = 0;
241	for (i = 0; i < n; i++) {
242		/* we can end up with a stale inital entry */
243		if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
244			tp->sackblks[j++] = saved_blks[i];
245		}
246	}
247	tp->rcv_numsacks = j;
248}
249
250/*
251 * This function is called upon receipt of new valid data (while not in
252 * header prediction mode), and it updates the ordered list of sacks.
253 */
254void
255tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
256{
257	/*
258	 * First reported block MUST be the most recent one.  Subsequent
259	 * blocks SHOULD be in the order in which they arrived at the
260	 * receiver.  These two conditions make the implementation fully
261	 * compliant with RFC 2018.
262	 */
263	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
264	int num_head, num_saved, i;
265
266	INP_WLOCK_ASSERT(tp->t_inpcb);
267
268	/* Check arguments. */
269	KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
270
271	if ((rcv_start == rcv_end) &&
272	    (tp->rcv_numsacks >= 1) &&
273	    (rcv_end == tp->sackblks[0].end)) {
274		/* retaining DSACK block below rcv_nxt (todrop) */
275		head_blk = tp->sackblks[0];
276	} else {
277		/* SACK block for the received segment. */
278		head_blk.start = rcv_start;
279		head_blk.end = rcv_end;
280	}
281
282	/*
283	 * Merge updated SACK blocks into head_blk, and save unchanged SACK
284	 * blocks into saved_blks[].  num_saved will have the number of the
285	 * saved SACK blocks.
286	 */
287	num_saved = 0;
288	for (i = 0; i < tp->rcv_numsacks; i++) {
289		tcp_seq start = tp->sackblks[i].start;
290		tcp_seq end = tp->sackblks[i].end;
291		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
292			/*
293			 * Discard this SACK block.
294			 */
295		} else if (SEQ_LEQ(head_blk.start, end) &&
296			   SEQ_GEQ(head_blk.end, start)) {
297			/*
298			 * Merge this SACK block into head_blk.  This SACK
299			 * block itself will be discarded.
300			 */
301			/*
302			 * |-|
303			 *   |---|  merge
304			 *
305			 *     |-|
306			 * |---|    merge
307			 *
308			 * |-----|
309			 *   |-|    DSACK smaller
310			 *
311			 *   |-|
312			 * |-----|  DSACK smaller
313			 */
314			if (head_blk.start == end)
315				head_blk.start = start;
316			else if (head_blk.end == start)
317				head_blk.end = end;
318			else {
319				if (SEQ_LT(head_blk.start, start)) {
320					tcp_seq temp = start;
321					start = head_blk.start;
322					head_blk.start = temp;
323				}
324				if (SEQ_GT(head_blk.end, end)) {
325					tcp_seq temp = end;
326					end = head_blk.end;
327					head_blk.end = temp;
328				}
329				if ((head_blk.start != start) ||
330				    (head_blk.end != end)) {
331					if ((num_saved >= 1) &&
332					   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
333					   SEQ_LEQ(saved_blks[num_saved-1].end, end))
334						num_saved--;
335					saved_blks[num_saved].start = start;
336					saved_blks[num_saved].end = end;
337					num_saved++;
338				}
339			}
340		} else {
341			/*
342			 * This block supercedes the prior block
343			 */
344			if ((num_saved >= 1) &&
345			   SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
346			   SEQ_LEQ(saved_blks[num_saved-1].end, end))
347				num_saved--;
348			/*
349			 * Save this SACK block.
350			 */
351			saved_blks[num_saved].start = start;
352			saved_blks[num_saved].end = end;
353			num_saved++;
354		}
355	}
356
357	/*
358	 * Update SACK list in tp->sackblks[].
359	 */
360	num_head = 0;
361	if (SEQ_LT(rcv_start, rcv_end)) {
362		/*
363		 * The received data segment is an out-of-order segment.  Put
364		 * head_blk at the top of SACK list.
365		 */
366		tp->sackblks[0] = head_blk;
367		num_head = 1;
368		/*
369		 * If the number of saved SACK blocks exceeds its limit,
370		 * discard the last SACK block.
371		 */
372		if (num_saved >= MAX_SACK_BLKS)
373			num_saved--;
374	}
375	if ((rcv_start == rcv_end) &&
376	    (rcv_start == tp->sackblks[0].end)) {
377		num_head = 1;
378	}
379	if (num_saved > 0) {
380		/*
381		 * Copy the saved SACK blocks back.
382		 */
383		bcopy(saved_blks, &tp->sackblks[num_head],
384		      sizeof(struct sackblk) * num_saved);
385	}
386
387	/* Save the number of SACK blocks. */
388	tp->rcv_numsacks = num_head + num_saved;
389}
390
391void
392tcp_clean_dsack_blocks(struct tcpcb *tp)
393{
394	struct sackblk saved_blks[MAX_SACK_BLKS];
395	int num_saved, i;
396
397	INP_WLOCK_ASSERT(tp->t_inpcb);
398	/*
399	 * Clean up any DSACK blocks that
400	 * are in our queue of sack blocks.
401	 *
402	 */
403	num_saved = 0;
404	for (i = 0; i < tp->rcv_numsacks; i++) {
405		tcp_seq start = tp->sackblks[i].start;
406		tcp_seq end = tp->sackblks[i].end;
407		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
408			/*
409			 * Discard this D-SACK block.
410			 */
411			continue;
412		}
413		/*
414		 * Save this SACK block.
415		 */
416		saved_blks[num_saved].start = start;
417		saved_blks[num_saved].end = end;
418		num_saved++;
419	}
420	if (num_saved > 0) {
421		/*
422		 * Copy the saved SACK blocks back.
423		 */
424		bcopy(saved_blks, &tp->sackblks[0],
425		      sizeof(struct sackblk) * num_saved);
426	}
427	tp->rcv_numsacks = num_saved;
428}
429
430/*
431 * Delete all receiver-side SACK information.
432 */
433void
434tcp_clean_sackreport(struct tcpcb *tp)
435{
436	int i;
437
438	INP_WLOCK_ASSERT(tp->t_inpcb);
439	tp->rcv_numsacks = 0;
440	for (i = 0; i < MAX_SACK_BLKS; i++)
441		tp->sackblks[i].start = tp->sackblks[i].end=0;
442}
443
444/*
445 * Allocate struct sackhole.
446 */
447static struct sackhole *
448tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
449{
450	struct sackhole *hole;
451
452	if (tp->snd_numholes >= V_tcp_sack_maxholes ||
453	    V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
454		TCPSTAT_INC(tcps_sack_sboverflow);
455		return NULL;
456	}
457
458	hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
459	if (hole == NULL)
460		return NULL;
461
462	hole->start = start;
463	hole->end = end;
464	hole->rxmit = start;
465
466	tp->snd_numholes++;
467	atomic_add_int(&V_tcp_sack_globalholes, 1);
468
469	return hole;
470}
471
472/*
473 * Free struct sackhole.
474 */
475static void
476tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
477{
478
479	uma_zfree(V_sack_hole_zone, hole);
480
481	tp->snd_numholes--;
482	atomic_subtract_int(&V_tcp_sack_globalholes, 1);
483
484	KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
485	KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
486}
487
488/*
489 * Insert new SACK hole into scoreboard.
490 */
491static struct sackhole *
492tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
493    struct sackhole *after)
494{
495	struct sackhole *hole;
496
497	/* Allocate a new SACK hole. */
498	hole = tcp_sackhole_alloc(tp, start, end);
499	if (hole == NULL)
500		return NULL;
501
502	/* Insert the new SACK hole into scoreboard. */
503	if (after != NULL)
504		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
505	else
506		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
507
508	/* Update SACK hint. */
509	if (tp->sackhint.nexthole == NULL)
510		tp->sackhint.nexthole = hole;
511
512	return hole;
513}
514
515/*
516 * Remove SACK hole from scoreboard.
517 */
518static void
519tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
520{
521
522	/* Update SACK hint. */
523	if (tp->sackhint.nexthole == hole)
524		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
525
526	/* Remove this SACK hole. */
527	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
528
529	/* Free this SACK hole. */
530	tcp_sackhole_free(tp, hole);
531}
532
533/*
534 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
535 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
536 * the sequence space).
537 * Returns 1 if incoming ACK has previously unknown SACK information,
538 * 0 otherwise. Note: We treat (snd_una, th_ack) as a sack block so any changes
539 * to that (i.e. left edge moving) would also be considered a change in SACK
540 * information which is slightly different than rfc6675.
541 */
542int
543tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
544{
545	struct sackhole *cur, *temp;
546	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
547	int i, j, num_sack_blks, sack_changed;
548
549	INP_WLOCK_ASSERT(tp->t_inpcb);
550
551	num_sack_blks = 0;
552	sack_changed = 0;
553	/*
554	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
555	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
556	 */
557	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
558		sack_blocks[num_sack_blks].start = tp->snd_una;
559		sack_blocks[num_sack_blks++].end = th_ack;
560	}
561	/*
562	 * Append received valid SACK blocks to sack_blocks[], but only if we
563	 * received new blocks from the other side.
564	 */
565	if (to->to_flags & TOF_SACK) {
566		tp->sackhint.sacked_bytes = 0;	/* reset */
567		for (i = 0; i < to->to_nsacks; i++) {
568			bcopy((to->to_sacks + i * TCPOLEN_SACK),
569			    &sack, sizeof(sack));
570			sack.start = ntohl(sack.start);
571			sack.end = ntohl(sack.end);
572			if (SEQ_GT(sack.end, sack.start) &&
573			    SEQ_GT(sack.start, tp->snd_una) &&
574			    SEQ_GT(sack.start, th_ack) &&
575			    SEQ_LT(sack.start, tp->snd_max) &&
576			    SEQ_GT(sack.end, tp->snd_una) &&
577			    SEQ_LEQ(sack.end, tp->snd_max)) {
578				sack_blocks[num_sack_blks++] = sack;
579				tp->sackhint.sacked_bytes +=
580				    (sack.end-sack.start);
581			}
582		}
583	}
584	/*
585	 * Return if SND.UNA is not advanced and no valid SACK block is
586	 * received.
587	 */
588	if (num_sack_blks == 0)
589		return (sack_changed);
590
591	/*
592	 * Sort the SACK blocks so we can update the scoreboard with just one
593	 * pass. The overhead of sorting up to 4+1 elements is less than
594	 * making up to 4+1 passes over the scoreboard.
595	 */
596	for (i = 0; i < num_sack_blks; i++) {
597		for (j = i + 1; j < num_sack_blks; j++) {
598			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
599				sack = sack_blocks[i];
600				sack_blocks[i] = sack_blocks[j];
601				sack_blocks[j] = sack;
602			}
603		}
604	}
605	if (TAILQ_EMPTY(&tp->snd_holes))
606		/*
607		 * Empty scoreboard. Need to initialize snd_fack (it may be
608		 * uninitialized or have a bogus value). Scoreboard holes
609		 * (from the sack blocks received) are created later below
610		 * (in the logic that adds holes to the tail of the
611		 * scoreboard).
612		 */
613		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
614	/*
615	 * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
616	 * SACK holes (snd_holes) are traversed from their tails with just
617	 * one pass in order to reduce the number of compares especially when
618	 * the bandwidth-delay product is large.
619	 *
620	 * Note: Typically, in the first RTT of SACK recovery, the highest
621	 * three or four SACK blocks with the same ack number are received.
622	 * In the second RTT, if retransmitted data segments are not lost,
623	 * the highest three or four SACK blocks with ack number advancing
624	 * are received.
625	 */
626	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
627	tp->sackhint.last_sack_ack = sblkp->end;
628	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
629		/*
630		 * The highest SACK block is beyond fack.  Append new SACK
631		 * hole at the tail.  If the second or later highest SACK
632		 * blocks are also beyond the current fack, they will be
633		 * inserted by way of hole splitting in the while-loop below.
634		 */
635		temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
636		if (temp != NULL) {
637			tp->snd_fack = sblkp->end;
638			/* Go to the previous sack block. */
639			sblkp--;
640			sack_changed = 1;
641		} else {
642			/*
643			 * We failed to add a new hole based on the current
644			 * sack block.  Skip over all the sack blocks that
645			 * fall completely to the right of snd_fack and
646			 * proceed to trim the scoreboard based on the
647			 * remaining sack blocks.  This also trims the
648			 * scoreboard for th_ack (which is sack_blocks[0]).
649			 */
650			while (sblkp >= sack_blocks &&
651			       SEQ_LT(tp->snd_fack, sblkp->start))
652				sblkp--;
653			if (sblkp >= sack_blocks &&
654			    SEQ_LT(tp->snd_fack, sblkp->end))
655				tp->snd_fack = sblkp->end;
656		}
657	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
658		/* fack is advanced. */
659		tp->snd_fack = sblkp->end;
660		sack_changed = 1;
661	}
662	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
663	/*
664	 * Since the incoming sack blocks are sorted, we can process them
665	 * making one sweep of the scoreboard.
666	 */
667	while (sblkp >= sack_blocks  && cur != NULL) {
668		if (SEQ_GEQ(sblkp->start, cur->end)) {
669			/*
670			 * SACKs data beyond the current hole.  Go to the
671			 * previous sack block.
672			 */
673			sblkp--;
674			continue;
675		}
676		if (SEQ_LEQ(sblkp->end, cur->start)) {
677			/*
678			 * SACKs data before the current hole.  Go to the
679			 * previous hole.
680			 */
681			cur = TAILQ_PREV(cur, sackhole_head, scblink);
682			continue;
683		}
684		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
685		KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
686		    ("sackhint bytes rtx >= 0"));
687		sack_changed = 1;
688		if (SEQ_LEQ(sblkp->start, cur->start)) {
689			/* Data acks at least the beginning of hole. */
690			if (SEQ_GEQ(sblkp->end, cur->end)) {
691				/* Acks entire hole, so delete hole. */
692				temp = cur;
693				cur = TAILQ_PREV(cur, sackhole_head, scblink);
694				tcp_sackhole_remove(tp, temp);
695				/*
696				 * The sack block may ack all or part of the
697				 * next hole too, so continue onto the next
698				 * hole.
699				 */
700				continue;
701			} else {
702				/* Move start of hole forward. */
703				cur->start = sblkp->end;
704				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
705			}
706		} else {
707			/* Data acks at least the end of hole. */
708			if (SEQ_GEQ(sblkp->end, cur->end)) {
709				/* Move end of hole backward. */
710				cur->end = sblkp->start;
711				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
712			} else {
713				/*
714				 * ACKs some data in middle of a hole; need
715				 * to split current hole
716				 */
717				temp = tcp_sackhole_insert(tp, sblkp->end,
718				    cur->end, cur);
719				if (temp != NULL) {
720					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
721						temp->rxmit = cur->rxmit;
722						tp->sackhint.sack_bytes_rexmit
723						    += (temp->rxmit
724						    - temp->start);
725					}
726					cur->end = sblkp->start;
727					cur->rxmit = SEQ_MIN(cur->rxmit,
728					    cur->end);
729				}
730			}
731		}
732		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
733		/*
734		 * Testing sblkp->start against cur->start tells us whether
735		 * we're done with the sack block or the sack hole.
736		 * Accordingly, we advance one or the other.
737		 */
738		if (SEQ_LEQ(sblkp->start, cur->start))
739			cur = TAILQ_PREV(cur, sackhole_head, scblink);
740		else
741			sblkp--;
742	}
743	return (sack_changed);
744}
745
746/*
747 * Free all SACK holes to clear the scoreboard.
748 */
749void
750tcp_free_sackholes(struct tcpcb *tp)
751{
752	struct sackhole *q;
753
754	INP_WLOCK_ASSERT(tp->t_inpcb);
755	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
756		tcp_sackhole_remove(tp, q);
757	tp->sackhint.sack_bytes_rexmit = 0;
758
759	KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
760	KASSERT(tp->sackhint.nexthole == NULL,
761		("tp->sackhint.nexthole == NULL"));
762}
763
764/*
765 * Partial ack handling within a sack recovery episode.  Keeping this very
766 * simple for now.  When a partial ack is received, force snd_cwnd to a value
767 * that will allow the sender to transmit no more than 2 segments.  If
768 * necessary, a better scheme can be adopted at a later point, but for now,
769 * the goal is to prevent the sender from bursting a large amount of data in
770 * the midst of sack recovery.
771 */
772void
773tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
774{
775	int num_segs = 1;
776
777	INP_WLOCK_ASSERT(tp->t_inpcb);
778	tcp_timer_activate(tp, TT_REXMT, 0);
779	tp->t_rtttime = 0;
780	/* Send one or 2 segments based on how much new data was acked. */
781	if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
782		num_segs = 2;
783	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
784	    (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
785	if (tp->snd_cwnd > tp->snd_ssthresh)
786		tp->snd_cwnd = tp->snd_ssthresh;
787	tp->t_flags |= TF_ACKNOW;
788	(void) tp->t_fb->tfb_tcp_output(tp);
789}
790
791#if 0
792/*
793 * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
794 * now to sanity check the hint.
795 */
796static struct sackhole *
797tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
798{
799	struct sackhole *p;
800
801	INP_WLOCK_ASSERT(tp->t_inpcb);
802	*sack_bytes_rexmt = 0;
803	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
804		if (SEQ_LT(p->rxmit, p->end)) {
805			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
806				continue;
807			}
808			*sack_bytes_rexmt += (p->rxmit - p->start);
809			break;
810		}
811		*sack_bytes_rexmt += (p->rxmit - p->start);
812	}
813	return (p);
814}
815#endif
816
817/*
818 * Returns the next hole to retransmit and the number of retransmitted bytes
819 * from the scoreboard.  We store both the next hole and the number of
820 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
821 * reception).  This avoids scoreboard traversals completely.
822 *
823 * The loop here will traverse *at most* one link.  Here's the argument.  For
824 * the loop to traverse more than 1 link before finding the next hole to
825 * retransmit, we would need to have at least 1 node following the current
826 * hint with (rxmit == end).  But, for all holes following the current hint,
827 * (start == rxmit), since we have not yet retransmitted from them.
828 * Therefore, in order to traverse more 1 link in the loop below, we need to
829 * have at least one node following the current hint with (start == rxmit ==
830 * end).  But that can't happen, (start == end) means that all the data in
831 * that hole has been sacked, in which case, the hole would have been removed
832 * from the scoreboard.
833 */
834struct sackhole *
835tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
836{
837	struct sackhole *hole = NULL;
838
839	INP_WLOCK_ASSERT(tp->t_inpcb);
840	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
841	hole = tp->sackhint.nexthole;
842	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
843		goto out;
844	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
845		if (SEQ_LT(hole->rxmit, hole->end)) {
846			tp->sackhint.nexthole = hole;
847			break;
848		}
849	}
850out:
851	return (hole);
852}
853
854/*
855 * After a timeout, the SACK list may be rebuilt.  This SACK information
856 * should be used to avoid retransmitting SACKed data.  This function
857 * traverses the SACK list to see if snd_nxt should be moved forward.
858 */
859void
860tcp_sack_adjust(struct tcpcb *tp)
861{
862	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
863
864	INP_WLOCK_ASSERT(tp->t_inpcb);
865	if (cur == NULL)
866		return; /* No holes */
867	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
868		return; /* We're already beyond any SACKed blocks */
869	/*-
870	 * Two cases for which we want to advance snd_nxt:
871	 * i) snd_nxt lies between end of one hole and beginning of another
872	 * ii) snd_nxt lies between end of last hole and snd_fack
873	 */
874	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
875		if (SEQ_LT(tp->snd_nxt, cur->end))
876			return;
877		if (SEQ_GEQ(tp->snd_nxt, p->start))
878			cur = p;
879		else {
880			tp->snd_nxt = p->start;
881			return;
882		}
883	}
884	if (SEQ_LT(tp->snd_nxt, cur->end))
885		return;
886	tp->snd_nxt = tp->snd_fack;
887}
888