1/*-
2 * Copyright (c) 2007-2009
3 * 	Swinburne University of Technology, Melbourne, Australia.
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/******************************************************
34 * Statistical Information For TCP Research (SIFTR)
35 *
36 * A FreeBSD kernel module that adds very basic intrumentation to the
37 * TCP stack, allowing internal stats to be recorded to a log file
38 * for experimental, debugging and performance analysis purposes.
39 *
40 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41 * working on the NewTCP research project at Swinburne University of
42 * Technology's Centre for Advanced Internet Architectures, Melbourne,
43 * Australia, which was made possible in part by a grant from the Cisco
44 * University Research Program Fund at Community Foundation Silicon Valley.
45 * More details are available at:
46 *   http://caia.swin.edu.au/urp/newtcp/
47 *
48 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50 * More details are available at:
51 *   http://www.freebsdfoundation.org/
52 *   http://caia.swin.edu.au/freebsd/etcp09/
53 *
54 * Lawrence Stewart is the current maintainer, and all contact regarding
55 * SIFTR should be directed to him via email: lastewart@swin.edu.au
56 *
57 * Initial release date: June 2007
58 * Most recent update: September 2010
59 ******************************************************/
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: stable/11/sys/netinet/siftr.c 343273 2019-01-21 19:33:05Z brooks $");
63
64#include <sys/param.h>
65#include <sys/alq.h>
66#include <sys/errno.h>
67#include <sys/eventhandler.h>
68#include <sys/hash.h>
69#include <sys/kernel.h>
70#include <sys/kthread.h>
71#include <sys/lock.h>
72#include <sys/mbuf.h>
73#include <sys/module.h>
74#include <sys/mutex.h>
75#include <sys/pcpu.h>
76#include <sys/proc.h>
77#include <sys/sbuf.h>
78#include <sys/sdt.h>
79#include <sys/smp.h>
80#include <sys/socket.h>
81#include <sys/socketvar.h>
82#include <sys/sysctl.h>
83#include <sys/unistd.h>
84
85#include <net/if.h>
86#include <net/if_var.h>
87#include <net/pfil.h>
88
89#include <netinet/in.h>
90#include <netinet/in_kdtrace.h>
91#include <netinet/in_pcb.h>
92#include <netinet/in_systm.h>
93#include <netinet/in_var.h>
94#include <netinet/ip.h>
95#include <netinet/tcp_var.h>
96
97#ifdef SIFTR_IPV6
98#include <netinet/ip6.h>
99#include <netinet6/in6_pcb.h>
100#endif /* SIFTR_IPV6 */
101
102#include <machine/in_cksum.h>
103
104/*
105 * Three digit version number refers to X.Y.Z where:
106 * X is the major version number
107 * Y is bumped to mark backwards incompatible changes
108 * Z is bumped to mark backwards compatible changes
109 */
110#define V_MAJOR		1
111#define V_BACKBREAK	2
112#define V_BACKCOMPAT	4
113#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
114#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
115    __XSTRING(V_BACKCOMPAT)
116
117#define HOOK 0
118#define UNHOOK 1
119#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
120#define SYS_NAME "FreeBSD"
121#define PACKET_TAG_SIFTR 100
122#define PACKET_COOKIE_SIFTR 21749576
123#define SIFTR_LOG_FILE_MODE 0644
124#define SIFTR_DISABLE 0
125#define SIFTR_ENABLE 1
126
127/*
128 * Hard upper limit on the length of log messages. Bump this up if you add new
129 * data fields such that the line length could exceed the below value.
130 */
131#define MAX_LOG_MSG_LEN 200
132/* XXX: Make this a sysctl tunable. */
133#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
134
135/*
136 * 1 byte for IP version
137 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
138 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
139 */
140#ifdef SIFTR_IPV6
141#define FLOW_KEY_LEN 37
142#else
143#define FLOW_KEY_LEN 13
144#endif
145
146#ifdef SIFTR_IPV6
147#define SIFTR_IPMODE 6
148#else
149#define SIFTR_IPMODE 4
150#endif
151
152/* useful macros */
153#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
154#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
155
156#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
157#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
158#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
159#define FOURTH_OCTET(X)	((X) & 0x000000FF)
160
161static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
162static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
163    "SIFTR pkt_node struct");
164static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
165    "SIFTR flow_hash_node struct");
166
167/* Used as links in the pkt manager queue. */
168struct pkt_node {
169	/* Timestamp of pkt as noted in the pfil hook. */
170	struct timeval		tval;
171	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
172	uint8_t			direction;
173	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
174	uint8_t			ipver;
175	/* Hash of the pkt which triggered the log message. */
176	uint32_t		hash;
177	/* Local/foreign IP address. */
178#ifdef SIFTR_IPV6
179	uint32_t		ip_laddr[4];
180	uint32_t		ip_faddr[4];
181#else
182	uint8_t			ip_laddr[4];
183	uint8_t			ip_faddr[4];
184#endif
185	/* Local TCP port. */
186	uint16_t		tcp_localport;
187	/* Foreign TCP port. */
188	uint16_t		tcp_foreignport;
189	/* Congestion Window (bytes). */
190	u_long			snd_cwnd;
191	/* Sending Window (bytes). */
192	u_long			snd_wnd;
193	/* Receive Window (bytes). */
194	u_long			rcv_wnd;
195	/* Unused (was: Bandwidth Controlled Window (bytes)). */
196	u_long			snd_bwnd;
197	/* Slow Start Threshold (bytes). */
198	u_long			snd_ssthresh;
199	/* Current state of the TCP FSM. */
200	int			conn_state;
201	/* Max Segment Size (bytes). */
202	u_int			max_seg_size;
203	/*
204	 * Smoothed RTT stored as found in the TCP control block
205	 * in units of (TCP_RTT_SCALE*hz).
206	 */
207	int			smoothed_rtt;
208	/* Is SACK enabled? */
209	u_char			sack_enabled;
210	/* Window scaling for snd window. */
211	u_char			snd_scale;
212	/* Window scaling for recv window. */
213	u_char			rcv_scale;
214	/* TCP control block flags. */
215	u_int			flags;
216	/* Retransmit timeout length. */
217	int			rxt_length;
218	/* Size of the TCP send buffer in bytes. */
219	u_int			snd_buf_hiwater;
220	/* Current num bytes in the send socket buffer. */
221	u_int			snd_buf_cc;
222	/* Size of the TCP receive buffer in bytes. */
223	u_int			rcv_buf_hiwater;
224	/* Current num bytes in the receive socket buffer. */
225	u_int			rcv_buf_cc;
226	/* Number of bytes inflight that we are waiting on ACKs for. */
227	u_int			sent_inflight_bytes;
228	/* Number of segments currently in the reassembly queue. */
229	int			t_segqlen;
230	/* Flowid for the connection. */
231	u_int			flowid;
232	/* Flow type for the connection. */
233	u_int			flowtype;
234	/* Link to next pkt_node in the list. */
235	STAILQ_ENTRY(pkt_node)	nodes;
236};
237
238struct flow_hash_node
239{
240	uint16_t counter;
241	uint8_t key[FLOW_KEY_LEN];
242	LIST_ENTRY(flow_hash_node) nodes;
243};
244
245struct siftr_stats
246{
247	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
248	uint64_t n_in;
249	uint64_t n_out;
250	/* # pkts skipped due to failed malloc calls. */
251	uint32_t nskip_in_malloc;
252	uint32_t nskip_out_malloc;
253	/* # pkts skipped due to failed mtx acquisition. */
254	uint32_t nskip_in_mtx;
255	uint32_t nskip_out_mtx;
256	/* # pkts skipped due to failed inpcb lookups. */
257	uint32_t nskip_in_inpcb;
258	uint32_t nskip_out_inpcb;
259	/* # pkts skipped due to failed tcpcb lookups. */
260	uint32_t nskip_in_tcpcb;
261	uint32_t nskip_out_tcpcb;
262	/* # pkts skipped due to stack reinjection. */
263	uint32_t nskip_in_dejavu;
264	uint32_t nskip_out_dejavu;
265};
266
267static DPCPU_DEFINE(struct siftr_stats, ss);
268
269static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
270static unsigned int siftr_enabled = 0;
271static unsigned int siftr_pkts_per_log = 1;
272static unsigned int siftr_generate_hashes = 0;
273/* static unsigned int siftr_binary_log = 0; */
274static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
275static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
276static u_long siftr_hashmask;
277STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
278LIST_HEAD(listhead, flow_hash_node) *counter_hash;
279static int wait_for_pkt;
280static struct alq *siftr_alq = NULL;
281static struct mtx siftr_pkt_queue_mtx;
282static struct mtx siftr_pkt_mgr_mtx;
283static struct thread *siftr_pkt_manager_thr = NULL;
284/*
285 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
286 * which we use as an index into this array.
287 */
288static char direction[3] = {'\0', 'i','o'};
289
290/* Required function prototypes. */
291static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
292static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
293
294
295/* Declare the net.inet.siftr sysctl tree and populate it. */
296
297SYSCTL_DECL(_net_inet_siftr);
298
299SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
300    "siftr related settings");
301
302SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
303    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
304    "switch siftr module operations on/off");
305
306SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
307    &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
308    "A", "file to save siftr log messages to");
309
310SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
311    &siftr_pkts_per_log, 1,
312    "number of packets between generating a log message");
313
314SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
315    &siftr_generate_hashes, 0,
316    "enable packet hash generation");
317
318/* XXX: TODO
319SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
320    &siftr_binary_log, 0,
321    "write log files in binary instead of ascii");
322*/
323
324
325/* Begin functions. */
326
327static void
328siftr_process_pkt(struct pkt_node * pkt_node)
329{
330	struct flow_hash_node *hash_node;
331	struct listhead *counter_list;
332	struct siftr_stats *ss;
333	struct ale *log_buf;
334	uint8_t key[FLOW_KEY_LEN];
335	uint8_t found_match, key_offset;
336
337	hash_node = NULL;
338	ss = DPCPU_PTR(ss);
339	found_match = 0;
340	key_offset = 1;
341
342	/*
343	 * Create the key that will be used to create a hash index
344	 * into our hash table. Our key consists of:
345	 * ipversion, localip, localport, foreignip, foreignport
346	 */
347	key[0] = pkt_node->ipver;
348	memcpy(key + key_offset, &pkt_node->ip_laddr,
349	    sizeof(pkt_node->ip_laddr));
350	key_offset += sizeof(pkt_node->ip_laddr);
351	memcpy(key + key_offset, &pkt_node->tcp_localport,
352	    sizeof(pkt_node->tcp_localport));
353	key_offset += sizeof(pkt_node->tcp_localport);
354	memcpy(key + key_offset, &pkt_node->ip_faddr,
355	    sizeof(pkt_node->ip_faddr));
356	key_offset += sizeof(pkt_node->ip_faddr);
357	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
358	    sizeof(pkt_node->tcp_foreignport));
359
360	counter_list = counter_hash +
361	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
362
363	/*
364	 * If the list is not empty i.e. the hash index has
365	 * been used by another flow previously.
366	 */
367	if (LIST_FIRST(counter_list) != NULL) {
368		/*
369		 * Loop through the hash nodes in the list.
370		 * There should normally only be 1 hash node in the list,
371		 * except if there have been collisions at the hash index
372		 * computed by hash32_buf().
373		 */
374		LIST_FOREACH(hash_node, counter_list, nodes) {
375			/*
376			 * Check if the key for the pkt we are currently
377			 * processing is the same as the key stored in the
378			 * hash node we are currently processing.
379			 * If they are the same, then we've found the
380			 * hash node that stores the counter for the flow
381			 * the pkt belongs to.
382			 */
383			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
384				found_match = 1;
385				break;
386			}
387		}
388	}
389
390	/* If this flow hash hasn't been seen before or we have a collision. */
391	if (hash_node == NULL || !found_match) {
392		/* Create a new hash node to store the flow's counter. */
393		hash_node = malloc(sizeof(struct flow_hash_node),
394		    M_SIFTR_HASHNODE, M_WAITOK);
395
396		if (hash_node != NULL) {
397			/* Initialise our new hash node list entry. */
398			hash_node->counter = 0;
399			memcpy(hash_node->key, key, sizeof(key));
400			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
401		} else {
402			/* Malloc failed. */
403			if (pkt_node->direction == PFIL_IN)
404				ss->nskip_in_malloc++;
405			else
406				ss->nskip_out_malloc++;
407
408			return;
409		}
410	} else if (siftr_pkts_per_log > 1) {
411		/*
412		 * Taking the remainder of the counter divided
413		 * by the current value of siftr_pkts_per_log
414		 * and storing that in counter provides a neat
415		 * way to modulate the frequency of log
416		 * messages being written to the log file.
417		 */
418		hash_node->counter = (hash_node->counter + 1) %
419		    siftr_pkts_per_log;
420
421		/*
422		 * If we have not seen enough packets since the last time
423		 * we wrote a log message for this connection, return.
424		 */
425		if (hash_node->counter > 0)
426			return;
427	}
428
429	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
430
431	if (log_buf == NULL)
432		return; /* Should only happen if the ALQ is shutting down. */
433
434#ifdef SIFTR_IPV6
435	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
436	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
437
438	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
439		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
440		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
441		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
442		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
443		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
444		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
445
446		/* Construct an IPv6 log message. */
447		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
448		    MAX_LOG_MSG_LEN,
449		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
450		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
451		    "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
452		    direction[pkt_node->direction],
453		    pkt_node->hash,
454		    pkt_node->tval.tv_sec,
455		    pkt_node->tval.tv_usec,
456		    UPPER_SHORT(pkt_node->ip_laddr[0]),
457		    LOWER_SHORT(pkt_node->ip_laddr[0]),
458		    UPPER_SHORT(pkt_node->ip_laddr[1]),
459		    LOWER_SHORT(pkt_node->ip_laddr[1]),
460		    UPPER_SHORT(pkt_node->ip_laddr[2]),
461		    LOWER_SHORT(pkt_node->ip_laddr[2]),
462		    UPPER_SHORT(pkt_node->ip_laddr[3]),
463		    LOWER_SHORT(pkt_node->ip_laddr[3]),
464		    ntohs(pkt_node->tcp_localport),
465		    UPPER_SHORT(pkt_node->ip_faddr[0]),
466		    LOWER_SHORT(pkt_node->ip_faddr[0]),
467		    UPPER_SHORT(pkt_node->ip_faddr[1]),
468		    LOWER_SHORT(pkt_node->ip_faddr[1]),
469		    UPPER_SHORT(pkt_node->ip_faddr[2]),
470		    LOWER_SHORT(pkt_node->ip_faddr[2]),
471		    UPPER_SHORT(pkt_node->ip_faddr[3]),
472		    LOWER_SHORT(pkt_node->ip_faddr[3]),
473		    ntohs(pkt_node->tcp_foreignport),
474		    pkt_node->snd_ssthresh,
475		    pkt_node->snd_cwnd,
476		    pkt_node->snd_bwnd,
477		    pkt_node->snd_wnd,
478		    pkt_node->rcv_wnd,
479		    pkt_node->snd_scale,
480		    pkt_node->rcv_scale,
481		    pkt_node->conn_state,
482		    pkt_node->max_seg_size,
483		    pkt_node->smoothed_rtt,
484		    pkt_node->sack_enabled,
485		    pkt_node->flags,
486		    pkt_node->rxt_length,
487		    pkt_node->snd_buf_hiwater,
488		    pkt_node->snd_buf_cc,
489		    pkt_node->rcv_buf_hiwater,
490		    pkt_node->rcv_buf_cc,
491		    pkt_node->sent_inflight_bytes,
492		    pkt_node->t_segqlen,
493		    pkt_node->flowid,
494		    pkt_node->flowtype);
495	} else { /* IPv4 packet */
496		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
497		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
498		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
499		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
500		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
501		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
502		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
503		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
504#endif /* SIFTR_IPV6 */
505
506		/* Construct an IPv4 log message. */
507		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
508		    MAX_LOG_MSG_LEN,
509		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
510		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
511		    direction[pkt_node->direction],
512		    pkt_node->hash,
513		    (intmax_t)pkt_node->tval.tv_sec,
514		    pkt_node->tval.tv_usec,
515		    pkt_node->ip_laddr[0],
516		    pkt_node->ip_laddr[1],
517		    pkt_node->ip_laddr[2],
518		    pkt_node->ip_laddr[3],
519		    ntohs(pkt_node->tcp_localport),
520		    pkt_node->ip_faddr[0],
521		    pkt_node->ip_faddr[1],
522		    pkt_node->ip_faddr[2],
523		    pkt_node->ip_faddr[3],
524		    ntohs(pkt_node->tcp_foreignport),
525		    pkt_node->snd_ssthresh,
526		    pkt_node->snd_cwnd,
527		    pkt_node->snd_bwnd,
528		    pkt_node->snd_wnd,
529		    pkt_node->rcv_wnd,
530		    pkt_node->snd_scale,
531		    pkt_node->rcv_scale,
532		    pkt_node->conn_state,
533		    pkt_node->max_seg_size,
534		    pkt_node->smoothed_rtt,
535		    pkt_node->sack_enabled,
536		    pkt_node->flags,
537		    pkt_node->rxt_length,
538		    pkt_node->snd_buf_hiwater,
539		    pkt_node->snd_buf_cc,
540		    pkt_node->rcv_buf_hiwater,
541		    pkt_node->rcv_buf_cc,
542		    pkt_node->sent_inflight_bytes,
543		    pkt_node->t_segqlen,
544		    pkt_node->flowid,
545		    pkt_node->flowtype);
546#ifdef SIFTR_IPV6
547	}
548#endif
549
550	alq_post_flags(siftr_alq, log_buf, 0);
551}
552
553
554static void
555siftr_pkt_manager_thread(void *arg)
556{
557	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
558	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
559	struct pkt_node *pkt_node, *pkt_node_temp;
560	uint8_t draining;
561
562	draining = 2;
563
564	mtx_lock(&siftr_pkt_mgr_mtx);
565
566	/* draining == 0 when queue has been flushed and it's safe to exit. */
567	while (draining) {
568		/*
569		 * Sleep until we are signalled to wake because thread has
570		 * been told to exit or until 1 tick has passed.
571		 */
572		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
573		    1);
574
575		/* Gain exclusive access to the pkt_node queue. */
576		mtx_lock(&siftr_pkt_queue_mtx);
577
578		/*
579		 * Move pkt_queue to tmp_pkt_queue, which leaves
580		 * pkt_queue empty and ready to receive more pkt_nodes.
581		 */
582		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
583
584		/*
585		 * We've finished making changes to the list. Unlock it
586		 * so the pfil hooks can continue queuing pkt_nodes.
587		 */
588		mtx_unlock(&siftr_pkt_queue_mtx);
589
590		/*
591		 * We can't hold a mutex whilst calling siftr_process_pkt
592		 * because ALQ might sleep waiting for buffer space.
593		 */
594		mtx_unlock(&siftr_pkt_mgr_mtx);
595
596		/* Flush all pkt_nodes to the log file. */
597		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
598		    pkt_node_temp) {
599			siftr_process_pkt(pkt_node);
600			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
601			free(pkt_node, M_SIFTR_PKTNODE);
602		}
603
604		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
605		    ("SIFTR tmp_pkt_queue not empty after flush"));
606
607		mtx_lock(&siftr_pkt_mgr_mtx);
608
609		/*
610		 * If siftr_exit_pkt_manager_thread gets set during the window
611		 * where we are draining the tmp_pkt_queue above, there might
612		 * still be pkts in pkt_queue that need to be drained.
613		 * Allow one further iteration to occur after
614		 * siftr_exit_pkt_manager_thread has been set to ensure
615		 * pkt_queue is completely empty before we kill the thread.
616		 *
617		 * siftr_exit_pkt_manager_thread is set only after the pfil
618		 * hooks have been removed, so only 1 extra iteration
619		 * is needed to drain the queue.
620		 */
621		if (siftr_exit_pkt_manager_thread)
622			draining--;
623	}
624
625	mtx_unlock(&siftr_pkt_mgr_mtx);
626
627	/* Calls wakeup on this thread's struct thread ptr. */
628	kthread_exit();
629}
630
631
632static uint32_t
633hash_pkt(struct mbuf *m, uint32_t offset)
634{
635	uint32_t hash;
636
637	hash = 0;
638
639	while (m != NULL && offset > m->m_len) {
640		/*
641		 * The IP packet payload does not start in this mbuf, so
642		 * need to figure out which mbuf it starts in and what offset
643		 * into the mbuf's data region the payload starts at.
644		 */
645		offset -= m->m_len;
646		m = m->m_next;
647	}
648
649	while (m != NULL) {
650		/* Ensure there is data in the mbuf */
651		if ((m->m_len - offset) > 0)
652			hash = hash32_buf(m->m_data + offset,
653			    m->m_len - offset, hash);
654
655		m = m->m_next;
656		offset = 0;
657        }
658
659	return (hash);
660}
661
662
663/*
664 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
665 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
666 * Return value >0 means the caller should skip processing this mbuf.
667 */
668static inline int
669siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
670{
671	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
672	    != NULL) {
673		if (dir == PFIL_IN)
674			ss->nskip_in_dejavu++;
675		else
676			ss->nskip_out_dejavu++;
677
678		return (1);
679	} else {
680		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
681		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
682		if (tag == NULL) {
683			if (dir == PFIL_IN)
684				ss->nskip_in_malloc++;
685			else
686				ss->nskip_out_malloc++;
687
688			return (1);
689		}
690
691		m_tag_prepend(m, tag);
692	}
693
694	return (0);
695}
696
697
698/*
699 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
700 * otherwise.
701 */
702static inline struct inpcb *
703siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
704    uint16_t dport, int dir, struct siftr_stats *ss)
705{
706	struct inpcb *inp;
707
708	/* We need the tcbinfo lock. */
709	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
710
711	if (dir == PFIL_IN)
712		inp = (ipver == INP_IPV4 ?
713		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
714		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
715		    :
716#ifdef SIFTR_IPV6
717		    in6_pcblookup(&V_tcbinfo,
718		    &((struct ip6_hdr *)ip)->ip6_src, sport,
719		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
720		    m->m_pkthdr.rcvif)
721#else
722		    NULL
723#endif
724		    );
725
726	else
727		inp = (ipver == INP_IPV4 ?
728		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
729		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
730		    :
731#ifdef SIFTR_IPV6
732		    in6_pcblookup(&V_tcbinfo,
733		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
734		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
735		    m->m_pkthdr.rcvif)
736#else
737		    NULL
738#endif
739		    );
740
741	/* If we can't find the inpcb, bail. */
742	if (inp == NULL) {
743		if (dir == PFIL_IN)
744			ss->nskip_in_inpcb++;
745		else
746			ss->nskip_out_inpcb++;
747	}
748
749	return (inp);
750}
751
752
753static inline void
754siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
755    int ipver, int dir, int inp_locally_locked)
756{
757#ifdef SIFTR_IPV6
758	if (ipver == INP_IPV4) {
759		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
760		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
761#else
762		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
763		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
764#endif
765#ifdef SIFTR_IPV6
766	} else {
767		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
768		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
769		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
770		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
771		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
772		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
773		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
774		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
775	}
776#endif
777	pn->tcp_localport = inp->inp_lport;
778	pn->tcp_foreignport = inp->inp_fport;
779	pn->snd_cwnd = tp->snd_cwnd;
780	pn->snd_wnd = tp->snd_wnd;
781	pn->rcv_wnd = tp->rcv_wnd;
782	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
783	pn->snd_ssthresh = tp->snd_ssthresh;
784	pn->snd_scale = tp->snd_scale;
785	pn->rcv_scale = tp->rcv_scale;
786	pn->conn_state = tp->t_state;
787	pn->max_seg_size = tp->t_maxseg;
788	pn->smoothed_rtt = tp->t_srtt;
789	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
790	pn->flags = tp->t_flags;
791	pn->rxt_length = tp->t_rxtcur;
792	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
793	pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
794	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
795	pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
796	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
797	pn->t_segqlen = tp->t_segqlen;
798	pn->flowid = inp->inp_flowid;
799	pn->flowtype = inp->inp_flowtype;
800
801	/* We've finished accessing the tcb so release the lock. */
802	if (inp_locally_locked)
803		INP_RUNLOCK(inp);
804
805	pn->ipver = ipver;
806	pn->direction = dir;
807
808	/*
809	 * Significantly more accurate than using getmicrotime(), but slower!
810	 * Gives true microsecond resolution at the expense of a hit to
811	 * maximum pps throughput processing when SIFTR is loaded and enabled.
812	 */
813	microtime(&pn->tval);
814	TCP_PROBE1(siftr, &pn);
815
816}
817
818
819/*
820 * pfil hook that is called for each IPv4 packet making its way through the
821 * stack in either direction.
822 * The pfil subsystem holds a non-sleepable mutex somewhere when
823 * calling our hook function, so we can't sleep at all.
824 * It's very important to use the M_NOWAIT flag with all function calls
825 * that support it so that they won't sleep, otherwise you get a panic.
826 */
827static int
828siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
829    struct inpcb *inp)
830{
831	struct pkt_node *pn;
832	struct ip *ip;
833	struct tcphdr *th;
834	struct tcpcb *tp;
835	struct siftr_stats *ss;
836	unsigned int ip_hl;
837	int inp_locally_locked;
838
839	inp_locally_locked = 0;
840	ss = DPCPU_PTR(ss);
841
842	/*
843	 * m_pullup is not required here because ip_{input|output}
844	 * already do the heavy lifting for us.
845	 */
846
847	ip = mtod(*m, struct ip *);
848
849	/* Only continue processing if the packet is TCP. */
850	if (ip->ip_p != IPPROTO_TCP)
851		goto ret;
852
853	/*
854	 * If a kernel subsystem reinjects packets into the stack, our pfil
855	 * hook will be called multiple times for the same packet.
856	 * Make sure we only process unique packets.
857	 */
858	if (siftr_chkreinject(*m, dir, ss))
859		goto ret;
860
861	if (dir == PFIL_IN)
862		ss->n_in++;
863	else
864		ss->n_out++;
865
866	/*
867	 * Create a tcphdr struct starting at the correct offset
868	 * in the IP packet. ip->ip_hl gives the ip header length
869	 * in 4-byte words, so multiply it to get the size in bytes.
870	 */
871	ip_hl = (ip->ip_hl << 2);
872	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
873
874	/*
875	 * If the pfil hooks don't provide a pointer to the
876	 * inpcb, we need to find it ourselves and lock it.
877	 */
878	if (!inp) {
879		/* Find the corresponding inpcb for this pkt. */
880		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
881		    th->th_dport, dir, ss);
882
883		if (inp == NULL)
884			goto ret;
885		else
886			inp_locally_locked = 1;
887	}
888
889	INP_LOCK_ASSERT(inp);
890
891	/* Find the TCP control block that corresponds with this packet */
892	tp = intotcpcb(inp);
893
894	/*
895	 * If we can't find the TCP control block (happens occasionaly for a
896	 * packet sent during the shutdown phase of a TCP connection),
897	 * or we're in the timewait state, bail
898	 */
899	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
900		if (dir == PFIL_IN)
901			ss->nskip_in_tcpcb++;
902		else
903			ss->nskip_out_tcpcb++;
904
905		goto inp_unlock;
906	}
907
908	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
909
910	if (pn == NULL) {
911		if (dir == PFIL_IN)
912			ss->nskip_in_malloc++;
913		else
914			ss->nskip_out_malloc++;
915
916		goto inp_unlock;
917	}
918
919	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
920
921	if (siftr_generate_hashes) {
922		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
923			/*
924			 * For outbound packets, the TCP checksum isn't
925			 * calculated yet. This is a problem for our packet
926			 * hashing as the receiver will calc a different hash
927			 * to ours if we don't include the correct TCP checksum
928			 * in the bytes being hashed. To work around this
929			 * problem, we manually calc the TCP checksum here in
930			 * software. We unset the CSUM_TCP flag so the lower
931			 * layers don't recalc it.
932			 */
933			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
934
935			/*
936			 * Calculate the TCP checksum in software and assign
937			 * to correct TCP header field, which will follow the
938			 * packet mbuf down the stack. The trick here is that
939			 * tcp_output() sets th->th_sum to the checksum of the
940			 * pseudo header for us already. Because of the nature
941			 * of the checksumming algorithm, we can sum over the
942			 * entire IP payload (i.e. TCP header and data), which
943			 * will include the already calculated pseduo header
944			 * checksum, thus giving us the complete TCP checksum.
945			 *
946			 * To put it in simple terms, if checksum(1,2,3,4)=10,
947			 * then checksum(1,2,3,4,5) == checksum(10,5).
948			 * This property is what allows us to "cheat" and
949			 * checksum only the IP payload which has the TCP
950			 * th_sum field populated with the pseudo header's
951			 * checksum, and not need to futz around checksumming
952			 * pseudo header bytes and TCP header/data in one hit.
953			 * Refer to RFC 1071 for more info.
954			 *
955			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
956			 * in_cksum_skip 2nd argument is NOT the number of
957			 * bytes to read from the mbuf at "skip" bytes offset
958			 * from the start of the mbuf (very counter intuitive!).
959			 * The number of bytes to read is calculated internally
960			 * by the function as len-skip i.e. to sum over the IP
961			 * payload (TCP header + data) bytes, it is INCORRECT
962			 * to call the function like this:
963			 * in_cksum_skip(at, ip->ip_len - offset, offset)
964			 * Rather, it should be called like this:
965			 * in_cksum_skip(at, ip->ip_len, offset)
966			 * which means read "ip->ip_len - offset" bytes from
967			 * the mbuf cluster "at" at offset "offset" bytes from
968			 * the beginning of the "at" mbuf's data pointer.
969			 */
970			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
971			    ip_hl);
972		}
973
974		/*
975		 * XXX: Having to calculate the checksum in software and then
976		 * hash over all bytes is really inefficient. Would be nice to
977		 * find a way to create the hash and checksum in the same pass
978		 * over the bytes.
979		 */
980		pn->hash = hash_pkt(*m, ip_hl);
981	}
982
983	mtx_lock(&siftr_pkt_queue_mtx);
984	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
985	mtx_unlock(&siftr_pkt_queue_mtx);
986	goto ret;
987
988inp_unlock:
989	if (inp_locally_locked)
990		INP_RUNLOCK(inp);
991
992ret:
993	/* Returning 0 ensures pfil will not discard the pkt */
994	return (0);
995}
996
997
998#ifdef SIFTR_IPV6
999static int
1000siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
1001    struct inpcb *inp)
1002{
1003	struct pkt_node *pn;
1004	struct ip6_hdr *ip6;
1005	struct tcphdr *th;
1006	struct tcpcb *tp;
1007	struct siftr_stats *ss;
1008	unsigned int ip6_hl;
1009	int inp_locally_locked;
1010
1011	inp_locally_locked = 0;
1012	ss = DPCPU_PTR(ss);
1013
1014	/*
1015	 * m_pullup is not required here because ip6_{input|output}
1016	 * already do the heavy lifting for us.
1017	 */
1018
1019	ip6 = mtod(*m, struct ip6_hdr *);
1020
1021	/*
1022	 * Only continue processing if the packet is TCP
1023	 * XXX: We should follow the next header fields
1024	 * as shown on Pg 6 RFC 2460, but right now we'll
1025	 * only check pkts that have no extension headers.
1026	 */
1027	if (ip6->ip6_nxt != IPPROTO_TCP)
1028		goto ret6;
1029
1030	/*
1031	 * If a kernel subsystem reinjects packets into the stack, our pfil
1032	 * hook will be called multiple times for the same packet.
1033	 * Make sure we only process unique packets.
1034	 */
1035	if (siftr_chkreinject(*m, dir, ss))
1036		goto ret6;
1037
1038	if (dir == PFIL_IN)
1039		ss->n_in++;
1040	else
1041		ss->n_out++;
1042
1043	ip6_hl = sizeof(struct ip6_hdr);
1044
1045	/*
1046	 * Create a tcphdr struct starting at the correct offset
1047	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1048	 * in 4-byte words, so multiply it to get the size in bytes.
1049	 */
1050	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1051
1052	/*
1053	 * For inbound packets, the pfil hooks don't provide a pointer to the
1054	 * inpcb, so we need to find it ourselves and lock it.
1055	 */
1056	if (!inp) {
1057		/* Find the corresponding inpcb for this pkt. */
1058		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1059		    th->th_sport, th->th_dport, dir, ss);
1060
1061		if (inp == NULL)
1062			goto ret6;
1063		else
1064			inp_locally_locked = 1;
1065	}
1066
1067	/* Find the TCP control block that corresponds with this packet. */
1068	tp = intotcpcb(inp);
1069
1070	/*
1071	 * If we can't find the TCP control block (happens occasionaly for a
1072	 * packet sent during the shutdown phase of a TCP connection),
1073	 * or we're in the timewait state, bail.
1074	 */
1075	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1076		if (dir == PFIL_IN)
1077			ss->nskip_in_tcpcb++;
1078		else
1079			ss->nskip_out_tcpcb++;
1080
1081		goto inp_unlock6;
1082	}
1083
1084	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1085
1086	if (pn == NULL) {
1087		if (dir == PFIL_IN)
1088			ss->nskip_in_malloc++;
1089		else
1090			ss->nskip_out_malloc++;
1091
1092		goto inp_unlock6;
1093	}
1094
1095	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1096
1097	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1098
1099	mtx_lock(&siftr_pkt_queue_mtx);
1100	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1101	mtx_unlock(&siftr_pkt_queue_mtx);
1102	goto ret6;
1103
1104inp_unlock6:
1105	if (inp_locally_locked)
1106		INP_RUNLOCK(inp);
1107
1108ret6:
1109	/* Returning 0 ensures pfil will not discard the pkt. */
1110	return (0);
1111}
1112#endif /* #ifdef SIFTR_IPV6 */
1113
1114
1115static int
1116siftr_pfil(int action)
1117{
1118	struct pfil_head *pfh_inet;
1119#ifdef SIFTR_IPV6
1120	struct pfil_head *pfh_inet6;
1121#endif
1122	VNET_ITERATOR_DECL(vnet_iter);
1123
1124	VNET_LIST_RLOCK();
1125	VNET_FOREACH(vnet_iter) {
1126		CURVNET_SET(vnet_iter);
1127		pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1128#ifdef SIFTR_IPV6
1129		pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1130#endif
1131
1132		if (action == HOOK) {
1133			pfil_add_hook(siftr_chkpkt, NULL,
1134			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1135#ifdef SIFTR_IPV6
1136			pfil_add_hook(siftr_chkpkt6, NULL,
1137			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1138#endif
1139		} else if (action == UNHOOK) {
1140			pfil_remove_hook(siftr_chkpkt, NULL,
1141			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1142#ifdef SIFTR_IPV6
1143			pfil_remove_hook(siftr_chkpkt6, NULL,
1144			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1145#endif
1146		}
1147		CURVNET_RESTORE();
1148	}
1149	VNET_LIST_RUNLOCK();
1150
1151	return (0);
1152}
1153
1154
1155static int
1156siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1157{
1158	struct alq *new_alq;
1159	int error;
1160
1161	error = sysctl_handle_string(oidp, arg1, arg2, req);
1162
1163	/* Check for error or same filename */
1164	if (error != 0 || req->newptr == NULL ||
1165	    strncmp(siftr_logfile, arg1, arg2) == 0)
1166		goto done;
1167
1168	/* Filname changed */
1169	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1170	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1171	if (error != 0)
1172		goto done;
1173
1174	/*
1175	 * If disabled, siftr_alq == NULL so we simply close
1176	 * the alq as we've proved it can be opened.
1177	 * If enabled, close the existing alq and switch the old
1178	 * for the new.
1179	 */
1180	if (siftr_alq == NULL) {
1181		alq_close(new_alq);
1182	} else {
1183		alq_close(siftr_alq);
1184		siftr_alq = new_alq;
1185	}
1186
1187	/* Update filename upon success */
1188	strlcpy(siftr_logfile, arg1, arg2);
1189done:
1190	return (error);
1191}
1192
1193static int
1194siftr_manage_ops(uint8_t action)
1195{
1196	struct siftr_stats totalss;
1197	struct timeval tval;
1198	struct flow_hash_node *counter, *tmp_counter;
1199	struct sbuf *s;
1200	int i, key_index, ret, error;
1201	uint32_t bytes_to_write, total_skipped_pkts;
1202	uint16_t lport, fport;
1203	uint8_t *key, ipver;
1204
1205#ifdef SIFTR_IPV6
1206	uint32_t laddr[4];
1207	uint32_t faddr[4];
1208#else
1209	uint8_t laddr[4];
1210	uint8_t faddr[4];
1211#endif
1212
1213	error = 0;
1214	total_skipped_pkts = 0;
1215
1216	/* Init an autosizing sbuf that initially holds 200 chars. */
1217	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1218		return (-1);
1219
1220	if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
1221		/*
1222		 * Create our alq
1223		 * XXX: We should abort if alq_open fails!
1224		 */
1225		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1226		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1227
1228		STAILQ_INIT(&pkt_queue);
1229
1230		DPCPU_ZERO(ss);
1231
1232		siftr_exit_pkt_manager_thread = 0;
1233
1234		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1235		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1236		    "siftr_pkt_manager_thr");
1237
1238		siftr_pfil(HOOK);
1239
1240		microtime(&tval);
1241
1242		sbuf_printf(s,
1243		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1244		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1245		    "sysver=%u\tipmode=%u\n",
1246		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1247		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1248
1249		sbuf_finish(s);
1250		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1251
1252	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1253		/*
1254		 * Remove the pfil hook functions. All threads currently in
1255		 * the hook functions are allowed to exit before siftr_pfil()
1256		 * returns.
1257		 */
1258		siftr_pfil(UNHOOK);
1259
1260		/* This will block until the pkt manager thread unlocks it. */
1261		mtx_lock(&siftr_pkt_mgr_mtx);
1262
1263		/* Tell the pkt manager thread that it should exit now. */
1264		siftr_exit_pkt_manager_thread = 1;
1265
1266		/*
1267		 * Wake the pkt_manager thread so it realises that
1268		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1269		 * The wakeup won't be delivered until we unlock
1270		 * siftr_pkt_mgr_mtx so this isn't racy.
1271		 */
1272		wakeup(&wait_for_pkt);
1273
1274		/* Wait for the pkt_manager thread to exit. */
1275		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1276		    "thrwait", 0);
1277
1278		siftr_pkt_manager_thr = NULL;
1279		mtx_unlock(&siftr_pkt_mgr_mtx);
1280
1281		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1282		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1283		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1284		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1285		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1286		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1287		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1288		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1289		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1290		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1291
1292		total_skipped_pkts = totalss.nskip_in_malloc +
1293		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1294		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1295		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1296		    totalss.nskip_out_inpcb;
1297
1298		microtime(&tval);
1299
1300		sbuf_printf(s,
1301		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1302		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1303		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1304		    "num_outbound_skipped_pkts_malloc=%u\t"
1305		    "num_inbound_skipped_pkts_mtx=%u\t"
1306		    "num_outbound_skipped_pkts_mtx=%u\t"
1307		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1308		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1309		    "num_inbound_skipped_pkts_inpcb=%u\t"
1310		    "num_outbound_skipped_pkts_inpcb=%u\t"
1311		    "total_skipped_tcp_pkts=%u\tflow_list=",
1312		    (intmax_t)tval.tv_sec,
1313		    tval.tv_usec,
1314		    (uintmax_t)totalss.n_in,
1315		    (uintmax_t)totalss.n_out,
1316		    (uintmax_t)(totalss.n_in + totalss.n_out),
1317		    totalss.nskip_in_malloc,
1318		    totalss.nskip_out_malloc,
1319		    totalss.nskip_in_mtx,
1320		    totalss.nskip_out_mtx,
1321		    totalss.nskip_in_tcpcb,
1322		    totalss.nskip_out_tcpcb,
1323		    totalss.nskip_in_inpcb,
1324		    totalss.nskip_out_inpcb,
1325		    total_skipped_pkts);
1326
1327		/*
1328		 * Iterate over the flow hash, printing a summary of each
1329		 * flow seen and freeing any malloc'd memory.
1330		 * The hash consists of an array of LISTs (man 3 queue).
1331		 */
1332		for (i = 0; i <= siftr_hashmask; i++) {
1333			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1334			    tmp_counter) {
1335				key = counter->key;
1336				key_index = 1;
1337
1338				ipver = key[0];
1339
1340				memcpy(laddr, key + key_index, sizeof(laddr));
1341				key_index += sizeof(laddr);
1342				memcpy(&lport, key + key_index, sizeof(lport));
1343				key_index += sizeof(lport);
1344				memcpy(faddr, key + key_index, sizeof(faddr));
1345				key_index += sizeof(faddr);
1346				memcpy(&fport, key + key_index, sizeof(fport));
1347
1348#ifdef SIFTR_IPV6
1349				laddr[3] = ntohl(laddr[3]);
1350				faddr[3] = ntohl(faddr[3]);
1351
1352				if (ipver == INP_IPV6) {
1353					laddr[0] = ntohl(laddr[0]);
1354					laddr[1] = ntohl(laddr[1]);
1355					laddr[2] = ntohl(laddr[2]);
1356					faddr[0] = ntohl(faddr[0]);
1357					faddr[1] = ntohl(faddr[1]);
1358					faddr[2] = ntohl(faddr[2]);
1359
1360					sbuf_printf(s,
1361					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1362					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1363					    UPPER_SHORT(laddr[0]),
1364					    LOWER_SHORT(laddr[0]),
1365					    UPPER_SHORT(laddr[1]),
1366					    LOWER_SHORT(laddr[1]),
1367					    UPPER_SHORT(laddr[2]),
1368					    LOWER_SHORT(laddr[2]),
1369					    UPPER_SHORT(laddr[3]),
1370					    LOWER_SHORT(laddr[3]),
1371					    ntohs(lport),
1372					    UPPER_SHORT(faddr[0]),
1373					    LOWER_SHORT(faddr[0]),
1374					    UPPER_SHORT(faddr[1]),
1375					    LOWER_SHORT(faddr[1]),
1376					    UPPER_SHORT(faddr[2]),
1377					    LOWER_SHORT(faddr[2]),
1378					    UPPER_SHORT(faddr[3]),
1379					    LOWER_SHORT(faddr[3]),
1380					    ntohs(fport));
1381				} else {
1382					laddr[0] = FIRST_OCTET(laddr[3]);
1383					laddr[1] = SECOND_OCTET(laddr[3]);
1384					laddr[2] = THIRD_OCTET(laddr[3]);
1385					laddr[3] = FOURTH_OCTET(laddr[3]);
1386					faddr[0] = FIRST_OCTET(faddr[3]);
1387					faddr[1] = SECOND_OCTET(faddr[3]);
1388					faddr[2] = THIRD_OCTET(faddr[3]);
1389					faddr[3] = FOURTH_OCTET(faddr[3]);
1390#endif
1391					sbuf_printf(s,
1392					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1393					    laddr[0],
1394					    laddr[1],
1395					    laddr[2],
1396					    laddr[3],
1397					    ntohs(lport),
1398					    faddr[0],
1399					    faddr[1],
1400					    faddr[2],
1401					    faddr[3],
1402					    ntohs(fport));
1403#ifdef SIFTR_IPV6
1404				}
1405#endif
1406
1407				free(counter, M_SIFTR_HASHNODE);
1408			}
1409
1410			LIST_INIT(counter_hash + i);
1411		}
1412
1413		sbuf_printf(s, "\n");
1414		sbuf_finish(s);
1415
1416		i = 0;
1417		do {
1418			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1419			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1420			i += bytes_to_write;
1421		} while (i < sbuf_len(s));
1422
1423		alq_close(siftr_alq);
1424		siftr_alq = NULL;
1425	} else
1426		error = EINVAL;
1427
1428	sbuf_delete(s);
1429
1430	/*
1431	 * XXX: Should be using ret to check if any functions fail
1432	 * and set error appropriately
1433	 */
1434
1435	return (error);
1436}
1437
1438
1439static int
1440siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1441{
1442	int error;
1443	uint32_t new;
1444
1445	new = siftr_enabled;
1446	error = sysctl_handle_int(oidp, &new, 0, req);
1447	if (error == 0 && req->newptr != NULL) {
1448		if (new > 1)
1449			return (EINVAL);
1450		else if (new != siftr_enabled) {
1451			if ((error = siftr_manage_ops(new)) == 0) {
1452				siftr_enabled = new;
1453			} else {
1454				siftr_manage_ops(SIFTR_DISABLE);
1455			}
1456		}
1457	}
1458
1459	return (error);
1460}
1461
1462
1463static void
1464siftr_shutdown_handler(void *arg)
1465{
1466	if (siftr_enabled == 1) {
1467		siftr_manage_ops(SIFTR_DISABLE);
1468	}
1469}
1470
1471
1472/*
1473 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1474 */
1475static int
1476deinit_siftr(void)
1477{
1478	/* Cleanup. */
1479	siftr_manage_ops(SIFTR_DISABLE);
1480	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1481	mtx_destroy(&siftr_pkt_queue_mtx);
1482	mtx_destroy(&siftr_pkt_mgr_mtx);
1483
1484	return (0);
1485}
1486
1487
1488/*
1489 * Module has just been loaded into the kernel.
1490 */
1491static int
1492init_siftr(void)
1493{
1494	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1495	    SHUTDOWN_PRI_FIRST);
1496
1497	/* Initialise our flow counter hash table. */
1498	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1499	    &siftr_hashmask);
1500
1501	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1502	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1503
1504	/* Print message to the user's current terminal. */
1505	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1506	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1507	    MODVERSION_STR);
1508
1509	return (0);
1510}
1511
1512
1513/*
1514 * This is the function that is called to load and unload the module.
1515 * When the module is loaded, this function is called once with
1516 * "what" == MOD_LOAD
1517 * When the module is unloaded, this function is called twice with
1518 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1519 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1520 * this function is called once with "what" = MOD_SHUTDOWN
1521 * When the system is shut down, the handler isn't called until the very end
1522 * of the shutdown sequence i.e. after the disks have been synced.
1523 */
1524static int
1525siftr_load_handler(module_t mod, int what, void *arg)
1526{
1527	int ret;
1528
1529	switch (what) {
1530	case MOD_LOAD:
1531		ret = init_siftr();
1532		break;
1533
1534	case MOD_QUIESCE:
1535	case MOD_SHUTDOWN:
1536		ret = deinit_siftr();
1537		break;
1538
1539	case MOD_UNLOAD:
1540		ret = 0;
1541		break;
1542
1543	default:
1544		ret = EINVAL;
1545		break;
1546	}
1547
1548	return (ret);
1549}
1550
1551
1552static moduledata_t siftr_mod = {
1553	.name = "siftr",
1554	.evhand = siftr_load_handler,
1555};
1556
1557/*
1558 * Param 1: name of the kernel module
1559 * Param 2: moduledata_t struct containing info about the kernel module
1560 *          and the execution entry point for the module
1561 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1562 *          Defines the module initialisation order
1563 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1564 *          Defines the initialisation order of this kld relative to others
1565 *          within the same subsystem as defined by param 3
1566 */
1567DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
1568MODULE_DEPEND(siftr, alq, 1, 1, 1);
1569MODULE_VERSION(siftr, MODVERSION);
1570