1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/netinet/ip_output.c 347652 2019-05-16 08:24:53Z tuexen $");
34
35#include "opt_inet.h"
36#include "opt_ipsec.h"
37#include "opt_mbuf_stress_test.h"
38#include "opt_mpath.h"
39#include "opt_route.h"
40#include "opt_sctp.h"
41#include "opt_rss.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/protosw.h>
52#include <sys/rmlock.h>
53#include <sys/sdt.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57#include <sys/ucred.h>
58
59#include <net/if.h>
60#include <net/if_var.h>
61#include <net/if_llatbl.h>
62#include <net/netisr.h>
63#include <net/pfil.h>
64#include <net/route.h>
65#include <net/flowtable.h>
66#ifdef RADIX_MPATH
67#include <net/radix_mpath.h>
68#endif
69#include <net/rss_config.h>
70#include <net/vnet.h>
71
72#include <netinet/in.h>
73#include <netinet/in_kdtrace.h>
74#include <netinet/in_systm.h>
75#include <netinet/ip.h>
76#include <netinet/in_pcb.h>
77#include <netinet/in_rss.h>
78#include <netinet/in_var.h>
79#include <netinet/ip_var.h>
80#include <netinet/ip_options.h>
81#ifdef SCTP
82#include <netinet/sctp.h>
83#include <netinet/sctp_crc32.h>
84#endif
85
86#include <netipsec/ipsec_support.h>
87
88#include <machine/in_cksum.h>
89
90#include <security/mac/mac_framework.h>
91
92#ifdef MBUF_STRESS_TEST
93static int mbuf_frag_size = 0;
94SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
95	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
96#endif
97
98static void	ip_mloopback(struct ifnet *, const struct mbuf *, int);
99
100
101extern int in_mcast_loop;
102extern	struct protosw inetsw[];
103
104static inline int
105ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp,
106    struct sockaddr_in *dst, int *fibnum, int *error)
107{
108	struct m_tag *fwd_tag = NULL;
109	struct mbuf *m;
110	struct in_addr odst;
111	struct ip *ip;
112
113	m = *mp;
114	ip = mtod(m, struct ip *);
115
116	/* Run through list of hooks for output packets. */
117	odst.s_addr = ip->ip_dst.s_addr;
118	*error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, 0, inp);
119	m = *mp;
120	if ((*error) != 0 || m == NULL)
121		return 1; /* Finished */
122
123	ip = mtod(m, struct ip *);
124
125	/* See if destination IP address was changed by packet filter. */
126	if (odst.s_addr != ip->ip_dst.s_addr) {
127		m->m_flags |= M_SKIP_FIREWALL;
128		/* If destination is now ourself drop to ip_input(). */
129		if (in_localip(ip->ip_dst)) {
130			m->m_flags |= M_FASTFWD_OURS;
131			if (m->m_pkthdr.rcvif == NULL)
132				m->m_pkthdr.rcvif = V_loif;
133			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
134				m->m_pkthdr.csum_flags |=
135					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
136				m->m_pkthdr.csum_data = 0xffff;
137			}
138			m->m_pkthdr.csum_flags |=
139				CSUM_IP_CHECKED | CSUM_IP_VALID;
140#ifdef SCTP
141			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
142				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
143#endif
144			*error = netisr_queue(NETISR_IP, m);
145			return 1; /* Finished */
146		}
147
148		bzero(dst, sizeof(*dst));
149		dst->sin_family = AF_INET;
150		dst->sin_len = sizeof(*dst);
151		dst->sin_addr = ip->ip_dst;
152
153		return -1; /* Reloop */
154	}
155	/* See if fib was changed by packet filter. */
156	if ((*fibnum) != M_GETFIB(m)) {
157		m->m_flags |= M_SKIP_FIREWALL;
158		*fibnum = M_GETFIB(m);
159		return -1; /* Reloop for FIB change */
160	}
161
162	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
163	if (m->m_flags & M_FASTFWD_OURS) {
164		if (m->m_pkthdr.rcvif == NULL)
165			m->m_pkthdr.rcvif = V_loif;
166		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
167			m->m_pkthdr.csum_flags |=
168				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
169			m->m_pkthdr.csum_data = 0xffff;
170		}
171#ifdef SCTP
172		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
173			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
174#endif
175		m->m_pkthdr.csum_flags |=
176			CSUM_IP_CHECKED | CSUM_IP_VALID;
177
178		*error = netisr_queue(NETISR_IP, m);
179		return 1; /* Finished */
180	}
181	/* Or forward to some other address? */
182	if ((m->m_flags & M_IP_NEXTHOP) &&
183	    ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
184		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
185		m->m_flags |= M_SKIP_FIREWALL;
186		m->m_flags &= ~M_IP_NEXTHOP;
187		m_tag_delete(m, fwd_tag);
188
189		return -1; /* Reloop for CHANGE of dst */
190	}
191
192	return 0;
193}
194
195/*
196 * IP output.  The packet in mbuf chain m contains a skeletal IP
197 * header (with len, off, ttl, proto, tos, src, dst).
198 * The mbuf chain containing the packet will be freed.
199 * The mbuf opt, if present, will not be freed.
200 * If route ro is present and has ro_rt initialized, route lookup would be
201 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
202 * then result of route lookup is stored in ro->ro_rt.
203 *
204 * In the IP forwarding case, the packet will arrive with options already
205 * inserted, so must have a NULL opt pointer.
206 */
207int
208ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
209    struct ip_moptions *imo, struct inpcb *inp)
210{
211	struct rm_priotracker in_ifa_tracker;
212	struct ip *ip;
213	struct ifnet *ifp = NULL;	/* keep compiler happy */
214	struct mbuf *m0;
215	int hlen = sizeof (struct ip);
216	int mtu;
217	int error = 0;
218	struct sockaddr_in *dst;
219	const struct sockaddr_in *gw;
220	struct in_ifaddr *ia;
221	int isbroadcast;
222	uint16_t ip_len, ip_off;
223	struct route iproute;
224	struct rtentry *rte;	/* cache for ro->ro_rt */
225	uint32_t fibnum;
226	int have_ia_ref;
227#if defined(IPSEC) || defined(IPSEC_SUPPORT)
228	int no_route_but_check_spd = 0;
229#endif
230	M_ASSERTPKTHDR(m);
231
232	if (inp != NULL) {
233		INP_LOCK_ASSERT(inp);
234		M_SETFIB(m, inp->inp_inc.inc_fibnum);
235		if ((flags & IP_NODEFAULTFLOWID) == 0) {
236			m->m_pkthdr.flowid = inp->inp_flowid;
237			M_HASHTYPE_SET(m, inp->inp_flowtype);
238		}
239	}
240
241	if (ro == NULL) {
242		ro = &iproute;
243		bzero(ro, sizeof (*ro));
244	}
245
246#ifdef FLOWTABLE
247	if (ro->ro_rt == NULL)
248		(void )flowtable_lookup(AF_INET, m, ro);
249#endif
250
251	if (opt) {
252		int len = 0;
253		m = ip_insertoptions(m, opt, &len);
254		if (len != 0)
255			hlen = len; /* ip->ip_hl is updated above */
256	}
257	ip = mtod(m, struct ip *);
258	ip_len = ntohs(ip->ip_len);
259	ip_off = ntohs(ip->ip_off);
260
261	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
262		ip->ip_v = IPVERSION;
263		ip->ip_hl = hlen >> 2;
264		ip_fillid(ip);
265	} else {
266		/* Header already set, fetch hlen from there */
267		hlen = ip->ip_hl << 2;
268	}
269	if ((flags & IP_FORWARDING) == 0)
270		IPSTAT_INC(ips_localout);
271
272	/*
273	 * dst/gw handling:
274	 *
275	 * dst can be rewritten but always points to &ro->ro_dst.
276	 * gw is readonly but can point either to dst OR rt_gateway,
277	 * therefore we need restore gw if we're redoing lookup.
278	 */
279	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
280	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
281	rte = ro->ro_rt;
282	if (rte == NULL) {
283		bzero(dst, sizeof(*dst));
284		dst->sin_family = AF_INET;
285		dst->sin_len = sizeof(*dst);
286		dst->sin_addr = ip->ip_dst;
287	}
288again:
289	/*
290	 * Validate route against routing table additions;
291	 * a better/more specific route might have been added.
292	 */
293	if (inp)
294		RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
295	/*
296	 * If there is a cached route,
297	 * check that it is to the same destination
298	 * and is still up.  If not, free it and try again.
299	 * The address family should also be checked in case of sharing the
300	 * cache with IPv6.
301	 * Also check whether routing cache needs invalidation.
302	 */
303	rte = ro->ro_rt;
304	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
305		    rte->rt_ifp == NULL ||
306		    !RT_LINK_IS_UP(rte->rt_ifp) ||
307			  dst->sin_family != AF_INET ||
308			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
309		RTFREE(rte);
310		rte = ro->ro_rt = (struct rtentry *)NULL;
311		if (ro->ro_lle)
312			LLE_FREE(ro->ro_lle);	/* zeros ro_lle */
313		ro->ro_lle = (struct llentry *)NULL;
314	}
315	ia = NULL;
316	have_ia_ref = 0;
317	/*
318	 * If routing to interface only, short circuit routing lookup.
319	 * The use of an all-ones broadcast address implies this; an
320	 * interface is specified by the broadcast address of an interface,
321	 * or the destination address of a ptp interface.
322	 */
323	if (flags & IP_SENDONES) {
324		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
325						      M_GETFIB(m)))) == NULL &&
326		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
327						    M_GETFIB(m)))) == NULL) {
328			IPSTAT_INC(ips_noroute);
329			error = ENETUNREACH;
330			goto bad;
331		}
332		have_ia_ref = 1;
333		ip->ip_dst.s_addr = INADDR_BROADCAST;
334		dst->sin_addr = ip->ip_dst;
335		ifp = ia->ia_ifp;
336		ip->ip_ttl = 1;
337		isbroadcast = 1;
338	} else if (flags & IP_ROUTETOIF) {
339		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
340						    M_GETFIB(m)))) == NULL &&
341		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
342						M_GETFIB(m)))) == NULL) {
343			IPSTAT_INC(ips_noroute);
344			error = ENETUNREACH;
345			goto bad;
346		}
347		have_ia_ref = 1;
348		ifp = ia->ia_ifp;
349		ip->ip_ttl = 1;
350		isbroadcast = in_broadcast(dst->sin_addr, ifp);
351	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
352	    imo != NULL && imo->imo_multicast_ifp != NULL) {
353		/*
354		 * Bypass the normal routing lookup for multicast
355		 * packets if the interface is specified.
356		 */
357		ifp = imo->imo_multicast_ifp;
358		IFP_TO_IA(ifp, ia, &in_ifa_tracker);
359		if (ia)
360			have_ia_ref = 1;
361		isbroadcast = 0;	/* fool gcc */
362	} else {
363		/*
364		 * We want to do any cloning requested by the link layer,
365		 * as this is probably required in all cases for correct
366		 * operation (as it is for ARP).
367		 */
368		if (rte == NULL) {
369#ifdef RADIX_MPATH
370			rtalloc_mpath_fib(ro,
371			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
372			    fibnum);
373#else
374			in_rtalloc_ign(ro, 0, fibnum);
375#endif
376			rte = ro->ro_rt;
377		}
378		if (rte == NULL ||
379		    (rte->rt_flags & RTF_UP) == 0 ||
380		    rte->rt_ifp == NULL ||
381		    !RT_LINK_IS_UP(rte->rt_ifp)) {
382#if defined(IPSEC) || defined(IPSEC_SUPPORT)
383			/*
384			 * There is no route for this packet, but it is
385			 * possible that a matching SPD entry exists.
386			 */
387			no_route_but_check_spd = 1;
388			mtu = 0; /* Silence GCC warning. */
389			goto sendit;
390#endif
391			IPSTAT_INC(ips_noroute);
392			error = EHOSTUNREACH;
393			goto bad;
394		}
395		ia = ifatoia(rte->rt_ifa);
396		ifp = rte->rt_ifp;
397		counter_u64_add(rte->rt_pksent, 1);
398		rt_update_ro_flags(ro);
399		if (rte->rt_flags & RTF_GATEWAY)
400			gw = (struct sockaddr_in *)rte->rt_gateway;
401		if (rte->rt_flags & RTF_HOST)
402			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
403		else
404			isbroadcast = in_broadcast(gw->sin_addr, ifp);
405	}
406
407	/*
408	 * Calculate MTU.  If we have a route that is up, use that,
409	 * otherwise use the interface's MTU.
410	 */
411	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST)))
412		mtu = rte->rt_mtu;
413	else
414		mtu = ifp->if_mtu;
415	/* Catch a possible divide by zero later. */
416	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
417	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
418
419	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
420		m->m_flags |= M_MCAST;
421		/*
422		 * IP destination address is multicast.  Make sure "gw"
423		 * still points to the address in "ro".  (It may have been
424		 * changed to point to a gateway address, above.)
425		 */
426		gw = dst;
427		/*
428		 * See if the caller provided any multicast options
429		 */
430		if (imo != NULL) {
431			ip->ip_ttl = imo->imo_multicast_ttl;
432			if (imo->imo_multicast_vif != -1)
433				ip->ip_src.s_addr =
434				    ip_mcast_src ?
435				    ip_mcast_src(imo->imo_multicast_vif) :
436				    INADDR_ANY;
437		} else
438			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
439		/*
440		 * Confirm that the outgoing interface supports multicast.
441		 */
442		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
443			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
444				IPSTAT_INC(ips_noroute);
445				error = ENETUNREACH;
446				goto bad;
447			}
448		}
449		/*
450		 * If source address not specified yet, use address
451		 * of outgoing interface.
452		 */
453		if (ip->ip_src.s_addr == INADDR_ANY) {
454			/* Interface may have no addresses. */
455			if (ia != NULL)
456				ip->ip_src = IA_SIN(ia)->sin_addr;
457		}
458
459		if ((imo == NULL && in_mcast_loop) ||
460		    (imo && imo->imo_multicast_loop)) {
461			/*
462			 * Loop back multicast datagram if not expressly
463			 * forbidden to do so, even if we are not a member
464			 * of the group; ip_input() will filter it later,
465			 * thus deferring a hash lookup and mutex acquisition
466			 * at the expense of a cheap copy using m_copym().
467			 */
468			ip_mloopback(ifp, m, hlen);
469		} else {
470			/*
471			 * If we are acting as a multicast router, perform
472			 * multicast forwarding as if the packet had just
473			 * arrived on the interface to which we are about
474			 * to send.  The multicast forwarding function
475			 * recursively calls this function, using the
476			 * IP_FORWARDING flag to prevent infinite recursion.
477			 *
478			 * Multicasts that are looped back by ip_mloopback(),
479			 * above, will be forwarded by the ip_input() routine,
480			 * if necessary.
481			 */
482			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
483				/*
484				 * If rsvp daemon is not running, do not
485				 * set ip_moptions. This ensures that the packet
486				 * is multicast and not just sent down one link
487				 * as prescribed by rsvpd.
488				 */
489				if (!V_rsvp_on)
490					imo = NULL;
491				if (ip_mforward &&
492				    ip_mforward(ip, ifp, m, imo) != 0) {
493					m_freem(m);
494					goto done;
495				}
496			}
497		}
498
499		/*
500		 * Multicasts with a time-to-live of zero may be looped-
501		 * back, above, but must not be transmitted on a network.
502		 * Also, multicasts addressed to the loopback interface
503		 * are not sent -- the above call to ip_mloopback() will
504		 * loop back a copy. ip_input() will drop the copy if
505		 * this host does not belong to the destination group on
506		 * the loopback interface.
507		 */
508		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
509			m_freem(m);
510			goto done;
511		}
512
513		goto sendit;
514	}
515
516	/*
517	 * If the source address is not specified yet, use the address
518	 * of the outoing interface.
519	 */
520	if (ip->ip_src.s_addr == INADDR_ANY) {
521		/* Interface may have no addresses. */
522		if (ia != NULL) {
523			ip->ip_src = IA_SIN(ia)->sin_addr;
524		}
525	}
526
527	/*
528	 * Look for broadcast address and
529	 * verify user is allowed to send
530	 * such a packet.
531	 */
532	if (isbroadcast) {
533		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
534			error = EADDRNOTAVAIL;
535			goto bad;
536		}
537		if ((flags & IP_ALLOWBROADCAST) == 0) {
538			error = EACCES;
539			goto bad;
540		}
541		/* don't allow broadcast messages to be fragmented */
542		if (ip_len > mtu) {
543			error = EMSGSIZE;
544			goto bad;
545		}
546		m->m_flags |= M_BCAST;
547	} else {
548		m->m_flags &= ~M_BCAST;
549	}
550
551sendit:
552#if defined(IPSEC) || defined(IPSEC_SUPPORT)
553	if (IPSEC_ENABLED(ipv4)) {
554		if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
555			if (error == EINPROGRESS)
556				error = 0;
557			goto done;
558		}
559	}
560	/*
561	 * Check if there was a route for this packet; return error if not.
562	 */
563	if (no_route_but_check_spd) {
564		IPSTAT_INC(ips_noroute);
565		error = EHOSTUNREACH;
566		goto bad;
567	}
568	/* Update variables that are affected by ipsec4_output(). */
569	ip = mtod(m, struct ip *);
570	hlen = ip->ip_hl << 2;
571#endif /* IPSEC */
572
573	/* Jump over all PFIL processing if hooks are not active. */
574	if (PFIL_HOOKED(&V_inet_pfil_hook)) {
575		switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) {
576		case 1: /* Finished */
577			goto done;
578
579		case 0: /* Continue normally */
580			ip = mtod(m, struct ip *);
581			break;
582
583		case -1: /* Need to try again */
584			/* Reset everything for a new round */
585			RO_RTFREE(ro);
586			if (have_ia_ref)
587				ifa_free(&ia->ia_ifa);
588			ro->ro_prepend = NULL;
589			rte = NULL;
590			gw = dst;
591			ip = mtod(m, struct ip *);
592			goto again;
593
594		}
595	}
596
597	/* 127/8 must not appear on wire - RFC1122. */
598	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
599	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
600		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
601			IPSTAT_INC(ips_badaddr);
602			error = EADDRNOTAVAIL;
603			goto bad;
604		}
605	}
606
607	m->m_pkthdr.csum_flags |= CSUM_IP;
608	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
609		in_delayed_cksum(m);
610		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
611	}
612#ifdef SCTP
613	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
614		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
615		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
616	}
617#endif
618
619	/*
620	 * If small enough for interface, or the interface will take
621	 * care of the fragmentation for us, we can just send directly.
622	 */
623	if (ip_len <= mtu ||
624	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
625		ip->ip_sum = 0;
626		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
627			ip->ip_sum = in_cksum(m, hlen);
628			m->m_pkthdr.csum_flags &= ~CSUM_IP;
629		}
630
631		/*
632		 * Record statistics for this interface address.
633		 * With CSUM_TSO the byte/packet count will be slightly
634		 * incorrect because we count the IP+TCP headers only
635		 * once instead of for every generated packet.
636		 */
637		if (!(flags & IP_FORWARDING) && ia) {
638			if (m->m_pkthdr.csum_flags & CSUM_TSO)
639				counter_u64_add(ia->ia_ifa.ifa_opackets,
640				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
641			else
642				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
643
644			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
645		}
646#ifdef MBUF_STRESS_TEST
647		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
648			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
649#endif
650		/*
651		 * Reset layer specific mbuf flags
652		 * to avoid confusing lower layers.
653		 */
654		m_clrprotoflags(m);
655		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
656		error = (*ifp->if_output)(ifp, m,
657		    (const struct sockaddr *)gw, ro);
658		goto done;
659	}
660
661	/* Balk when DF bit is set or the interface didn't support TSO. */
662	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
663		error = EMSGSIZE;
664		IPSTAT_INC(ips_cantfrag);
665		goto bad;
666	}
667
668	/*
669	 * Too large for interface; fragment if possible. If successful,
670	 * on return, m will point to a list of packets to be sent.
671	 */
672	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
673	if (error)
674		goto bad;
675	for (; m; m = m0) {
676		m0 = m->m_nextpkt;
677		m->m_nextpkt = 0;
678		if (error == 0) {
679			/* Record statistics for this interface address. */
680			if (ia != NULL) {
681				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
682				counter_u64_add(ia->ia_ifa.ifa_obytes,
683				    m->m_pkthdr.len);
684			}
685			/*
686			 * Reset layer specific mbuf flags
687			 * to avoid confusing upper layers.
688			 */
689			m_clrprotoflags(m);
690
691			IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
692			    mtod(m, struct ip *), NULL);
693			error = (*ifp->if_output)(ifp, m,
694			    (const struct sockaddr *)gw, ro);
695		} else
696			m_freem(m);
697	}
698
699	if (error == 0)
700		IPSTAT_INC(ips_fragmented);
701
702done:
703	/*
704	 * Release the route if using our private route, or if
705	 * (with flowtable) we don't have our own reference.
706	 */
707	if (ro == &iproute || ro->ro_flags & RT_NORTREF)
708		RO_RTFREE(ro);
709	else if (rte == NULL)
710		/*
711		 * If the caller supplied a route but somehow the reference
712		 * to it has been released need to prevent the caller
713		 * calling RTFREE on it again.
714		 */
715		ro->ro_rt = NULL;
716	if (have_ia_ref)
717		ifa_free(&ia->ia_ifa);
718	return (error);
719bad:
720	m_freem(m);
721	goto done;
722}
723
724/*
725 * Create a chain of fragments which fit the given mtu. m_frag points to the
726 * mbuf to be fragmented; on return it points to the chain with the fragments.
727 * Return 0 if no error. If error, m_frag may contain a partially built
728 * chain of fragments that should be freed by the caller.
729 *
730 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
731 */
732int
733ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
734    u_long if_hwassist_flags)
735{
736	int error = 0;
737	int hlen = ip->ip_hl << 2;
738	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
739	int off;
740	struct mbuf *m0 = *m_frag;	/* the original packet		*/
741	int firstlen;
742	struct mbuf **mnext;
743	int nfrags;
744	uint16_t ip_len, ip_off;
745
746	ip_len = ntohs(ip->ip_len);
747	ip_off = ntohs(ip->ip_off);
748
749	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
750		IPSTAT_INC(ips_cantfrag);
751		return EMSGSIZE;
752	}
753
754	/*
755	 * Must be able to put at least 8 bytes per fragment.
756	 */
757	if (len < 8)
758		return EMSGSIZE;
759
760	/*
761	 * If the interface will not calculate checksums on
762	 * fragmented packets, then do it here.
763	 */
764	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
765		in_delayed_cksum(m0);
766		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
767	}
768#ifdef SCTP
769	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
770		sctp_delayed_cksum(m0, hlen);
771		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
772	}
773#endif
774	if (len > PAGE_SIZE) {
775		/*
776		 * Fragment large datagrams such that each segment
777		 * contains a multiple of PAGE_SIZE amount of data,
778		 * plus headers. This enables a receiver to perform
779		 * page-flipping zero-copy optimizations.
780		 *
781		 * XXX When does this help given that sender and receiver
782		 * could have different page sizes, and also mtu could
783		 * be less than the receiver's page size ?
784		 */
785		int newlen;
786
787		off = MIN(mtu, m0->m_pkthdr.len);
788
789		/*
790		 * firstlen (off - hlen) must be aligned on an
791		 * 8-byte boundary
792		 */
793		if (off < hlen)
794			goto smart_frag_failure;
795		off = ((off - hlen) & ~7) + hlen;
796		newlen = (~PAGE_MASK) & mtu;
797		if ((newlen + sizeof (struct ip)) > mtu) {
798			/* we failed, go back the default */
799smart_frag_failure:
800			newlen = len;
801			off = hlen + len;
802		}
803		len = newlen;
804
805	} else {
806		off = hlen + len;
807	}
808
809	firstlen = off - hlen;
810	mnext = &m0->m_nextpkt;		/* pointer to next packet */
811
812	/*
813	 * Loop through length of segment after first fragment,
814	 * make new header and copy data of each part and link onto chain.
815	 * Here, m0 is the original packet, m is the fragment being created.
816	 * The fragments are linked off the m_nextpkt of the original
817	 * packet, which after processing serves as the first fragment.
818	 */
819	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
820		struct ip *mhip;	/* ip header on the fragment */
821		struct mbuf *m;
822		int mhlen = sizeof (struct ip);
823
824		m = m_gethdr(M_NOWAIT, MT_DATA);
825		if (m == NULL) {
826			error = ENOBUFS;
827			IPSTAT_INC(ips_odropped);
828			goto done;
829		}
830		/*
831		 * Make sure the complete packet header gets copied
832		 * from the originating mbuf to the newly created
833		 * mbuf. This also ensures that existing firewall
834		 * classification(s), VLAN tags and so on get copied
835		 * to the resulting fragmented packet(s):
836		 */
837		if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
838			m_free(m);
839			error = ENOBUFS;
840			IPSTAT_INC(ips_odropped);
841			goto done;
842		}
843		/*
844		 * In the first mbuf, leave room for the link header, then
845		 * copy the original IP header including options. The payload
846		 * goes into an additional mbuf chain returned by m_copym().
847		 */
848		m->m_data += max_linkhdr;
849		mhip = mtod(m, struct ip *);
850		*mhip = *ip;
851		if (hlen > sizeof (struct ip)) {
852			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
853			mhip->ip_v = IPVERSION;
854			mhip->ip_hl = mhlen >> 2;
855		}
856		m->m_len = mhlen;
857		/* XXX do we need to add ip_off below ? */
858		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
859		if (off + len >= ip_len)
860			len = ip_len - off;
861		else
862			mhip->ip_off |= IP_MF;
863		mhip->ip_len = htons((u_short)(len + mhlen));
864		m->m_next = m_copym(m0, off, len, M_NOWAIT);
865		if (m->m_next == NULL) {	/* copy failed */
866			m_free(m);
867			error = ENOBUFS;	/* ??? */
868			IPSTAT_INC(ips_odropped);
869			goto done;
870		}
871		m->m_pkthdr.len = mhlen + len;
872#ifdef MAC
873		mac_netinet_fragment(m0, m);
874#endif
875		mhip->ip_off = htons(mhip->ip_off);
876		mhip->ip_sum = 0;
877		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
878			mhip->ip_sum = in_cksum(m, mhlen);
879			m->m_pkthdr.csum_flags &= ~CSUM_IP;
880		}
881		*mnext = m;
882		mnext = &m->m_nextpkt;
883	}
884	IPSTAT_ADD(ips_ofragments, nfrags);
885
886	/*
887	 * Update first fragment by trimming what's been copied out
888	 * and updating header.
889	 */
890	m_adj(m0, hlen + firstlen - ip_len);
891	m0->m_pkthdr.len = hlen + firstlen;
892	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
893	ip->ip_off = htons(ip_off | IP_MF);
894	ip->ip_sum = 0;
895	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
896		ip->ip_sum = in_cksum(m0, hlen);
897		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
898	}
899
900done:
901	*m_frag = m0;
902	return error;
903}
904
905void
906in_delayed_cksum(struct mbuf *m)
907{
908	struct ip *ip;
909	uint16_t csum, offset, ip_len;
910
911	ip = mtod(m, struct ip *);
912	offset = ip->ip_hl << 2 ;
913	ip_len = ntohs(ip->ip_len);
914	csum = in_cksum_skip(m, ip_len, offset);
915	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
916		csum = 0xffff;
917	offset += m->m_pkthdr.csum_data;	/* checksum offset */
918
919	/* find the mbuf in the chain where the checksum starts*/
920	while ((m != NULL) && (offset >= m->m_len)) {
921		offset -= m->m_len;
922		m = m->m_next;
923	}
924	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
925	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
926	*(u_short *)(m->m_data + offset) = csum;
927}
928
929/*
930 * IP socket option processing.
931 */
932int
933ip_ctloutput(struct socket *so, struct sockopt *sopt)
934{
935	struct	inpcb *inp = sotoinpcb(so);
936	int	error, optval;
937#ifdef	RSS
938	uint32_t rss_bucket;
939	int retval;
940#endif
941
942	error = optval = 0;
943	if (sopt->sopt_level != IPPROTO_IP) {
944		error = EINVAL;
945
946		if (sopt->sopt_level == SOL_SOCKET &&
947		    sopt->sopt_dir == SOPT_SET) {
948			switch (sopt->sopt_name) {
949			case SO_REUSEADDR:
950				INP_WLOCK(inp);
951				if ((so->so_options & SO_REUSEADDR) != 0)
952					inp->inp_flags2 |= INP_REUSEADDR;
953				else
954					inp->inp_flags2 &= ~INP_REUSEADDR;
955				INP_WUNLOCK(inp);
956				error = 0;
957				break;
958			case SO_REUSEPORT:
959				INP_WLOCK(inp);
960				if ((so->so_options & SO_REUSEPORT) != 0)
961					inp->inp_flags2 |= INP_REUSEPORT;
962				else
963					inp->inp_flags2 &= ~INP_REUSEPORT;
964				INP_WUNLOCK(inp);
965				error = 0;
966				break;
967			case SO_SETFIB:
968				INP_WLOCK(inp);
969				inp->inp_inc.inc_fibnum = so->so_fibnum;
970				INP_WUNLOCK(inp);
971				error = 0;
972				break;
973			default:
974				break;
975			}
976		}
977		return (error);
978	}
979
980	switch (sopt->sopt_dir) {
981	case SOPT_SET:
982		switch (sopt->sopt_name) {
983		case IP_OPTIONS:
984#ifdef notyet
985		case IP_RETOPTS:
986#endif
987		{
988			struct mbuf *m;
989			if (sopt->sopt_valsize > MLEN) {
990				error = EMSGSIZE;
991				break;
992			}
993			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
994			if (m == NULL) {
995				error = ENOBUFS;
996				break;
997			}
998			m->m_len = sopt->sopt_valsize;
999			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1000					    m->m_len);
1001			if (error) {
1002				m_free(m);
1003				break;
1004			}
1005			INP_WLOCK(inp);
1006			error = ip_pcbopts(inp, sopt->sopt_name, m);
1007			INP_WUNLOCK(inp);
1008			return (error);
1009		}
1010
1011		case IP_BINDANY:
1012			if (sopt->sopt_td != NULL) {
1013				error = priv_check(sopt->sopt_td,
1014				    PRIV_NETINET_BINDANY);
1015				if (error)
1016					break;
1017			}
1018			/* FALLTHROUGH */
1019		case IP_BINDMULTI:
1020#ifdef	RSS
1021		case IP_RSS_LISTEN_BUCKET:
1022#endif
1023		case IP_TOS:
1024		case IP_TTL:
1025		case IP_MINTTL:
1026		case IP_RECVOPTS:
1027		case IP_RECVRETOPTS:
1028		case IP_RECVDSTADDR:
1029		case IP_RECVTTL:
1030		case IP_RECVIF:
1031		case IP_ONESBCAST:
1032		case IP_DONTFRAG:
1033		case IP_RECVTOS:
1034		case IP_RECVFLOWID:
1035#ifdef	RSS
1036		case IP_RECVRSSBUCKETID:
1037#endif
1038			error = sooptcopyin(sopt, &optval, sizeof optval,
1039					    sizeof optval);
1040			if (error)
1041				break;
1042
1043			switch (sopt->sopt_name) {
1044			case IP_TOS:
1045				inp->inp_ip_tos = optval;
1046				break;
1047
1048			case IP_TTL:
1049				inp->inp_ip_ttl = optval;
1050				break;
1051
1052			case IP_MINTTL:
1053				if (optval >= 0 && optval <= MAXTTL)
1054					inp->inp_ip_minttl = optval;
1055				else
1056					error = EINVAL;
1057				break;
1058
1059#define	OPTSET(bit) do {						\
1060	INP_WLOCK(inp);							\
1061	if (optval)							\
1062		inp->inp_flags |= bit;					\
1063	else								\
1064		inp->inp_flags &= ~bit;					\
1065	INP_WUNLOCK(inp);						\
1066} while (0)
1067
1068#define	OPTSET2(bit, val) do {						\
1069	INP_WLOCK(inp);							\
1070	if (val)							\
1071		inp->inp_flags2 |= bit;					\
1072	else								\
1073		inp->inp_flags2 &= ~bit;				\
1074	INP_WUNLOCK(inp);						\
1075} while (0)
1076
1077			case IP_RECVOPTS:
1078				OPTSET(INP_RECVOPTS);
1079				break;
1080
1081			case IP_RECVRETOPTS:
1082				OPTSET(INP_RECVRETOPTS);
1083				break;
1084
1085			case IP_RECVDSTADDR:
1086				OPTSET(INP_RECVDSTADDR);
1087				break;
1088
1089			case IP_RECVTTL:
1090				OPTSET(INP_RECVTTL);
1091				break;
1092
1093			case IP_RECVIF:
1094				OPTSET(INP_RECVIF);
1095				break;
1096
1097			case IP_ONESBCAST:
1098				OPTSET(INP_ONESBCAST);
1099				break;
1100			case IP_DONTFRAG:
1101				OPTSET(INP_DONTFRAG);
1102				break;
1103			case IP_BINDANY:
1104				OPTSET(INP_BINDANY);
1105				break;
1106			case IP_RECVTOS:
1107				OPTSET(INP_RECVTOS);
1108				break;
1109			case IP_BINDMULTI:
1110				OPTSET2(INP_BINDMULTI, optval);
1111				break;
1112			case IP_RECVFLOWID:
1113				OPTSET2(INP_RECVFLOWID, optval);
1114				break;
1115#ifdef	RSS
1116			case IP_RSS_LISTEN_BUCKET:
1117				if ((optval >= 0) &&
1118				    (optval < rss_getnumbuckets())) {
1119					inp->inp_rss_listen_bucket = optval;
1120					OPTSET2(INP_RSS_BUCKET_SET, 1);
1121				} else {
1122					error = EINVAL;
1123				}
1124				break;
1125			case IP_RECVRSSBUCKETID:
1126				OPTSET2(INP_RECVRSSBUCKETID, optval);
1127				break;
1128#endif
1129			}
1130			break;
1131#undef OPTSET
1132#undef OPTSET2
1133
1134		/*
1135		 * Multicast socket options are processed by the in_mcast
1136		 * module.
1137		 */
1138		case IP_MULTICAST_IF:
1139		case IP_MULTICAST_VIF:
1140		case IP_MULTICAST_TTL:
1141		case IP_MULTICAST_LOOP:
1142		case IP_ADD_MEMBERSHIP:
1143		case IP_DROP_MEMBERSHIP:
1144		case IP_ADD_SOURCE_MEMBERSHIP:
1145		case IP_DROP_SOURCE_MEMBERSHIP:
1146		case IP_BLOCK_SOURCE:
1147		case IP_UNBLOCK_SOURCE:
1148		case IP_MSFILTER:
1149		case MCAST_JOIN_GROUP:
1150		case MCAST_LEAVE_GROUP:
1151		case MCAST_JOIN_SOURCE_GROUP:
1152		case MCAST_LEAVE_SOURCE_GROUP:
1153		case MCAST_BLOCK_SOURCE:
1154		case MCAST_UNBLOCK_SOURCE:
1155			error = inp_setmoptions(inp, sopt);
1156			break;
1157
1158		case IP_PORTRANGE:
1159			error = sooptcopyin(sopt, &optval, sizeof optval,
1160					    sizeof optval);
1161			if (error)
1162				break;
1163
1164			INP_WLOCK(inp);
1165			switch (optval) {
1166			case IP_PORTRANGE_DEFAULT:
1167				inp->inp_flags &= ~(INP_LOWPORT);
1168				inp->inp_flags &= ~(INP_HIGHPORT);
1169				break;
1170
1171			case IP_PORTRANGE_HIGH:
1172				inp->inp_flags &= ~(INP_LOWPORT);
1173				inp->inp_flags |= INP_HIGHPORT;
1174				break;
1175
1176			case IP_PORTRANGE_LOW:
1177				inp->inp_flags &= ~(INP_HIGHPORT);
1178				inp->inp_flags |= INP_LOWPORT;
1179				break;
1180
1181			default:
1182				error = EINVAL;
1183				break;
1184			}
1185			INP_WUNLOCK(inp);
1186			break;
1187
1188#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1189		case IP_IPSEC_POLICY:
1190			if (IPSEC_ENABLED(ipv4)) {
1191				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1192				break;
1193			}
1194			/* FALLTHROUGH */
1195#endif /* IPSEC */
1196
1197		default:
1198			error = ENOPROTOOPT;
1199			break;
1200		}
1201		break;
1202
1203	case SOPT_GET:
1204		switch (sopt->sopt_name) {
1205		case IP_OPTIONS:
1206		case IP_RETOPTS:
1207			if (inp->inp_options)
1208				error = sooptcopyout(sopt,
1209						     mtod(inp->inp_options,
1210							  char *),
1211						     inp->inp_options->m_len);
1212			else
1213				sopt->sopt_valsize = 0;
1214			break;
1215
1216		case IP_TOS:
1217		case IP_TTL:
1218		case IP_MINTTL:
1219		case IP_RECVOPTS:
1220		case IP_RECVRETOPTS:
1221		case IP_RECVDSTADDR:
1222		case IP_RECVTTL:
1223		case IP_RECVIF:
1224		case IP_PORTRANGE:
1225		case IP_ONESBCAST:
1226		case IP_DONTFRAG:
1227		case IP_BINDANY:
1228		case IP_RECVTOS:
1229		case IP_BINDMULTI:
1230		case IP_FLOWID:
1231		case IP_FLOWTYPE:
1232		case IP_RECVFLOWID:
1233#ifdef	RSS
1234		case IP_RSSBUCKETID:
1235		case IP_RECVRSSBUCKETID:
1236#endif
1237			switch (sopt->sopt_name) {
1238
1239			case IP_TOS:
1240				optval = inp->inp_ip_tos;
1241				break;
1242
1243			case IP_TTL:
1244				optval = inp->inp_ip_ttl;
1245				break;
1246
1247			case IP_MINTTL:
1248				optval = inp->inp_ip_minttl;
1249				break;
1250
1251#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1252#define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1253
1254			case IP_RECVOPTS:
1255				optval = OPTBIT(INP_RECVOPTS);
1256				break;
1257
1258			case IP_RECVRETOPTS:
1259				optval = OPTBIT(INP_RECVRETOPTS);
1260				break;
1261
1262			case IP_RECVDSTADDR:
1263				optval = OPTBIT(INP_RECVDSTADDR);
1264				break;
1265
1266			case IP_RECVTTL:
1267				optval = OPTBIT(INP_RECVTTL);
1268				break;
1269
1270			case IP_RECVIF:
1271				optval = OPTBIT(INP_RECVIF);
1272				break;
1273
1274			case IP_PORTRANGE:
1275				if (inp->inp_flags & INP_HIGHPORT)
1276					optval = IP_PORTRANGE_HIGH;
1277				else if (inp->inp_flags & INP_LOWPORT)
1278					optval = IP_PORTRANGE_LOW;
1279				else
1280					optval = 0;
1281				break;
1282
1283			case IP_ONESBCAST:
1284				optval = OPTBIT(INP_ONESBCAST);
1285				break;
1286			case IP_DONTFRAG:
1287				optval = OPTBIT(INP_DONTFRAG);
1288				break;
1289			case IP_BINDANY:
1290				optval = OPTBIT(INP_BINDANY);
1291				break;
1292			case IP_RECVTOS:
1293				optval = OPTBIT(INP_RECVTOS);
1294				break;
1295			case IP_FLOWID:
1296				optval = inp->inp_flowid;
1297				break;
1298			case IP_FLOWTYPE:
1299				optval = inp->inp_flowtype;
1300				break;
1301			case IP_RECVFLOWID:
1302				optval = OPTBIT2(INP_RECVFLOWID);
1303				break;
1304#ifdef	RSS
1305			case IP_RSSBUCKETID:
1306				retval = rss_hash2bucket(inp->inp_flowid,
1307				    inp->inp_flowtype,
1308				    &rss_bucket);
1309				if (retval == 0)
1310					optval = rss_bucket;
1311				else
1312					error = EINVAL;
1313				break;
1314			case IP_RECVRSSBUCKETID:
1315				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1316				break;
1317#endif
1318			case IP_BINDMULTI:
1319				optval = OPTBIT2(INP_BINDMULTI);
1320				break;
1321			}
1322			error = sooptcopyout(sopt, &optval, sizeof optval);
1323			break;
1324
1325		/*
1326		 * Multicast socket options are processed by the in_mcast
1327		 * module.
1328		 */
1329		case IP_MULTICAST_IF:
1330		case IP_MULTICAST_VIF:
1331		case IP_MULTICAST_TTL:
1332		case IP_MULTICAST_LOOP:
1333		case IP_MSFILTER:
1334			error = inp_getmoptions(inp, sopt);
1335			break;
1336
1337#if defined(IPSEC) || defined(IPSEC_SUPPORT)
1338		case IP_IPSEC_POLICY:
1339			if (IPSEC_ENABLED(ipv4)) {
1340				error = IPSEC_PCBCTL(ipv4, inp, sopt);
1341				break;
1342			}
1343			/* FALLTHROUGH */
1344#endif /* IPSEC */
1345
1346		default:
1347			error = ENOPROTOOPT;
1348			break;
1349		}
1350		break;
1351	}
1352	return (error);
1353}
1354
1355/*
1356 * Routine called from ip_output() to loop back a copy of an IP multicast
1357 * packet to the input queue of a specified interface.  Note that this
1358 * calls the output routine of the loopback "driver", but with an interface
1359 * pointer that might NOT be a loopback interface -- evil, but easier than
1360 * replicating that code here.
1361 */
1362static void
1363ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1364{
1365	struct ip *ip;
1366	struct mbuf *copym;
1367
1368	/*
1369	 * Make a deep copy of the packet because we're going to
1370	 * modify the pack in order to generate checksums.
1371	 */
1372	copym = m_dup(m, M_NOWAIT);
1373	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1374		copym = m_pullup(copym, hlen);
1375	if (copym != NULL) {
1376		/* If needed, compute the checksum and mark it as valid. */
1377		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1378			in_delayed_cksum(copym);
1379			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1380			copym->m_pkthdr.csum_flags |=
1381			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1382			copym->m_pkthdr.csum_data = 0xffff;
1383		}
1384		/*
1385		 * We don't bother to fragment if the IP length is greater
1386		 * than the interface's MTU.  Can this possibly matter?
1387		 */
1388		ip = mtod(copym, struct ip *);
1389		ip->ip_sum = 0;
1390		ip->ip_sum = in_cksum(copym, hlen);
1391		if_simloop(ifp, copym, AF_INET, 0);
1392	}
1393}
1394