1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: stable/11/sys/netinet/ip_mroute.c 315456 2017-03-17 14:54:10Z vangyzen $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/eventhandler.h>
81#include <sys/lock.h>
82#include <sys/ktr.h>
83#include <sys/malloc.h>
84#include <sys/mbuf.h>
85#include <sys/module.h>
86#include <sys/priv.h>
87#include <sys/protosw.h>
88#include <sys/signalvar.h>
89#include <sys/socket.h>
90#include <sys/socketvar.h>
91#include <sys/sockio.h>
92#include <sys/sx.h>
93#include <sys/sysctl.h>
94#include <sys/syslog.h>
95#include <sys/systm.h>
96#include <sys/time.h>
97#include <sys/counter.h>
98
99#include <net/if.h>
100#include <net/if_var.h>
101#include <net/netisr.h>
102#include <net/route.h>
103#include <net/vnet.h>
104
105#include <netinet/in.h>
106#include <netinet/igmp.h>
107#include <netinet/in_systm.h>
108#include <netinet/in_var.h>
109#include <netinet/ip.h>
110#include <netinet/ip_encap.h>
111#include <netinet/ip_mroute.h>
112#include <netinet/ip_var.h>
113#include <netinet/ip_options.h>
114#include <netinet/pim.h>
115#include <netinet/pim_var.h>
116#include <netinet/udp.h>
117
118#include <machine/in_cksum.h>
119
120#ifndef KTR_IPMF
121#define KTR_IPMF KTR_INET
122#endif
123
124#define		VIFI_INVALID	((vifi_t) -1)
125
126static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
127#define	V_last_tv_sec	VNET(last_tv_sec)
128
129static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
130
131/*
132 * Locking.  We use two locks: one for the virtual interface table and
133 * one for the forwarding table.  These locks may be nested in which case
134 * the VIF lock must always be taken first.  Note that each lock is used
135 * to cover not only the specific data structure but also related data
136 * structures.
137 */
138
139static struct mtx mrouter_mtx;
140#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
141#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
142#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
143#define	MROUTER_LOCK_INIT()						\
144	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
145#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
146
147static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
148static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
149
150static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat);
151VNET_PCPUSTAT_SYSINIT(mrtstat);
152VNET_PCPUSTAT_SYSUNINIT(mrtstat);
153SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
154    mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
155    "netinet/ip_mroute.h)");
156
157static VNET_DEFINE(u_long, mfchash);
158#define	V_mfchash		VNET(mfchash)
159#define	MFCHASH(a, g)							\
160	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
161	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
162#define	MFCHASHSIZE	256
163
164static u_long mfchashsize;			/* Hash size */
165static VNET_DEFINE(u_char *, nexpire);		/* 0..mfchashsize-1 */
166#define	V_nexpire		VNET(nexpire)
167static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
168#define	V_mfchashtbl		VNET(mfchashtbl)
169
170static struct mtx mfc_mtx;
171#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
172#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
173#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
174#define	MFC_LOCK_INIT()							\
175	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
176#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
177
178static VNET_DEFINE(vifi_t, numvifs);
179#define	V_numvifs		VNET(numvifs)
180static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
181#define	V_viftable		VNET(viftable)
182SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_VNET | CTLFLAG_RD,
183    &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
184    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
185
186static struct mtx vif_mtx;
187#define	VIF_LOCK()		mtx_lock(&vif_mtx)
188#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
189#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
190#define	VIF_LOCK_INIT()							\
191	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
192#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
193
194static eventhandler_tag if_detach_event_tag = NULL;
195
196static VNET_DEFINE(struct callout, expire_upcalls_ch);
197#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
198
199#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
200#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
201
202/*
203 * Bandwidth meter variables and constants
204 */
205static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
206/*
207 * Pending timeouts are stored in a hash table, the key being the
208 * expiration time. Periodically, the entries are analysed and processed.
209 */
210#define	BW_METER_BUCKETS	1024
211static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
212#define	V_bw_meter_timers	VNET(bw_meter_timers)
213static VNET_DEFINE(struct callout, bw_meter_ch);
214#define	V_bw_meter_ch		VNET(bw_meter_ch)
215#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
216
217/*
218 * Pending upcalls are stored in a vector which is flushed when
219 * full, or periodically
220 */
221static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
222#define	V_bw_upcalls		VNET(bw_upcalls)
223static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
224#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
225static VNET_DEFINE(struct callout, bw_upcalls_ch);
226#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
227
228#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
229
230static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat);
231VNET_PCPUSTAT_SYSINIT(pimstat);
232VNET_PCPUSTAT_SYSUNINIT(pimstat);
233
234SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
235SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
236    pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237
238static u_long	pim_squelch_wholepkt = 0;
239SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
240    &pim_squelch_wholepkt, 0,
241    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
242
243extern  struct domain inetdomain;
244static const struct protosw in_pim_protosw = {
245	.pr_type =		SOCK_RAW,
246	.pr_domain =		&inetdomain,
247	.pr_protocol =		IPPROTO_PIM,
248	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
249	.pr_input =		pim_input,
250	.pr_output =		rip_output,
251	.pr_ctloutput =		rip_ctloutput,
252	.pr_usrreqs =		&rip_usrreqs
253};
254static const struct encaptab *pim_encap_cookie;
255
256static int pim_encapcheck(const struct mbuf *, int, int, void *);
257
258/*
259 * Note: the PIM Register encapsulation adds the following in front of a
260 * data packet:
261 *
262 * struct pim_encap_hdr {
263 *    struct ip ip;
264 *    struct pim_encap_pimhdr  pim;
265 * }
266 *
267 */
268
269struct pim_encap_pimhdr {
270	struct pim pim;
271	uint32_t   flags;
272};
273#define		PIM_ENCAP_TTL	64
274
275static struct ip pim_encap_iphdr = {
276#if BYTE_ORDER == LITTLE_ENDIAN
277	sizeof(struct ip) >> 2,
278	IPVERSION,
279#else
280	IPVERSION,
281	sizeof(struct ip) >> 2,
282#endif
283	0,			/* tos */
284	sizeof(struct ip),	/* total length */
285	0,			/* id */
286	0,			/* frag offset */
287	PIM_ENCAP_TTL,
288	IPPROTO_PIM,
289	0,			/* checksum */
290};
291
292static struct pim_encap_pimhdr pim_encap_pimhdr = {
293    {
294	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
295	0,			/* reserved */
296	0,			/* checksum */
297    },
298    0				/* flags */
299};
300
301static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
302#define	V_reg_vif_num		VNET(reg_vif_num)
303static VNET_DEFINE(struct ifnet, multicast_register_if);
304#define	V_multicast_register_if	VNET(multicast_register_if)
305
306/*
307 * Private variables.
308 */
309
310static u_long	X_ip_mcast_src(int);
311static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
312		    struct ip_moptions *);
313static int	X_ip_mrouter_done(void);
314static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
315static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
316static int	X_legal_vif_num(int);
317static int	X_mrt_ioctl(u_long, caddr_t, int);
318
319static int	add_bw_upcall(struct bw_upcall *);
320static int	add_mfc(struct mfcctl2 *);
321static int	add_vif(struct vifctl *);
322static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
323static void	bw_meter_process(void);
324static void	bw_meter_receive_packet(struct bw_meter *, int,
325		    struct timeval *);
326static void	bw_upcalls_send(void);
327static int	del_bw_upcall(struct bw_upcall *);
328static int	del_mfc(struct mfcctl2 *);
329static int	del_vif(vifi_t);
330static int	del_vif_locked(vifi_t);
331static void	expire_bw_meter_process(void *);
332static void	expire_bw_upcalls_send(void *);
333static void	expire_mfc(struct mfc *);
334static void	expire_upcalls(void *);
335static void	free_bw_list(struct bw_meter *);
336static int	get_sg_cnt(struct sioc_sg_req *);
337static int	get_vif_cnt(struct sioc_vif_req *);
338static void	if_detached_event(void *, struct ifnet *);
339static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
340static int	ip_mrouter_init(struct socket *, int);
341static __inline struct mfc *
342		mfc_find(struct in_addr *, struct in_addr *);
343static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
344static struct mbuf *
345		pim_register_prepare(struct ip *, struct mbuf *);
346static int	pim_register_send(struct ip *, struct vif *,
347		    struct mbuf *, struct mfc *);
348static int	pim_register_send_rp(struct ip *, struct vif *,
349		    struct mbuf *, struct mfc *);
350static int	pim_register_send_upcall(struct ip *, struct vif *,
351		    struct mbuf *, struct mfc *);
352static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
353static void	send_packet(struct vif *, struct mbuf *);
354static int	set_api_config(uint32_t *);
355static int	set_assert(int);
356static int	socket_send(struct socket *, struct mbuf *,
357		    struct sockaddr_in *);
358static void	unschedule_bw_meter(struct bw_meter *);
359
360/*
361 * Kernel multicast forwarding API capabilities and setup.
362 * If more API capabilities are added to the kernel, they should be
363 * recorded in `mrt_api_support'.
364 */
365#define MRT_API_VERSION		0x0305
366
367static const int mrt_api_version = MRT_API_VERSION;
368static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369					 MRT_MFC_FLAGS_BORDER_VIF |
370					 MRT_MFC_RP |
371					 MRT_MFC_BW_UPCALL);
372static VNET_DEFINE(uint32_t, mrt_api_config);
373#define	V_mrt_api_config	VNET(mrt_api_config)
374static VNET_DEFINE(int, pim_assert_enabled);
375#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
376static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
377
378/*
379 * Find a route for a given origin IP address and multicast group address.
380 * Statistics must be updated by the caller.
381 */
382static __inline struct mfc *
383mfc_find(struct in_addr *o, struct in_addr *g)
384{
385	struct mfc *rt;
386
387	MFC_LOCK_ASSERT();
388
389	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
390		if (in_hosteq(rt->mfc_origin, *o) &&
391		    in_hosteq(rt->mfc_mcastgrp, *g) &&
392		    TAILQ_EMPTY(&rt->mfc_stall))
393			break;
394	}
395
396	return (rt);
397}
398
399/*
400 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
401 */
402static int
403X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
404{
405    int	error, optval;
406    vifi_t	vifi;
407    struct	vifctl vifc;
408    struct	mfcctl2 mfc;
409    struct	bw_upcall bw_upcall;
410    uint32_t	i;
411
412    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
413	return EPERM;
414
415    error = 0;
416    switch (sopt->sopt_name) {
417    case MRT_INIT:
418	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
419	if (error)
420	    break;
421	error = ip_mrouter_init(so, optval);
422	break;
423
424    case MRT_DONE:
425	error = ip_mrouter_done();
426	break;
427
428    case MRT_ADD_VIF:
429	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
430	if (error)
431	    break;
432	error = add_vif(&vifc);
433	break;
434
435    case MRT_DEL_VIF:
436	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
437	if (error)
438	    break;
439	error = del_vif(vifi);
440	break;
441
442    case MRT_ADD_MFC:
443    case MRT_DEL_MFC:
444	/*
445	 * select data size depending on API version.
446	 */
447	if (sopt->sopt_name == MRT_ADD_MFC &&
448		V_mrt_api_config & MRT_API_FLAGS_ALL) {
449	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
450				sizeof(struct mfcctl2));
451	} else {
452	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
453				sizeof(struct mfcctl));
454	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
455			sizeof(mfc) - sizeof(struct mfcctl));
456	}
457	if (error)
458	    break;
459	if (sopt->sopt_name == MRT_ADD_MFC)
460	    error = add_mfc(&mfc);
461	else
462	    error = del_mfc(&mfc);
463	break;
464
465    case MRT_ASSERT:
466	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
467	if (error)
468	    break;
469	set_assert(optval);
470	break;
471
472    case MRT_API_CONFIG:
473	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
474	if (!error)
475	    error = set_api_config(&i);
476	if (!error)
477	    error = sooptcopyout(sopt, &i, sizeof i);
478	break;
479
480    case MRT_ADD_BW_UPCALL:
481    case MRT_DEL_BW_UPCALL:
482	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
483				sizeof bw_upcall);
484	if (error)
485	    break;
486	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
487	    error = add_bw_upcall(&bw_upcall);
488	else
489	    error = del_bw_upcall(&bw_upcall);
490	break;
491
492    default:
493	error = EOPNOTSUPP;
494	break;
495    }
496    return error;
497}
498
499/*
500 * Handle MRT getsockopt commands
501 */
502static int
503X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
504{
505    int error;
506
507    switch (sopt->sopt_name) {
508    case MRT_VERSION:
509	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
510	break;
511
512    case MRT_ASSERT:
513	error = sooptcopyout(sopt, &V_pim_assert_enabled,
514	    sizeof V_pim_assert_enabled);
515	break;
516
517    case MRT_API_SUPPORT:
518	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
519	break;
520
521    case MRT_API_CONFIG:
522	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
523	break;
524
525    default:
526	error = EOPNOTSUPP;
527	break;
528    }
529    return error;
530}
531
532/*
533 * Handle ioctl commands to obtain information from the cache
534 */
535static int
536X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
537{
538    int error = 0;
539
540    /*
541     * Currently the only function calling this ioctl routine is rtioctl_fib().
542     * Typically, only root can create the raw socket in order to execute
543     * this ioctl method, however the request might be coming from a prison
544     */
545    error = priv_check(curthread, PRIV_NETINET_MROUTE);
546    if (error)
547	return (error);
548    switch (cmd) {
549    case (SIOCGETVIFCNT):
550	error = get_vif_cnt((struct sioc_vif_req *)data);
551	break;
552
553    case (SIOCGETSGCNT):
554	error = get_sg_cnt((struct sioc_sg_req *)data);
555	break;
556
557    default:
558	error = EINVAL;
559	break;
560    }
561    return error;
562}
563
564/*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567static int
568get_sg_cnt(struct sioc_sg_req *req)
569{
570    struct mfc *rt;
571
572    MFC_LOCK();
573    rt = mfc_find(&req->src, &req->grp);
574    if (rt == NULL) {
575	MFC_UNLOCK();
576	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
577	return EADDRNOTAVAIL;
578    }
579    req->pktcnt = rt->mfc_pkt_cnt;
580    req->bytecnt = rt->mfc_byte_cnt;
581    req->wrong_if = rt->mfc_wrong_if;
582    MFC_UNLOCK();
583    return 0;
584}
585
586/*
587 * returns the input and output packet and byte counts on the vif provided
588 */
589static int
590get_vif_cnt(struct sioc_vif_req *req)
591{
592    vifi_t vifi = req->vifi;
593
594    VIF_LOCK();
595    if (vifi >= V_numvifs) {
596	VIF_UNLOCK();
597	return EINVAL;
598    }
599
600    req->icount = V_viftable[vifi].v_pkt_in;
601    req->ocount = V_viftable[vifi].v_pkt_out;
602    req->ibytes = V_viftable[vifi].v_bytes_in;
603    req->obytes = V_viftable[vifi].v_bytes_out;
604    VIF_UNLOCK();
605
606    return 0;
607}
608
609static void
610if_detached_event(void *arg __unused, struct ifnet *ifp)
611{
612    vifi_t vifi;
613    u_long i;
614
615    MROUTER_LOCK();
616
617    if (V_ip_mrouter == NULL) {
618	MROUTER_UNLOCK();
619	return;
620    }
621
622    VIF_LOCK();
623    MFC_LOCK();
624
625    /*
626     * Tear down multicast forwarder state associated with this ifnet.
627     * 1. Walk the vif list, matching vifs against this ifnet.
628     * 2. Walk the multicast forwarding cache (mfc) looking for
629     *    inner matches with this vif's index.
630     * 3. Expire any matching multicast forwarding cache entries.
631     * 4. Free vif state. This should disable ALLMULTI on the interface.
632     */
633    for (vifi = 0; vifi < V_numvifs; vifi++) {
634	if (V_viftable[vifi].v_ifp != ifp)
635		continue;
636	for (i = 0; i < mfchashsize; i++) {
637		struct mfc *rt, *nrt;
638
639		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
640			if (rt->mfc_parent == vifi) {
641				expire_mfc(rt);
642			}
643		}
644	}
645	del_vif_locked(vifi);
646    }
647
648    MFC_UNLOCK();
649    VIF_UNLOCK();
650
651    MROUTER_UNLOCK();
652}
653
654/*
655 * Enable multicast forwarding.
656 */
657static int
658ip_mrouter_init(struct socket *so, int version)
659{
660
661    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
662        so->so_type, so->so_proto->pr_protocol);
663
664    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
665	return EOPNOTSUPP;
666
667    if (version != 1)
668	return ENOPROTOOPT;
669
670    MROUTER_LOCK();
671
672    if (ip_mrouter_unloading) {
673	MROUTER_UNLOCK();
674	return ENOPROTOOPT;
675    }
676
677    if (V_ip_mrouter != NULL) {
678	MROUTER_UNLOCK();
679	return EADDRINUSE;
680    }
681
682    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
683	HASH_NOWAIT);
684
685    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
686	curvnet);
687    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
688	curvnet);
689    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
690	curvnet);
691
692    V_ip_mrouter = so;
693    ip_mrouter_cnt++;
694
695    MROUTER_UNLOCK();
696
697    CTR1(KTR_IPMF, "%s: done", __func__);
698
699    return 0;
700}
701
702/*
703 * Disable multicast forwarding.
704 */
705static int
706X_ip_mrouter_done(void)
707{
708    struct ifnet *ifp;
709    u_long i;
710    vifi_t vifi;
711
712    MROUTER_LOCK();
713
714    if (V_ip_mrouter == NULL) {
715	MROUTER_UNLOCK();
716	return EINVAL;
717    }
718
719    /*
720     * Detach/disable hooks to the reset of the system.
721     */
722    V_ip_mrouter = NULL;
723    ip_mrouter_cnt--;
724    V_mrt_api_config = 0;
725
726    VIF_LOCK();
727
728    /*
729     * For each phyint in use, disable promiscuous reception of all IP
730     * multicasts.
731     */
732    for (vifi = 0; vifi < V_numvifs; vifi++) {
733	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
734		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
735	    ifp = V_viftable[vifi].v_ifp;
736	    if_allmulti(ifp, 0);
737	}
738    }
739    bzero((caddr_t)V_viftable, sizeof(V_viftable));
740    V_numvifs = 0;
741    V_pim_assert_enabled = 0;
742
743    VIF_UNLOCK();
744
745    callout_stop(&V_expire_upcalls_ch);
746    callout_stop(&V_bw_upcalls_ch);
747    callout_stop(&V_bw_meter_ch);
748
749    MFC_LOCK();
750
751    /*
752     * Free all multicast forwarding cache entries.
753     * Do not use hashdestroy(), as we must perform other cleanup.
754     */
755    for (i = 0; i < mfchashsize; i++) {
756	struct mfc *rt, *nrt;
757
758	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
759		expire_mfc(rt);
760	}
761    }
762    free(V_mfchashtbl, M_MRTABLE);
763    V_mfchashtbl = NULL;
764
765    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
766
767    V_bw_upcalls_n = 0;
768    bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
769
770    MFC_UNLOCK();
771
772    V_reg_vif_num = VIFI_INVALID;
773
774    MROUTER_UNLOCK();
775
776    CTR1(KTR_IPMF, "%s: done", __func__);
777
778    return 0;
779}
780
781/*
782 * Set PIM assert processing global
783 */
784static int
785set_assert(int i)
786{
787    if ((i != 1) && (i != 0))
788	return EINVAL;
789
790    V_pim_assert_enabled = i;
791
792    return 0;
793}
794
795/*
796 * Configure API capabilities
797 */
798int
799set_api_config(uint32_t *apival)
800{
801    u_long i;
802
803    /*
804     * We can set the API capabilities only if it is the first operation
805     * after MRT_INIT. I.e.:
806     *  - there are no vifs installed
807     *  - pim_assert is not enabled
808     *  - the MFC table is empty
809     */
810    if (V_numvifs > 0) {
811	*apival = 0;
812	return EPERM;
813    }
814    if (V_pim_assert_enabled) {
815	*apival = 0;
816	return EPERM;
817    }
818
819    MFC_LOCK();
820
821    for (i = 0; i < mfchashsize; i++) {
822	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
823	    MFC_UNLOCK();
824	    *apival = 0;
825	    return EPERM;
826	}
827    }
828
829    MFC_UNLOCK();
830
831    V_mrt_api_config = *apival & mrt_api_support;
832    *apival = V_mrt_api_config;
833
834    return 0;
835}
836
837/*
838 * Add a vif to the vif table
839 */
840static int
841add_vif(struct vifctl *vifcp)
842{
843    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
844    struct sockaddr_in sin = {sizeof sin, AF_INET};
845    struct ifaddr *ifa;
846    struct ifnet *ifp;
847    int error;
848
849    VIF_LOCK();
850    if (vifcp->vifc_vifi >= MAXVIFS) {
851	VIF_UNLOCK();
852	return EINVAL;
853    }
854    /* rate limiting is no longer supported by this code */
855    if (vifcp->vifc_rate_limit != 0) {
856	log(LOG_ERR, "rate limiting is no longer supported\n");
857	VIF_UNLOCK();
858	return EINVAL;
859    }
860    if (!in_nullhost(vifp->v_lcl_addr)) {
861	VIF_UNLOCK();
862	return EADDRINUSE;
863    }
864    if (in_nullhost(vifcp->vifc_lcl_addr)) {
865	VIF_UNLOCK();
866	return EADDRNOTAVAIL;
867    }
868
869    /* Find the interface with an address in AF_INET family */
870    if (vifcp->vifc_flags & VIFF_REGISTER) {
871	/*
872	 * XXX: Because VIFF_REGISTER does not really need a valid
873	 * local interface (e.g. it could be 127.0.0.2), we don't
874	 * check its address.
875	 */
876	ifp = NULL;
877    } else {
878	sin.sin_addr = vifcp->vifc_lcl_addr;
879	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
880	if (ifa == NULL) {
881	    VIF_UNLOCK();
882	    return EADDRNOTAVAIL;
883	}
884	ifp = ifa->ifa_ifp;
885	ifa_free(ifa);
886    }
887
888    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
889	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
890	VIF_UNLOCK();
891	return EOPNOTSUPP;
892    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
893	ifp = &V_multicast_register_if;
894	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
895	if (V_reg_vif_num == VIFI_INVALID) {
896	    if_initname(&V_multicast_register_if, "register_vif", 0);
897	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
898	    V_reg_vif_num = vifcp->vifc_vifi;
899	}
900    } else {		/* Make sure the interface supports multicast */
901	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
902	    VIF_UNLOCK();
903	    return EOPNOTSUPP;
904	}
905
906	/* Enable promiscuous reception of all IP multicasts from the if */
907	error = if_allmulti(ifp, 1);
908	if (error) {
909	    VIF_UNLOCK();
910	    return error;
911	}
912    }
913
914    vifp->v_flags     = vifcp->vifc_flags;
915    vifp->v_threshold = vifcp->vifc_threshold;
916    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
917    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
918    vifp->v_ifp       = ifp;
919    /* initialize per vif pkt counters */
920    vifp->v_pkt_in    = 0;
921    vifp->v_pkt_out   = 0;
922    vifp->v_bytes_in  = 0;
923    vifp->v_bytes_out = 0;
924
925    /* Adjust numvifs up if the vifi is higher than numvifs */
926    if (V_numvifs <= vifcp->vifc_vifi)
927	V_numvifs = vifcp->vifc_vifi + 1;
928
929    VIF_UNLOCK();
930
931    CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
932	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
933	(int)vifcp->vifc_threshold);
934
935    return 0;
936}
937
938/*
939 * Delete a vif from the vif table
940 */
941static int
942del_vif_locked(vifi_t vifi)
943{
944    struct vif *vifp;
945
946    VIF_LOCK_ASSERT();
947
948    if (vifi >= V_numvifs) {
949	return EINVAL;
950    }
951    vifp = &V_viftable[vifi];
952    if (in_nullhost(vifp->v_lcl_addr)) {
953	return EADDRNOTAVAIL;
954    }
955
956    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
957	if_allmulti(vifp->v_ifp, 0);
958
959    if (vifp->v_flags & VIFF_REGISTER)
960	V_reg_vif_num = VIFI_INVALID;
961
962    bzero((caddr_t)vifp, sizeof (*vifp));
963
964    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
965
966    /* Adjust numvifs down */
967    for (vifi = V_numvifs; vifi > 0; vifi--)
968	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
969	    break;
970    V_numvifs = vifi;
971
972    return 0;
973}
974
975static int
976del_vif(vifi_t vifi)
977{
978    int cc;
979
980    VIF_LOCK();
981    cc = del_vif_locked(vifi);
982    VIF_UNLOCK();
983
984    return cc;
985}
986
987/*
988 * update an mfc entry without resetting counters and S,G addresses.
989 */
990static void
991update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
992{
993    int i;
994
995    rt->mfc_parent = mfccp->mfcc_parent;
996    for (i = 0; i < V_numvifs; i++) {
997	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
998	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
999	    MRT_MFC_FLAGS_ALL;
1000    }
1001    /* set the RP address */
1002    if (V_mrt_api_config & MRT_MFC_RP)
1003	rt->mfc_rp = mfccp->mfcc_rp;
1004    else
1005	rt->mfc_rp.s_addr = INADDR_ANY;
1006}
1007
1008/*
1009 * fully initialize an mfc entry from the parameter.
1010 */
1011static void
1012init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1013{
1014    rt->mfc_origin     = mfccp->mfcc_origin;
1015    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1016
1017    update_mfc_params(rt, mfccp);
1018
1019    /* initialize pkt counters per src-grp */
1020    rt->mfc_pkt_cnt    = 0;
1021    rt->mfc_byte_cnt   = 0;
1022    rt->mfc_wrong_if   = 0;
1023    timevalclear(&rt->mfc_last_assert);
1024}
1025
1026static void
1027expire_mfc(struct mfc *rt)
1028{
1029	struct rtdetq *rte, *nrte;
1030
1031	MFC_LOCK_ASSERT();
1032
1033	free_bw_list(rt->mfc_bw_meter);
1034
1035	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1036		m_freem(rte->m);
1037		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1038		free(rte, M_MRTABLE);
1039	}
1040
1041	LIST_REMOVE(rt, mfc_hash);
1042	free(rt, M_MRTABLE);
1043}
1044
1045/*
1046 * Add an mfc entry
1047 */
1048static int
1049add_mfc(struct mfcctl2 *mfccp)
1050{
1051    struct mfc *rt;
1052    struct rtdetq *rte, *nrte;
1053    u_long hash = 0;
1054    u_short nstl;
1055
1056    VIF_LOCK();
1057    MFC_LOCK();
1058
1059    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1060
1061    /* If an entry already exists, just update the fields */
1062    if (rt) {
1063	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1064	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1065	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1066	    mfccp->mfcc_parent);
1067	update_mfc_params(rt, mfccp);
1068	MFC_UNLOCK();
1069	VIF_UNLOCK();
1070	return (0);
1071    }
1072
1073    /*
1074     * Find the entry for which the upcall was made and update
1075     */
1076    nstl = 0;
1077    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1078    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1079	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1080	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1081	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1082		CTR5(KTR_IPMF,
1083		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1084		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1085		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1086		    mfccp->mfcc_parent,
1087		    TAILQ_FIRST(&rt->mfc_stall));
1088		if (nstl++)
1089			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1090
1091		init_mfc_params(rt, mfccp);
1092		rt->mfc_expire = 0;	/* Don't clean this guy up */
1093		V_nexpire[hash]--;
1094
1095		/* Free queued packets, but attempt to forward them first. */
1096		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1097			if (rte->ifp != NULL)
1098				ip_mdq(rte->m, rte->ifp, rt, -1);
1099			m_freem(rte->m);
1100			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1101			rt->mfc_nstall--;
1102			free(rte, M_MRTABLE);
1103		}
1104	}
1105    }
1106
1107    /*
1108     * It is possible that an entry is being inserted without an upcall
1109     */
1110    if (nstl == 0) {
1111	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1112	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1113		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1114		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1115			init_mfc_params(rt, mfccp);
1116			if (rt->mfc_expire)
1117			    V_nexpire[hash]--;
1118			rt->mfc_expire = 0;
1119			break; /* XXX */
1120		}
1121	}
1122
1123	if (rt == NULL) {		/* no upcall, so make a new entry */
1124	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1125	    if (rt == NULL) {
1126		MFC_UNLOCK();
1127		VIF_UNLOCK();
1128		return (ENOBUFS);
1129	    }
1130
1131	    init_mfc_params(rt, mfccp);
1132	    TAILQ_INIT(&rt->mfc_stall);
1133	    rt->mfc_nstall = 0;
1134
1135	    rt->mfc_expire     = 0;
1136	    rt->mfc_bw_meter = NULL;
1137
1138	    /* insert new entry at head of hash chain */
1139	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1140	}
1141    }
1142
1143    MFC_UNLOCK();
1144    VIF_UNLOCK();
1145
1146    return (0);
1147}
1148
1149/*
1150 * Delete an mfc entry
1151 */
1152static int
1153del_mfc(struct mfcctl2 *mfccp)
1154{
1155    struct in_addr	origin;
1156    struct in_addr	mcastgrp;
1157    struct mfc		*rt;
1158
1159    origin = mfccp->mfcc_origin;
1160    mcastgrp = mfccp->mfcc_mcastgrp;
1161
1162    CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1163	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1164
1165    MFC_LOCK();
1166
1167    rt = mfc_find(&origin, &mcastgrp);
1168    if (rt == NULL) {
1169	MFC_UNLOCK();
1170	return EADDRNOTAVAIL;
1171    }
1172
1173    /*
1174     * free the bw_meter entries
1175     */
1176    free_bw_list(rt->mfc_bw_meter);
1177    rt->mfc_bw_meter = NULL;
1178
1179    LIST_REMOVE(rt, mfc_hash);
1180    free(rt, M_MRTABLE);
1181
1182    MFC_UNLOCK();
1183
1184    return (0);
1185}
1186
1187/*
1188 * Send a message to the routing daemon on the multicast routing socket.
1189 */
1190static int
1191socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1192{
1193    if (s) {
1194	SOCKBUF_LOCK(&s->so_rcv);
1195	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1196	    NULL) != 0) {
1197	    sorwakeup_locked(s);
1198	    return 0;
1199	}
1200	SOCKBUF_UNLOCK(&s->so_rcv);
1201    }
1202    m_freem(mm);
1203    return -1;
1204}
1205
1206/*
1207 * IP multicast forwarding function. This function assumes that the packet
1208 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1209 * pointed to by "ifp", and the packet is to be relayed to other networks
1210 * that have members of the packet's destination IP multicast group.
1211 *
1212 * The packet is returned unscathed to the caller, unless it is
1213 * erroneous, in which case a non-zero return value tells the caller to
1214 * discard it.
1215 */
1216
1217#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1218
1219static int
1220X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1221    struct ip_moptions *imo)
1222{
1223    struct mfc *rt;
1224    int error;
1225    vifi_t vifi;
1226
1227    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1228	ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1229
1230    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1231		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1232	/*
1233	 * Packet arrived via a physical interface or
1234	 * an encapsulated tunnel or a register_vif.
1235	 */
1236    } else {
1237	/*
1238	 * Packet arrived through a source-route tunnel.
1239	 * Source-route tunnels are no longer supported.
1240	 */
1241	return (1);
1242    }
1243
1244    VIF_LOCK();
1245    MFC_LOCK();
1246    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1247	if (ip->ip_ttl < MAXTTL)
1248	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1249	error = ip_mdq(m, ifp, NULL, vifi);
1250	MFC_UNLOCK();
1251	VIF_UNLOCK();
1252	return error;
1253    }
1254
1255    /*
1256     * Don't forward a packet with time-to-live of zero or one,
1257     * or a packet destined to a local-only group.
1258     */
1259    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1260	MFC_UNLOCK();
1261	VIF_UNLOCK();
1262	return 0;
1263    }
1264
1265    /*
1266     * Determine forwarding vifs from the forwarding cache table
1267     */
1268    MRTSTAT_INC(mrts_mfc_lookups);
1269    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1270
1271    /* Entry exists, so forward if necessary */
1272    if (rt != NULL) {
1273	error = ip_mdq(m, ifp, rt, -1);
1274	MFC_UNLOCK();
1275	VIF_UNLOCK();
1276	return error;
1277    } else {
1278	/*
1279	 * If we don't have a route for packet's origin,
1280	 * Make a copy of the packet & send message to routing daemon
1281	 */
1282
1283	struct mbuf *mb0;
1284	struct rtdetq *rte;
1285	u_long hash;
1286	int hlen = ip->ip_hl << 2;
1287
1288	MRTSTAT_INC(mrts_mfc_misses);
1289	MRTSTAT_INC(mrts_no_route);
1290	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1291	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1292
1293	/*
1294	 * Allocate mbufs early so that we don't do extra work if we are
1295	 * just going to fail anyway.  Make sure to pullup the header so
1296	 * that other people can't step on it.
1297	 */
1298	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1299	    M_NOWAIT|M_ZERO);
1300	if (rte == NULL) {
1301	    MFC_UNLOCK();
1302	    VIF_UNLOCK();
1303	    return ENOBUFS;
1304	}
1305
1306	mb0 = m_copypacket(m, M_NOWAIT);
1307	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1308	    mb0 = m_pullup(mb0, hlen);
1309	if (mb0 == NULL) {
1310	    free(rte, M_MRTABLE);
1311	    MFC_UNLOCK();
1312	    VIF_UNLOCK();
1313	    return ENOBUFS;
1314	}
1315
1316	/* is there an upcall waiting for this flow ? */
1317	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1318	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1319		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1320		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1321		    !TAILQ_EMPTY(&rt->mfc_stall))
1322			break;
1323	}
1324
1325	if (rt == NULL) {
1326	    int i;
1327	    struct igmpmsg *im;
1328	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1329	    struct mbuf *mm;
1330
1331	    /*
1332	     * Locate the vifi for the incoming interface for this packet.
1333	     * If none found, drop packet.
1334	     */
1335	    for (vifi = 0; vifi < V_numvifs &&
1336		    V_viftable[vifi].v_ifp != ifp; vifi++)
1337		;
1338	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1339		goto non_fatal;
1340
1341	    /* no upcall, so make a new entry */
1342	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1343	    if (rt == NULL)
1344		goto fail;
1345
1346	    /* Make a copy of the header to send to the user level process */
1347	    mm = m_copy(mb0, 0, hlen);
1348	    if (mm == NULL)
1349		goto fail1;
1350
1351	    /*
1352	     * Send message to routing daemon to install
1353	     * a route into the kernel table
1354	     */
1355
1356	    im = mtod(mm, struct igmpmsg *);
1357	    im->im_msgtype = IGMPMSG_NOCACHE;
1358	    im->im_mbz = 0;
1359	    im->im_vif = vifi;
1360
1361	    MRTSTAT_INC(mrts_upcalls);
1362
1363	    k_igmpsrc.sin_addr = ip->ip_src;
1364	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1365		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1366		MRTSTAT_INC(mrts_upq_sockfull);
1367fail1:
1368		free(rt, M_MRTABLE);
1369fail:
1370		free(rte, M_MRTABLE);
1371		m_freem(mb0);
1372		MFC_UNLOCK();
1373		VIF_UNLOCK();
1374		return ENOBUFS;
1375	    }
1376
1377	    /* insert new entry at head of hash chain */
1378	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1379	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1380	    rt->mfc_expire	      = UPCALL_EXPIRE;
1381	    V_nexpire[hash]++;
1382	    for (i = 0; i < V_numvifs; i++) {
1383		rt->mfc_ttls[i] = 0;
1384		rt->mfc_flags[i] = 0;
1385	    }
1386	    rt->mfc_parent = -1;
1387
1388	    /* clear the RP address */
1389	    rt->mfc_rp.s_addr = INADDR_ANY;
1390	    rt->mfc_bw_meter = NULL;
1391
1392	    /* initialize pkt counters per src-grp */
1393	    rt->mfc_pkt_cnt = 0;
1394	    rt->mfc_byte_cnt = 0;
1395	    rt->mfc_wrong_if = 0;
1396	    timevalclear(&rt->mfc_last_assert);
1397
1398	    TAILQ_INIT(&rt->mfc_stall);
1399	    rt->mfc_nstall = 0;
1400
1401	    /* link into table */
1402	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1403	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1404	    rt->mfc_nstall++;
1405
1406	} else {
1407	    /* determine if queue has overflowed */
1408	    if (rt->mfc_nstall > MAX_UPQ) {
1409		MRTSTAT_INC(mrts_upq_ovflw);
1410non_fatal:
1411		free(rte, M_MRTABLE);
1412		m_freem(mb0);
1413		MFC_UNLOCK();
1414		VIF_UNLOCK();
1415		return (0);
1416	    }
1417	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1418	    rt->mfc_nstall++;
1419	}
1420
1421	rte->m			= mb0;
1422	rte->ifp		= ifp;
1423
1424	MFC_UNLOCK();
1425	VIF_UNLOCK();
1426
1427	return 0;
1428    }
1429}
1430
1431/*
1432 * Clean up the cache entry if upcall is not serviced
1433 */
1434static void
1435expire_upcalls(void *arg)
1436{
1437    u_long i;
1438
1439    CURVNET_SET((struct vnet *) arg);
1440
1441    MFC_LOCK();
1442
1443    for (i = 0; i < mfchashsize; i++) {
1444	struct mfc *rt, *nrt;
1445
1446	if (V_nexpire[i] == 0)
1447	    continue;
1448
1449	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1450		if (TAILQ_EMPTY(&rt->mfc_stall))
1451			continue;
1452
1453		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1454			continue;
1455
1456		/*
1457		 * free the bw_meter entries
1458		 */
1459		while (rt->mfc_bw_meter != NULL) {
1460		    struct bw_meter *x = rt->mfc_bw_meter;
1461
1462		    rt->mfc_bw_meter = x->bm_mfc_next;
1463		    free(x, M_BWMETER);
1464		}
1465
1466		MRTSTAT_INC(mrts_cache_cleanups);
1467		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1468		    (u_long)ntohl(rt->mfc_origin.s_addr),
1469		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1470
1471		expire_mfc(rt);
1472	    }
1473    }
1474
1475    MFC_UNLOCK();
1476
1477    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1478	curvnet);
1479
1480    CURVNET_RESTORE();
1481}
1482
1483/*
1484 * Packet forwarding routine once entry in the cache is made
1485 */
1486static int
1487ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1488{
1489    struct ip  *ip = mtod(m, struct ip *);
1490    vifi_t vifi;
1491    int plen = ntohs(ip->ip_len);
1492
1493    VIF_LOCK_ASSERT();
1494
1495    /*
1496     * If xmt_vif is not -1, send on only the requested vif.
1497     *
1498     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1499     */
1500    if (xmt_vif < V_numvifs) {
1501	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1502		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1503	else
1504		phyint_send(ip, V_viftable + xmt_vif, m);
1505	return 1;
1506    }
1507
1508    /*
1509     * Don't forward if it didn't arrive from the parent vif for its origin.
1510     */
1511    vifi = rt->mfc_parent;
1512    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1513	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1514	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1515	MRTSTAT_INC(mrts_wrong_if);
1516	++rt->mfc_wrong_if;
1517	/*
1518	 * If we are doing PIM assert processing, send a message
1519	 * to the routing daemon.
1520	 *
1521	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1522	 * can complete the SPT switch, regardless of the type
1523	 * of the iif (broadcast media, GRE tunnel, etc).
1524	 */
1525	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1526	    V_viftable[vifi].v_ifp) {
1527
1528	    if (ifp == &V_multicast_register_if)
1529		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1530
1531	    /* Get vifi for the incoming packet */
1532	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1533		vifi++)
1534		;
1535	    if (vifi >= V_numvifs)
1536		return 0;	/* The iif is not found: ignore the packet. */
1537
1538	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1539		return 0;	/* WRONGVIF disabled: ignore the packet */
1540
1541	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1542		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1543		struct igmpmsg *im;
1544		int hlen = ip->ip_hl << 2;
1545		struct mbuf *mm = m_copy(m, 0, hlen);
1546
1547		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1548		    mm = m_pullup(mm, hlen);
1549		if (mm == NULL)
1550		    return ENOBUFS;
1551
1552		im = mtod(mm, struct igmpmsg *);
1553		im->im_msgtype	= IGMPMSG_WRONGVIF;
1554		im->im_mbz		= 0;
1555		im->im_vif		= vifi;
1556
1557		MRTSTAT_INC(mrts_upcalls);
1558
1559		k_igmpsrc.sin_addr = im->im_src;
1560		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1561		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1562		    MRTSTAT_INC(mrts_upq_sockfull);
1563		    return ENOBUFS;
1564		}
1565	    }
1566	}
1567	return 0;
1568    }
1569
1570
1571    /* If I sourced this packet, it counts as output, else it was input. */
1572    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1573	V_viftable[vifi].v_pkt_out++;
1574	V_viftable[vifi].v_bytes_out += plen;
1575    } else {
1576	V_viftable[vifi].v_pkt_in++;
1577	V_viftable[vifi].v_bytes_in += plen;
1578    }
1579    rt->mfc_pkt_cnt++;
1580    rt->mfc_byte_cnt += plen;
1581
1582    /*
1583     * For each vif, decide if a copy of the packet should be forwarded.
1584     * Forward if:
1585     *		- the ttl exceeds the vif's threshold
1586     *		- there are group members downstream on interface
1587     */
1588    for (vifi = 0; vifi < V_numvifs; vifi++)
1589	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1590	    V_viftable[vifi].v_pkt_out++;
1591	    V_viftable[vifi].v_bytes_out += plen;
1592	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1593		pim_register_send(ip, V_viftable + vifi, m, rt);
1594	    else
1595		phyint_send(ip, V_viftable + vifi, m);
1596	}
1597
1598    /*
1599     * Perform upcall-related bw measuring.
1600     */
1601    if (rt->mfc_bw_meter != NULL) {
1602	struct bw_meter *x;
1603	struct timeval now;
1604
1605	microtime(&now);
1606	MFC_LOCK_ASSERT();
1607	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1608	    bw_meter_receive_packet(x, plen, &now);
1609    }
1610
1611    return 0;
1612}
1613
1614/*
1615 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1616 */
1617static int
1618X_legal_vif_num(int vif)
1619{
1620	int ret;
1621
1622	ret = 0;
1623	if (vif < 0)
1624		return (ret);
1625
1626	VIF_LOCK();
1627	if (vif < V_numvifs)
1628		ret = 1;
1629	VIF_UNLOCK();
1630
1631	return (ret);
1632}
1633
1634/*
1635 * Return the local address used by this vif
1636 */
1637static u_long
1638X_ip_mcast_src(int vifi)
1639{
1640	in_addr_t addr;
1641
1642	addr = INADDR_ANY;
1643	if (vifi < 0)
1644		return (addr);
1645
1646	VIF_LOCK();
1647	if (vifi < V_numvifs)
1648		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1649	VIF_UNLOCK();
1650
1651	return (addr);
1652}
1653
1654static void
1655phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1656{
1657    struct mbuf *mb_copy;
1658    int hlen = ip->ip_hl << 2;
1659
1660    VIF_LOCK_ASSERT();
1661
1662    /*
1663     * Make a new reference to the packet; make sure that
1664     * the IP header is actually copied, not just referenced,
1665     * so that ip_output() only scribbles on the copy.
1666     */
1667    mb_copy = m_copypacket(m, M_NOWAIT);
1668    if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1669	mb_copy = m_pullup(mb_copy, hlen);
1670    if (mb_copy == NULL)
1671	return;
1672
1673    send_packet(vifp, mb_copy);
1674}
1675
1676static void
1677send_packet(struct vif *vifp, struct mbuf *m)
1678{
1679	struct ip_moptions imo;
1680	struct in_multi *imm[2];
1681	int error;
1682
1683	VIF_LOCK_ASSERT();
1684
1685	imo.imo_multicast_ifp  = vifp->v_ifp;
1686	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1687	imo.imo_multicast_loop = 1;
1688	imo.imo_multicast_vif  = -1;
1689	imo.imo_num_memberships = 0;
1690	imo.imo_max_memberships = 2;
1691	imo.imo_membership  = &imm[0];
1692
1693	/*
1694	 * Re-entrancy should not be a problem here, because
1695	 * the packets that we send out and are looped back at us
1696	 * should get rejected because they appear to come from
1697	 * the loopback interface, thus preventing looping.
1698	 */
1699	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1700	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1701	    (ptrdiff_t)(vifp - V_viftable), error);
1702}
1703
1704/*
1705 * Stubs for old RSVP socket shim implementation.
1706 */
1707
1708static int
1709X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1710{
1711
1712	return (EOPNOTSUPP);
1713}
1714
1715static void
1716X_ip_rsvp_force_done(struct socket *so __unused)
1717{
1718
1719}
1720
1721static int
1722X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1723{
1724	struct mbuf *m;
1725
1726	m = *mp;
1727	*mp = NULL;
1728	if (!V_rsvp_on)
1729		m_freem(m);
1730	return (IPPROTO_DONE);
1731}
1732
1733/*
1734 * Code for bandwidth monitors
1735 */
1736
1737/*
1738 * Define common interface for timeval-related methods
1739 */
1740#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1741#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1742#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1743
1744static uint32_t
1745compute_bw_meter_flags(struct bw_upcall *req)
1746{
1747    uint32_t flags = 0;
1748
1749    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1750	flags |= BW_METER_UNIT_PACKETS;
1751    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1752	flags |= BW_METER_UNIT_BYTES;
1753    if (req->bu_flags & BW_UPCALL_GEQ)
1754	flags |= BW_METER_GEQ;
1755    if (req->bu_flags & BW_UPCALL_LEQ)
1756	flags |= BW_METER_LEQ;
1757
1758    return flags;
1759}
1760
1761/*
1762 * Add a bw_meter entry
1763 */
1764static int
1765add_bw_upcall(struct bw_upcall *req)
1766{
1767    struct mfc *mfc;
1768    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1769		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1770    struct timeval now;
1771    struct bw_meter *x;
1772    uint32_t flags;
1773
1774    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1775	return EOPNOTSUPP;
1776
1777    /* Test if the flags are valid */
1778    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1779	return EINVAL;
1780    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1781	return EINVAL;
1782    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1783	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1784	return EINVAL;
1785
1786    /* Test if the threshold time interval is valid */
1787    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1788	return EINVAL;
1789
1790    flags = compute_bw_meter_flags(req);
1791
1792    /*
1793     * Find if we have already same bw_meter entry
1794     */
1795    MFC_LOCK();
1796    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1797    if (mfc == NULL) {
1798	MFC_UNLOCK();
1799	return EADDRNOTAVAIL;
1800    }
1801    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1802	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1803			   &req->bu_threshold.b_time, ==)) &&
1804	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1805	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1806	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1807	    MFC_UNLOCK();
1808	    return 0;		/* XXX Already installed */
1809	}
1810    }
1811
1812    /* Allocate the new bw_meter entry */
1813    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1814    if (x == NULL) {
1815	MFC_UNLOCK();
1816	return ENOBUFS;
1817    }
1818
1819    /* Set the new bw_meter entry */
1820    x->bm_threshold.b_time = req->bu_threshold.b_time;
1821    microtime(&now);
1822    x->bm_start_time = now;
1823    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1824    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1825    x->bm_measured.b_packets = 0;
1826    x->bm_measured.b_bytes = 0;
1827    x->bm_flags = flags;
1828    x->bm_time_next = NULL;
1829    x->bm_time_hash = BW_METER_BUCKETS;
1830
1831    /* Add the new bw_meter entry to the front of entries for this MFC */
1832    x->bm_mfc = mfc;
1833    x->bm_mfc_next = mfc->mfc_bw_meter;
1834    mfc->mfc_bw_meter = x;
1835    schedule_bw_meter(x, &now);
1836    MFC_UNLOCK();
1837
1838    return 0;
1839}
1840
1841static void
1842free_bw_list(struct bw_meter *list)
1843{
1844    while (list != NULL) {
1845	struct bw_meter *x = list;
1846
1847	list = list->bm_mfc_next;
1848	unschedule_bw_meter(x);
1849	free(x, M_BWMETER);
1850    }
1851}
1852
1853/*
1854 * Delete one or multiple bw_meter entries
1855 */
1856static int
1857del_bw_upcall(struct bw_upcall *req)
1858{
1859    struct mfc *mfc;
1860    struct bw_meter *x;
1861
1862    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1863	return EOPNOTSUPP;
1864
1865    MFC_LOCK();
1866
1867    /* Find the corresponding MFC entry */
1868    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1869    if (mfc == NULL) {
1870	MFC_UNLOCK();
1871	return EADDRNOTAVAIL;
1872    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1873	/*
1874	 * Delete all bw_meter entries for this mfc
1875	 */
1876	struct bw_meter *list;
1877
1878	list = mfc->mfc_bw_meter;
1879	mfc->mfc_bw_meter = NULL;
1880	free_bw_list(list);
1881	MFC_UNLOCK();
1882	return 0;
1883    } else {			/* Delete a single bw_meter entry */
1884	struct bw_meter *prev;
1885	uint32_t flags = 0;
1886
1887	flags = compute_bw_meter_flags(req);
1888
1889	/* Find the bw_meter entry to delete */
1890	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1891	     prev = x, x = x->bm_mfc_next) {
1892	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1893			       &req->bu_threshold.b_time, ==)) &&
1894		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1895		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1896		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1897		break;
1898	}
1899	if (x != NULL) { /* Delete entry from the list for this MFC */
1900	    if (prev != NULL)
1901		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1902	    else
1903		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1904
1905	    unschedule_bw_meter(x);
1906	    MFC_UNLOCK();
1907	    /* Free the bw_meter entry */
1908	    free(x, M_BWMETER);
1909	    return 0;
1910	} else {
1911	    MFC_UNLOCK();
1912	    return EINVAL;
1913	}
1914    }
1915    /* NOTREACHED */
1916}
1917
1918/*
1919 * Perform bandwidth measurement processing that may result in an upcall
1920 */
1921static void
1922bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1923{
1924    struct timeval delta;
1925
1926    MFC_LOCK_ASSERT();
1927
1928    delta = *nowp;
1929    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1930
1931    if (x->bm_flags & BW_METER_GEQ) {
1932	/*
1933	 * Processing for ">=" type of bw_meter entry
1934	 */
1935	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1936	    /* Reset the bw_meter entry */
1937	    x->bm_start_time = *nowp;
1938	    x->bm_measured.b_packets = 0;
1939	    x->bm_measured.b_bytes = 0;
1940	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1941	}
1942
1943	/* Record that a packet is received */
1944	x->bm_measured.b_packets++;
1945	x->bm_measured.b_bytes += plen;
1946
1947	/*
1948	 * Test if we should deliver an upcall
1949	 */
1950	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1951	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1952		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1953		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1954		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1955		/* Prepare an upcall for delivery */
1956		bw_meter_prepare_upcall(x, nowp);
1957		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1958	    }
1959	}
1960    } else if (x->bm_flags & BW_METER_LEQ) {
1961	/*
1962	 * Processing for "<=" type of bw_meter entry
1963	 */
1964	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1965	    /*
1966	     * We are behind time with the multicast forwarding table
1967	     * scanning for "<=" type of bw_meter entries, so test now
1968	     * if we should deliver an upcall.
1969	     */
1970	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1971		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1972		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1973		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1974		/* Prepare an upcall for delivery */
1975		bw_meter_prepare_upcall(x, nowp);
1976	    }
1977	    /* Reschedule the bw_meter entry */
1978	    unschedule_bw_meter(x);
1979	    schedule_bw_meter(x, nowp);
1980	}
1981
1982	/* Record that a packet is received */
1983	x->bm_measured.b_packets++;
1984	x->bm_measured.b_bytes += plen;
1985
1986	/*
1987	 * Test if we should restart the measuring interval
1988	 */
1989	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1990	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1991	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1992	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1993	    /* Don't restart the measuring interval */
1994	} else {
1995	    /* Do restart the measuring interval */
1996	    /*
1997	     * XXX: note that we don't unschedule and schedule, because this
1998	     * might be too much overhead per packet. Instead, when we process
1999	     * all entries for a given timer hash bin, we check whether it is
2000	     * really a timeout. If not, we reschedule at that time.
2001	     */
2002	    x->bm_start_time = *nowp;
2003	    x->bm_measured.b_packets = 0;
2004	    x->bm_measured.b_bytes = 0;
2005	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2006	}
2007    }
2008}
2009
2010/*
2011 * Prepare a bandwidth-related upcall
2012 */
2013static void
2014bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2015{
2016    struct timeval delta;
2017    struct bw_upcall *u;
2018
2019    MFC_LOCK_ASSERT();
2020
2021    /*
2022     * Compute the measured time interval
2023     */
2024    delta = *nowp;
2025    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2026
2027    /*
2028     * If there are too many pending upcalls, deliver them now
2029     */
2030    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2031	bw_upcalls_send();
2032
2033    /*
2034     * Set the bw_upcall entry
2035     */
2036    u = &V_bw_upcalls[V_bw_upcalls_n++];
2037    u->bu_src = x->bm_mfc->mfc_origin;
2038    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2039    u->bu_threshold.b_time = x->bm_threshold.b_time;
2040    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2041    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2042    u->bu_measured.b_time = delta;
2043    u->bu_measured.b_packets = x->bm_measured.b_packets;
2044    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2045    u->bu_flags = 0;
2046    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2047	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2048    if (x->bm_flags & BW_METER_UNIT_BYTES)
2049	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2050    if (x->bm_flags & BW_METER_GEQ)
2051	u->bu_flags |= BW_UPCALL_GEQ;
2052    if (x->bm_flags & BW_METER_LEQ)
2053	u->bu_flags |= BW_UPCALL_LEQ;
2054}
2055
2056/*
2057 * Send the pending bandwidth-related upcalls
2058 */
2059static void
2060bw_upcalls_send(void)
2061{
2062    struct mbuf *m;
2063    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2064    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2065    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2066				      0,		/* unused2 */
2067				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2068				      0,		/* im_mbz  */
2069				      0,		/* im_vif  */
2070				      0,		/* unused3 */
2071				      { 0 },		/* im_src  */
2072				      { 0 } };		/* im_dst  */
2073
2074    MFC_LOCK_ASSERT();
2075
2076    if (V_bw_upcalls_n == 0)
2077	return;			/* No pending upcalls */
2078
2079    V_bw_upcalls_n = 0;
2080
2081    /*
2082     * Allocate a new mbuf, initialize it with the header and
2083     * the payload for the pending calls.
2084     */
2085    m = m_gethdr(M_NOWAIT, MT_DATA);
2086    if (m == NULL) {
2087	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2088	return;
2089    }
2090
2091    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2092    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2093
2094    /*
2095     * Send the upcalls
2096     * XXX do we need to set the address in k_igmpsrc ?
2097     */
2098    MRTSTAT_INC(mrts_upcalls);
2099    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2100	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2101	MRTSTAT_INC(mrts_upq_sockfull);
2102    }
2103}
2104
2105/*
2106 * Compute the timeout hash value for the bw_meter entries
2107 */
2108#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2109    do {								\
2110	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2111									\
2112	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2113	(hash) = next_timeval.tv_sec;					\
2114	if (next_timeval.tv_usec)					\
2115	    (hash)++; /* XXX: make sure we don't timeout early */	\
2116	(hash) %= BW_METER_BUCKETS;					\
2117    } while (0)
2118
2119/*
2120 * Schedule a timer to process periodically bw_meter entry of type "<="
2121 * by linking the entry in the proper hash bucket.
2122 */
2123static void
2124schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2125{
2126    int time_hash;
2127
2128    MFC_LOCK_ASSERT();
2129
2130    if (!(x->bm_flags & BW_METER_LEQ))
2131	return;		/* XXX: we schedule timers only for "<=" entries */
2132
2133    /*
2134     * Reset the bw_meter entry
2135     */
2136    x->bm_start_time = *nowp;
2137    x->bm_measured.b_packets = 0;
2138    x->bm_measured.b_bytes = 0;
2139    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2140
2141    /*
2142     * Compute the timeout hash value and insert the entry
2143     */
2144    BW_METER_TIMEHASH(x, time_hash);
2145    x->bm_time_next = V_bw_meter_timers[time_hash];
2146    V_bw_meter_timers[time_hash] = x;
2147    x->bm_time_hash = time_hash;
2148}
2149
2150/*
2151 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2152 * by removing the entry from the proper hash bucket.
2153 */
2154static void
2155unschedule_bw_meter(struct bw_meter *x)
2156{
2157    int time_hash;
2158    struct bw_meter *prev, *tmp;
2159
2160    MFC_LOCK_ASSERT();
2161
2162    if (!(x->bm_flags & BW_METER_LEQ))
2163	return;		/* XXX: we schedule timers only for "<=" entries */
2164
2165    /*
2166     * Compute the timeout hash value and delete the entry
2167     */
2168    time_hash = x->bm_time_hash;
2169    if (time_hash >= BW_METER_BUCKETS)
2170	return;		/* Entry was not scheduled */
2171
2172    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2173	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2174	if (tmp == x)
2175	    break;
2176
2177    if (tmp == NULL)
2178	panic("unschedule_bw_meter: bw_meter entry not found");
2179
2180    if (prev != NULL)
2181	prev->bm_time_next = x->bm_time_next;
2182    else
2183	V_bw_meter_timers[time_hash] = x->bm_time_next;
2184
2185    x->bm_time_next = NULL;
2186    x->bm_time_hash = BW_METER_BUCKETS;
2187}
2188
2189
2190/*
2191 * Process all "<=" type of bw_meter that should be processed now,
2192 * and for each entry prepare an upcall if necessary. Each processed
2193 * entry is rescheduled again for the (periodic) processing.
2194 *
2195 * This is run periodically (once per second normally). On each round,
2196 * all the potentially matching entries are in the hash slot that we are
2197 * looking at.
2198 */
2199static void
2200bw_meter_process()
2201{
2202    uint32_t loops;
2203    int i;
2204    struct timeval now, process_endtime;
2205
2206    microtime(&now);
2207    if (V_last_tv_sec == now.tv_sec)
2208	return;		/* nothing to do */
2209
2210    loops = now.tv_sec - V_last_tv_sec;
2211    V_last_tv_sec = now.tv_sec;
2212    if (loops > BW_METER_BUCKETS)
2213	loops = BW_METER_BUCKETS;
2214
2215    MFC_LOCK();
2216    /*
2217     * Process all bins of bw_meter entries from the one after the last
2218     * processed to the current one. On entry, i points to the last bucket
2219     * visited, so we need to increment i at the beginning of the loop.
2220     */
2221    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2222	struct bw_meter *x, *tmp_list;
2223
2224	if (++i >= BW_METER_BUCKETS)
2225	    i = 0;
2226
2227	/* Disconnect the list of bw_meter entries from the bin */
2228	tmp_list = V_bw_meter_timers[i];
2229	V_bw_meter_timers[i] = NULL;
2230
2231	/* Process the list of bw_meter entries */
2232	while (tmp_list != NULL) {
2233	    x = tmp_list;
2234	    tmp_list = tmp_list->bm_time_next;
2235
2236	    /* Test if the time interval is over */
2237	    process_endtime = x->bm_start_time;
2238	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2239	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2240		/* Not yet: reschedule, but don't reset */
2241		int time_hash;
2242
2243		BW_METER_TIMEHASH(x, time_hash);
2244		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2245		    /*
2246		     * XXX: somehow the bin processing is a bit ahead of time.
2247		     * Put the entry in the next bin.
2248		     */
2249		    if (++time_hash >= BW_METER_BUCKETS)
2250			time_hash = 0;
2251		}
2252		x->bm_time_next = V_bw_meter_timers[time_hash];
2253		V_bw_meter_timers[time_hash] = x;
2254		x->bm_time_hash = time_hash;
2255
2256		continue;
2257	    }
2258
2259	    /*
2260	     * Test if we should deliver an upcall
2261	     */
2262	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2263		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2264		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2265		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2266		/* Prepare an upcall for delivery */
2267		bw_meter_prepare_upcall(x, &now);
2268	    }
2269
2270	    /*
2271	     * Reschedule for next processing
2272	     */
2273	    schedule_bw_meter(x, &now);
2274	}
2275    }
2276
2277    /* Send all upcalls that are pending delivery */
2278    bw_upcalls_send();
2279
2280    MFC_UNLOCK();
2281}
2282
2283/*
2284 * A periodic function for sending all upcalls that are pending delivery
2285 */
2286static void
2287expire_bw_upcalls_send(void *arg)
2288{
2289    CURVNET_SET((struct vnet *) arg);
2290
2291    MFC_LOCK();
2292    bw_upcalls_send();
2293    MFC_UNLOCK();
2294
2295    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2296	curvnet);
2297    CURVNET_RESTORE();
2298}
2299
2300/*
2301 * A periodic function for periodic scanning of the multicast forwarding
2302 * table for processing all "<=" bw_meter entries.
2303 */
2304static void
2305expire_bw_meter_process(void *arg)
2306{
2307    CURVNET_SET((struct vnet *) arg);
2308
2309    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2310	bw_meter_process();
2311
2312    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2313	curvnet);
2314    CURVNET_RESTORE();
2315}
2316
2317/*
2318 * End of bandwidth monitoring code
2319 */
2320
2321/*
2322 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2323 *
2324 */
2325static int
2326pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2327    struct mfc *rt)
2328{
2329    struct mbuf *mb_copy, *mm;
2330
2331    /*
2332     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2333     * rendezvous point was unspecified, and we were told not to.
2334     */
2335    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2336	in_nullhost(rt->mfc_rp))
2337	return 0;
2338
2339    mb_copy = pim_register_prepare(ip, m);
2340    if (mb_copy == NULL)
2341	return ENOBUFS;
2342
2343    /*
2344     * Send all the fragments. Note that the mbuf for each fragment
2345     * is freed by the sending machinery.
2346     */
2347    for (mm = mb_copy; mm; mm = mb_copy) {
2348	mb_copy = mm->m_nextpkt;
2349	mm->m_nextpkt = 0;
2350	mm = m_pullup(mm, sizeof(struct ip));
2351	if (mm != NULL) {
2352	    ip = mtod(mm, struct ip *);
2353	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2354		pim_register_send_rp(ip, vifp, mm, rt);
2355	    } else {
2356		pim_register_send_upcall(ip, vifp, mm, rt);
2357	    }
2358	}
2359    }
2360
2361    return 0;
2362}
2363
2364/*
2365 * Return a copy of the data packet that is ready for PIM Register
2366 * encapsulation.
2367 * XXX: Note that in the returned copy the IP header is a valid one.
2368 */
2369static struct mbuf *
2370pim_register_prepare(struct ip *ip, struct mbuf *m)
2371{
2372    struct mbuf *mb_copy = NULL;
2373    int mtu;
2374
2375    /* Take care of delayed checksums */
2376    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2377	in_delayed_cksum(m);
2378	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2379    }
2380
2381    /*
2382     * Copy the old packet & pullup its IP header into the
2383     * new mbuf so we can modify it.
2384     */
2385    mb_copy = m_copypacket(m, M_NOWAIT);
2386    if (mb_copy == NULL)
2387	return NULL;
2388    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2389    if (mb_copy == NULL)
2390	return NULL;
2391
2392    /* take care of the TTL */
2393    ip = mtod(mb_copy, struct ip *);
2394    --ip->ip_ttl;
2395
2396    /* Compute the MTU after the PIM Register encapsulation */
2397    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2398
2399    if (ntohs(ip->ip_len) <= mtu) {
2400	/* Turn the IP header into a valid one */
2401	ip->ip_sum = 0;
2402	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2403    } else {
2404	/* Fragment the packet */
2405	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2406	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2407	    m_freem(mb_copy);
2408	    return NULL;
2409	}
2410    }
2411    return mb_copy;
2412}
2413
2414/*
2415 * Send an upcall with the data packet to the user-level process.
2416 */
2417static int
2418pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2419    struct mbuf *mb_copy, struct mfc *rt)
2420{
2421    struct mbuf *mb_first;
2422    int len = ntohs(ip->ip_len);
2423    struct igmpmsg *im;
2424    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2425
2426    VIF_LOCK_ASSERT();
2427
2428    /*
2429     * Add a new mbuf with an upcall header
2430     */
2431    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2432    if (mb_first == NULL) {
2433	m_freem(mb_copy);
2434	return ENOBUFS;
2435    }
2436    mb_first->m_data += max_linkhdr;
2437    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2438    mb_first->m_len = sizeof(struct igmpmsg);
2439    mb_first->m_next = mb_copy;
2440
2441    /* Send message to routing daemon */
2442    im = mtod(mb_first, struct igmpmsg *);
2443    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2444    im->im_mbz		= 0;
2445    im->im_vif		= vifp - V_viftable;
2446    im->im_src		= ip->ip_src;
2447    im->im_dst		= ip->ip_dst;
2448
2449    k_igmpsrc.sin_addr	= ip->ip_src;
2450
2451    MRTSTAT_INC(mrts_upcalls);
2452
2453    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2454	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2455	MRTSTAT_INC(mrts_upq_sockfull);
2456	return ENOBUFS;
2457    }
2458
2459    /* Keep statistics */
2460    PIMSTAT_INC(pims_snd_registers_msgs);
2461    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2462
2463    return 0;
2464}
2465
2466/*
2467 * Encapsulate the data packet in PIM Register message and send it to the RP.
2468 */
2469static int
2470pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2471    struct mfc *rt)
2472{
2473    struct mbuf *mb_first;
2474    struct ip *ip_outer;
2475    struct pim_encap_pimhdr *pimhdr;
2476    int len = ntohs(ip->ip_len);
2477    vifi_t vifi = rt->mfc_parent;
2478
2479    VIF_LOCK_ASSERT();
2480
2481    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2482	m_freem(mb_copy);
2483	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2484    }
2485
2486    /*
2487     * Add a new mbuf with the encapsulating header
2488     */
2489    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2490    if (mb_first == NULL) {
2491	m_freem(mb_copy);
2492	return ENOBUFS;
2493    }
2494    mb_first->m_data += max_linkhdr;
2495    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2496    mb_first->m_next = mb_copy;
2497
2498    mb_first->m_pkthdr.len = len + mb_first->m_len;
2499
2500    /*
2501     * Fill in the encapsulating IP and PIM header
2502     */
2503    ip_outer = mtod(mb_first, struct ip *);
2504    *ip_outer = pim_encap_iphdr;
2505    ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2506	sizeof(pim_encap_pimhdr));
2507    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2508    ip_outer->ip_dst = rt->mfc_rp;
2509    /*
2510     * Copy the inner header TOS to the outer header, and take care of the
2511     * IP_DF bit.
2512     */
2513    ip_outer->ip_tos = ip->ip_tos;
2514    if (ip->ip_off & htons(IP_DF))
2515	ip_outer->ip_off |= htons(IP_DF);
2516    ip_fillid(ip_outer);
2517    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2518					 + sizeof(pim_encap_iphdr));
2519    *pimhdr = pim_encap_pimhdr;
2520    /* If the iif crosses a border, set the Border-bit */
2521    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2522	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2523
2524    mb_first->m_data += sizeof(pim_encap_iphdr);
2525    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2526    mb_first->m_data -= sizeof(pim_encap_iphdr);
2527
2528    send_packet(vifp, mb_first);
2529
2530    /* Keep statistics */
2531    PIMSTAT_INC(pims_snd_registers_msgs);
2532    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2533
2534    return 0;
2535}
2536
2537/*
2538 * pim_encapcheck() is called by the encap4_input() path at runtime to
2539 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2540 * into the kernel.
2541 */
2542static int
2543pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2544{
2545
2546#ifdef DIAGNOSTIC
2547    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2548#endif
2549    if (proto != IPPROTO_PIM)
2550	return 0;	/* not for us; reject the datagram. */
2551
2552    return 64;		/* claim the datagram. */
2553}
2554
2555/*
2556 * PIM-SMv2 and PIM-DM messages processing.
2557 * Receives and verifies the PIM control messages, and passes them
2558 * up to the listening socket, using rip_input().
2559 * The only message with special processing is the PIM_REGISTER message
2560 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2561 * is passed to if_simloop().
2562 */
2563int
2564pim_input(struct mbuf **mp, int *offp, int proto)
2565{
2566    struct mbuf *m = *mp;
2567    struct ip *ip = mtod(m, struct ip *);
2568    struct pim *pim;
2569    int iphlen = *offp;
2570    int minlen;
2571    int datalen = ntohs(ip->ip_len) - iphlen;
2572    int ip_tos;
2573
2574    *mp = NULL;
2575
2576    /* Keep statistics */
2577    PIMSTAT_INC(pims_rcv_total_msgs);
2578    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2579
2580    /*
2581     * Validate lengths
2582     */
2583    if (datalen < PIM_MINLEN) {
2584	PIMSTAT_INC(pims_rcv_tooshort);
2585	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2586	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2587	m_freem(m);
2588	return (IPPROTO_DONE);
2589    }
2590
2591    /*
2592     * If the packet is at least as big as a REGISTER, go agead
2593     * and grab the PIM REGISTER header size, to avoid another
2594     * possible m_pullup() later.
2595     *
2596     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2597     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2598     */
2599    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2600    /*
2601     * Get the IP and PIM headers in contiguous memory, and
2602     * possibly the PIM REGISTER header.
2603     */
2604    if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2605	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2606	return (IPPROTO_DONE);
2607    }
2608
2609    /* m_pullup() may have given us a new mbuf so reset ip. */
2610    ip = mtod(m, struct ip *);
2611    ip_tos = ip->ip_tos;
2612
2613    /* adjust mbuf to point to the PIM header */
2614    m->m_data += iphlen;
2615    m->m_len  -= iphlen;
2616    pim = mtod(m, struct pim *);
2617
2618    /*
2619     * Validate checksum. If PIM REGISTER, exclude the data packet.
2620     *
2621     * XXX: some older PIMv2 implementations don't make this distinction,
2622     * so for compatibility reason perform the checksum over part of the
2623     * message, and if error, then over the whole message.
2624     */
2625    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2626	/* do nothing, checksum okay */
2627    } else if (in_cksum(m, datalen)) {
2628	PIMSTAT_INC(pims_rcv_badsum);
2629	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2630	m_freem(m);
2631	return (IPPROTO_DONE);
2632    }
2633
2634    /* PIM version check */
2635    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2636	PIMSTAT_INC(pims_rcv_badversion);
2637	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2638	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2639	m_freem(m);
2640	return (IPPROTO_DONE);
2641    }
2642
2643    /* restore mbuf back to the outer IP */
2644    m->m_data -= iphlen;
2645    m->m_len  += iphlen;
2646
2647    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2648	/*
2649	 * Since this is a REGISTER, we'll make a copy of the register
2650	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2651	 * routing daemon.
2652	 */
2653	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2654	struct mbuf *mcp;
2655	struct ip *encap_ip;
2656	u_int32_t *reghdr;
2657	struct ifnet *vifp;
2658
2659	VIF_LOCK();
2660	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2661	    VIF_UNLOCK();
2662	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2663		(int)V_reg_vif_num);
2664	    m_freem(m);
2665	    return (IPPROTO_DONE);
2666	}
2667	/* XXX need refcnt? */
2668	vifp = V_viftable[V_reg_vif_num].v_ifp;
2669	VIF_UNLOCK();
2670
2671	/*
2672	 * Validate length
2673	 */
2674	if (datalen < PIM_REG_MINLEN) {
2675	    PIMSTAT_INC(pims_rcv_tooshort);
2676	    PIMSTAT_INC(pims_rcv_badregisters);
2677	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2678	    m_freem(m);
2679	    return (IPPROTO_DONE);
2680	}
2681
2682	reghdr = (u_int32_t *)(pim + 1);
2683	encap_ip = (struct ip *)(reghdr + 1);
2684
2685	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2686	    __func__, ntohl(encap_ip->ip_src.s_addr),
2687	    ntohs(encap_ip->ip_len));
2688
2689	/* verify the version number of the inner packet */
2690	if (encap_ip->ip_v != IPVERSION) {
2691	    PIMSTAT_INC(pims_rcv_badregisters);
2692	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2693	    m_freem(m);
2694	    return (IPPROTO_DONE);
2695	}
2696
2697	/* verify the inner packet is destined to a mcast group */
2698	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2699	    PIMSTAT_INC(pims_rcv_badregisters);
2700	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2701		ntohl(encap_ip->ip_dst.s_addr));
2702	    m_freem(m);
2703	    return (IPPROTO_DONE);
2704	}
2705
2706	/* If a NULL_REGISTER, pass it to the daemon */
2707	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2708	    goto pim_input_to_daemon;
2709
2710	/*
2711	 * Copy the TOS from the outer IP header to the inner IP header.
2712	 */
2713	if (encap_ip->ip_tos != ip_tos) {
2714	    /* Outer TOS -> inner TOS */
2715	    encap_ip->ip_tos = ip_tos;
2716	    /* Recompute the inner header checksum. Sigh... */
2717
2718	    /* adjust mbuf to point to the inner IP header */
2719	    m->m_data += (iphlen + PIM_MINLEN);
2720	    m->m_len  -= (iphlen + PIM_MINLEN);
2721
2722	    encap_ip->ip_sum = 0;
2723	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2724
2725	    /* restore mbuf to point back to the outer IP header */
2726	    m->m_data -= (iphlen + PIM_MINLEN);
2727	    m->m_len  += (iphlen + PIM_MINLEN);
2728	}
2729
2730	/*
2731	 * Decapsulate the inner IP packet and loopback to forward it
2732	 * as a normal multicast packet. Also, make a copy of the
2733	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2734	 * to pass to the daemon later, so it can take the appropriate
2735	 * actions (e.g., send back PIM_REGISTER_STOP).
2736	 * XXX: here m->m_data points to the outer IP header.
2737	 */
2738	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2739	if (mcp == NULL) {
2740	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2741	    m_freem(m);
2742	    return (IPPROTO_DONE);
2743	}
2744
2745	/* Keep statistics */
2746	/* XXX: registers_bytes include only the encap. mcast pkt */
2747	PIMSTAT_INC(pims_rcv_registers_msgs);
2748	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2749
2750	/*
2751	 * forward the inner ip packet; point m_data at the inner ip.
2752	 */
2753	m_adj(m, iphlen + PIM_MINLEN);
2754
2755	CTR4(KTR_IPMF,
2756	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2757	    __func__,
2758	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2759	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2760	    (int)V_reg_vif_num);
2761
2762	/* NB: vifp was collected above; can it change on us? */
2763	if_simloop(vifp, m, dst.sin_family, 0);
2764
2765	/* prepare the register head to send to the mrouting daemon */
2766	m = mcp;
2767    }
2768
2769pim_input_to_daemon:
2770    /*
2771     * Pass the PIM message up to the daemon; if it is a Register message,
2772     * pass the 'head' only up to the daemon. This includes the
2773     * outer IP header, PIM header, PIM-Register header and the
2774     * inner IP header.
2775     * XXX: the outer IP header pkt size of a Register is not adjust to
2776     * reflect the fact that the inner multicast data is truncated.
2777     */
2778    *mp = m;
2779    rip_input(mp, offp, proto);
2780
2781    return (IPPROTO_DONE);
2782}
2783
2784static int
2785sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2786{
2787	struct mfc	*rt;
2788	int		 error, i;
2789
2790	if (req->newptr)
2791		return (EPERM);
2792	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2793		return (0);
2794	error = sysctl_wire_old_buffer(req, 0);
2795	if (error)
2796		return (error);
2797
2798	MFC_LOCK();
2799	for (i = 0; i < mfchashsize; i++) {
2800		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2801			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2802			if (error)
2803				goto out_locked;
2804		}
2805	}
2806out_locked:
2807	MFC_UNLOCK();
2808	return (error);
2809}
2810
2811static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2812    sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2813    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2814
2815static void
2816vnet_mroute_init(const void *unused __unused)
2817{
2818
2819	MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2820	bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2821	callout_init(&V_expire_upcalls_ch, 1);
2822	callout_init(&V_bw_upcalls_ch, 1);
2823	callout_init(&V_bw_meter_ch, 1);
2824}
2825
2826VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2827	NULL);
2828
2829static void
2830vnet_mroute_uninit(const void *unused __unused)
2831{
2832
2833	FREE(V_nexpire, M_MRTABLE);
2834	V_nexpire = NULL;
2835}
2836
2837VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2838	vnet_mroute_uninit, NULL);
2839
2840static int
2841ip_mroute_modevent(module_t mod, int type, void *unused)
2842{
2843
2844    switch (type) {
2845    case MOD_LOAD:
2846	MROUTER_LOCK_INIT();
2847
2848	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2849	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2850	if (if_detach_event_tag == NULL) {
2851		printf("ip_mroute: unable to register "
2852		    "ifnet_departure_event handler\n");
2853		MROUTER_LOCK_DESTROY();
2854		return (EINVAL);
2855	}
2856
2857	MFC_LOCK_INIT();
2858	VIF_LOCK_INIT();
2859
2860	mfchashsize = MFCHASHSIZE;
2861	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2862	    !powerof2(mfchashsize)) {
2863		printf("WARNING: %s not a power of 2; using default\n",
2864		    "net.inet.ip.mfchashsize");
2865		mfchashsize = MFCHASHSIZE;
2866	}
2867
2868	pim_squelch_wholepkt = 0;
2869	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2870	    &pim_squelch_wholepkt);
2871
2872	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2873	    pim_encapcheck, &in_pim_protosw, NULL);
2874	if (pim_encap_cookie == NULL) {
2875		printf("ip_mroute: unable to attach pim encap\n");
2876		VIF_LOCK_DESTROY();
2877		MFC_LOCK_DESTROY();
2878		MROUTER_LOCK_DESTROY();
2879		return (EINVAL);
2880	}
2881
2882	ip_mcast_src = X_ip_mcast_src;
2883	ip_mforward = X_ip_mforward;
2884	ip_mrouter_done = X_ip_mrouter_done;
2885	ip_mrouter_get = X_ip_mrouter_get;
2886	ip_mrouter_set = X_ip_mrouter_set;
2887
2888	ip_rsvp_force_done = X_ip_rsvp_force_done;
2889	ip_rsvp_vif = X_ip_rsvp_vif;
2890
2891	legal_vif_num = X_legal_vif_num;
2892	mrt_ioctl = X_mrt_ioctl;
2893	rsvp_input_p = X_rsvp_input;
2894	break;
2895
2896    case MOD_UNLOAD:
2897	/*
2898	 * Typically module unload happens after the user-level
2899	 * process has shutdown the kernel services (the check
2900	 * below insures someone can't just yank the module out
2901	 * from under a running process).  But if the module is
2902	 * just loaded and then unloaded w/o starting up a user
2903	 * process we still need to cleanup.
2904	 */
2905	MROUTER_LOCK();
2906	if (ip_mrouter_cnt != 0) {
2907	    MROUTER_UNLOCK();
2908	    return (EINVAL);
2909	}
2910	ip_mrouter_unloading = 1;
2911	MROUTER_UNLOCK();
2912
2913	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2914
2915	if (pim_encap_cookie) {
2916	    encap_detach(pim_encap_cookie);
2917	    pim_encap_cookie = NULL;
2918	}
2919
2920	ip_mcast_src = NULL;
2921	ip_mforward = NULL;
2922	ip_mrouter_done = NULL;
2923	ip_mrouter_get = NULL;
2924	ip_mrouter_set = NULL;
2925
2926	ip_rsvp_force_done = NULL;
2927	ip_rsvp_vif = NULL;
2928
2929	legal_vif_num = NULL;
2930	mrt_ioctl = NULL;
2931	rsvp_input_p = NULL;
2932
2933	VIF_LOCK_DESTROY();
2934	MFC_LOCK_DESTROY();
2935	MROUTER_LOCK_DESTROY();
2936	break;
2937
2938    default:
2939	return EOPNOTSUPP;
2940    }
2941    return 0;
2942}
2943
2944static moduledata_t ip_mroutemod = {
2945    "ip_mroute",
2946    ip_mroute_modevent,
2947    0
2948};
2949
2950DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2951