1
2/*-
3 * Copyright (c) 2008 Michael J. Silbersack.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * IP ID generation is a fascinating topic.
33 *
34 * In order to avoid ID collisions during packet reassembly, common sense
35 * dictates that the period between reuse of IDs be as large as possible.
36 * This leads to the classic implementation of a system-wide counter, thereby
37 * ensuring that IDs repeat only once every 2^16 packets.
38 *
39 * Subsequent security researchers have pointed out that using a global
40 * counter makes ID values predictable.  This predictability allows traffic
41 * analysis, idle scanning, and even packet injection in specific cases.
42 * These results suggest that IP IDs should be as random as possible.
43 *
44 * The "searchable queues" algorithm used in this IP ID implementation was
45 * proposed by Amit Klein.  It is a compromise between the above two
46 * viewpoints that has provable behavior that can be tuned to the user's
47 * requirements.
48 *
49 * The basic concept is that we supplement a standard random number generator
50 * with a queue of the last L IDs that we have handed out to ensure that all
51 * IDs have a period of at least L.
52 *
53 * To efficiently implement this idea, we keep two data structures: a
54 * circular array of IDs of size L and a bitstring of 65536 bits.
55 *
56 * To start, we ask the RNG for a new ID.  A quick index into the bitstring
57 * is used to determine if this is a recently used value.  The process is
58 * repeated until a value is returned that is not in the bitstring.
59 *
60 * Having found a usable ID, we remove the ID stored at the current position
61 * in the queue from the bitstring and replace it with our new ID.  Our new
62 * ID is then added to the bitstring and the queue pointer is incremented.
63 *
64 * The lower limit of 512 was chosen because there doesn't seem to be much
65 * point to having a smaller value.  The upper limit of 32768 was chosen for
66 * two reasons.  First, every step above 32768 decreases the entropy.  Taken
67 * to an extreme, 65533 would offer 1 bit of entropy.  Second, the number of
68 * attempts it takes the algorithm to find an unused ID drastically
69 * increases, killing performance.  The default value of 8192 was chosen
70 * because it provides a good tradeoff between randomness and non-repetition.
71 *
72 * With L=8192, the queue will use 16K of memory.  The bitstring always
73 * uses 8K of memory.  No memory is allocated until the use of random ids is
74 * enabled.
75 */
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/counter.h>
80#include <sys/kernel.h>
81#include <sys/malloc.h>
82#include <sys/lock.h>
83#include <sys/mutex.h>
84#include <sys/random.h>
85#include <sys/smp.h>
86#include <sys/sysctl.h>
87#include <sys/bitstring.h>
88
89#include <net/vnet.h>
90
91#include <netinet/in.h>
92#include <netinet/ip.h>
93#include <netinet/ip_var.h>
94
95/*
96 * By default we generate IP ID only for non-atomic datagrams, as
97 * suggested by RFC6864.  We use per-CPU counter for that, or if
98 * user wants to, we can turn on random ID generation.
99 */
100static VNET_DEFINE(int, ip_rfc6864) = 1;
101static VNET_DEFINE(int, ip_do_randomid) = 0;
102#define	V_ip_rfc6864		VNET(ip_rfc6864)
103#define	V_ip_do_randomid	VNET(ip_do_randomid)
104
105/*
106 * Random ID state engine.
107 */
108static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
109static VNET_DEFINE(uint16_t *, id_array);
110static VNET_DEFINE(bitstr_t *, id_bits);
111static VNET_DEFINE(int, array_ptr);
112static VNET_DEFINE(int, array_size);
113static VNET_DEFINE(int, random_id_collisions);
114static VNET_DEFINE(int, random_id_total);
115static VNET_DEFINE(struct mtx, ip_id_mtx);
116#define	V_id_array	VNET(id_array)
117#define	V_id_bits	VNET(id_bits)
118#define	V_array_ptr	VNET(array_ptr)
119#define	V_array_size	VNET(array_size)
120#define	V_random_id_collisions	VNET(random_id_collisions)
121#define	V_random_id_total	VNET(random_id_total)
122#define	V_ip_id_mtx	VNET(ip_id_mtx)
123
124/*
125 * Non-random ID state engine is simply a per-cpu counter.
126 */
127static VNET_DEFINE(counter_u64_t, ip_id);
128#define	V_ip_id		VNET(ip_id)
129
130static int	sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
131static int	sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
132static void	ip_initid(int);
133static uint16_t ip_randomid(void);
134static void	ipid_sysinit(void);
135static void	ipid_sysuninit(void);
136
137SYSCTL_DECL(_net_inet_ip);
138SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
139    CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW,
140    &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
141    "Assign random ip_id values");
142SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
143    &VNET_NAME(ip_rfc6864), 0,
144    "Use constant IP ID for atomic datagrams");
145SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
146    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET,
147    &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
148SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
149    CTLFLAG_RD | CTLFLAG_VNET,
150    &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
151SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
152    &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
153
154static int
155sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
156{
157	int error, new;
158
159	new = V_ip_do_randomid;
160	error = sysctl_handle_int(oidp, &new, 0, req);
161	if (error || req->newptr == NULL)
162		return (error);
163	if (new != 0 && new != 1)
164		return (EINVAL);
165	if (new == V_ip_do_randomid)
166		return (0);
167	if (new == 1 && V_ip_do_randomid == 0)
168		ip_initid(8192);
169	/* We don't free memory when turning random ID off, due to race. */
170	V_ip_do_randomid = new;
171	return (0);
172}
173
174static int
175sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
176{
177	int error, new;
178
179	new = V_array_size;
180	error = sysctl_handle_int(oidp, &new, 0, req);
181	if (error == 0 && req->newptr) {
182		if (new >= 512 && new <= 32768)
183			ip_initid(new);
184		else
185			error = EINVAL;
186	}
187	return (error);
188}
189
190static void
191ip_initid(int new_size)
192{
193	uint16_t *new_array;
194	bitstr_t *new_bits;
195
196	new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
197	    M_WAITOK | M_ZERO);
198	new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
199
200	mtx_lock(&V_ip_id_mtx);
201	if (V_id_array != NULL) {
202		free(V_id_array, M_IPID);
203		free(V_id_bits, M_IPID);
204	}
205	V_id_array = new_array;
206	V_id_bits = new_bits;
207	V_array_size = new_size;
208	V_array_ptr = 0;
209	V_random_id_collisions = 0;
210	V_random_id_total = 0;
211	mtx_unlock(&V_ip_id_mtx);
212}
213
214static uint16_t
215ip_randomid(void)
216{
217	uint16_t new_id;
218
219	mtx_lock(&V_ip_id_mtx);
220	/*
221	 * To avoid a conflict with the zeros that the array is initially
222	 * filled with, we never hand out an id of zero.
223	 */
224	new_id = 0;
225	do {
226		if (new_id != 0)
227			V_random_id_collisions++;
228		arc4rand(&new_id, sizeof(new_id), 0);
229	} while (bit_test(V_id_bits, new_id) || new_id == 0);
230	bit_clear(V_id_bits, V_id_array[V_array_ptr]);
231	bit_set(V_id_bits, new_id);
232	V_id_array[V_array_ptr] = new_id;
233	V_array_ptr++;
234	if (V_array_ptr == V_array_size)
235		V_array_ptr = 0;
236	V_random_id_total++;
237	mtx_unlock(&V_ip_id_mtx);
238	return (new_id);
239}
240
241void
242ip_fillid(struct ip *ip)
243{
244
245	/*
246	 * Per RFC6864 Section 4
247	 *
248	 * o  Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
249	 * o  Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
250	 */
251	if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
252		ip->ip_id = 0;
253	else if (V_ip_do_randomid)
254		ip->ip_id = ip_randomid();
255	else {
256		counter_u64_add(V_ip_id, 1);
257		/*
258		 * There are two issues about this trick, to be kept in mind.
259		 * 1) We can migrate between counter_u64_add() and next
260		 *    line, and grab counter from other CPU, resulting in too
261		 *    quick ID reuse. This is tolerable in our particular case,
262		 *    since probability of such event is much lower then reuse
263		 *    of ID due to legitimate overflow, that at modern Internet
264		 *    speeds happens all the time.
265		 * 2) We are relying on the fact that counter(9) is based on
266		 *    UMA_ZONE_PCPU uma(9) zone. We also take only last
267		 *    sixteen bits of a counter, so we don't care about the
268		 *    fact that machines with 32-bit word update their counters
269		 *    not atomically.
270		 */
271		ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
272	}
273}
274
275static void
276ipid_sysinit(void)
277{
278	int i;
279
280	mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
281	V_ip_id = counter_u64_alloc(M_WAITOK);
282
283	CPU_FOREACH(i)
284		arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
285}
286VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
287
288static void
289ipid_sysuninit(void)
290{
291
292	if (V_id_array != NULL) {
293		free(V_id_array, M_IPID);
294		free(V_id_bits, M_IPID);
295	}
296	counter_u64_free(V_ip_id);
297	mtx_destroy(&V_ip_id_mtx);
298}
299VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);
300