ieee80211_proto.c revision 219961
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_proto.c 219961 2011-03-24 15:27:15Z adrian $");
29
30/*
31 * IEEE 802.11 protocol support.
32 */
33
34#include "opt_inet.h"
35#include "opt_wlan.h"
36
37#include <sys/param.h>
38#include <sys/kernel.h>
39#include <sys/systm.h>
40
41#include <sys/socket.h>
42#include <sys/sockio.h>
43
44#include <net/if.h>
45#include <net/if_media.h>
46#include <net/ethernet.h>		/* XXX for ether_sprintf */
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_adhoc.h>
50#include <net80211/ieee80211_sta.h>
51#include <net80211/ieee80211_hostap.h>
52#include <net80211/ieee80211_wds.h>
53#ifdef IEEE80211_SUPPORT_MESH
54#include <net80211/ieee80211_mesh.h>
55#endif
56#include <net80211/ieee80211_monitor.h>
57#include <net80211/ieee80211_input.h>
58
59/* XXX tunables */
60#define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61#define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62
63const char *ieee80211_mgt_subtype_name[] = {
64	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66	"beacon",	"atim",		"disassoc",	"auth",
67	"deauth",	"action",	"action_noack",	"reserved#15"
68};
69const char *ieee80211_ctl_subtype_name[] = {
70	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73	"cts",		"ack",		"cf_end",	"cf_end_ack"
74};
75const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76	"IBSS",		/* IEEE80211_M_IBSS */
77	"STA",		/* IEEE80211_M_STA */
78	"WDS",		/* IEEE80211_M_WDS */
79	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81	"MONITOR",	/* IEEE80211_M_MONITOR */
82	"MBSS"		/* IEEE80211_M_MBSS */
83};
84const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85	"INIT",		/* IEEE80211_S_INIT */
86	"SCAN",		/* IEEE80211_S_SCAN */
87	"AUTH",		/* IEEE80211_S_AUTH */
88	"ASSOC",	/* IEEE80211_S_ASSOC */
89	"CAC",		/* IEEE80211_S_CAC */
90	"RUN",		/* IEEE80211_S_RUN */
91	"CSA",		/* IEEE80211_S_CSA */
92	"SLEEP",	/* IEEE80211_S_SLEEP */
93};
94const char *ieee80211_wme_acnames[] = {
95	"WME_AC_BE",
96	"WME_AC_BK",
97	"WME_AC_VI",
98	"WME_AC_VO",
99	"WME_UPSD",
100};
101
102static void beacon_miss(void *, int);
103static void beacon_swmiss(void *, int);
104static void parent_updown(void *, int);
105static void update_mcast(void *, int);
106static void update_promisc(void *, int);
107static void update_channel(void *, int);
108static void ieee80211_newstate_cb(void *, int);
109static int ieee80211_new_state_locked(struct ieee80211vap *,
110	enum ieee80211_state, int);
111
112static int
113null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114	const struct ieee80211_bpf_params *params)
115{
116	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117
118	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119	m_freem(m);
120	return ENETDOWN;
121}
122
123void
124ieee80211_proto_attach(struct ieee80211com *ic)
125{
126	struct ifnet *ifp = ic->ic_ifp;
127
128	/* override the 802.3 setting */
129	ifp->if_hdrlen = ic->ic_headroom
130		+ sizeof(struct ieee80211_qosframe_addr4)
131		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132		+ IEEE80211_WEP_EXTIVLEN;
133	/* XXX no way to recalculate on ifdetach */
134	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135		/* XXX sanity check... */
136		max_linkhdr = ALIGN(ifp->if_hdrlen);
137		max_hdr = max_linkhdr + max_protohdr;
138		max_datalen = MHLEN - max_hdr;
139	}
140	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141
142	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
143	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
144	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
145	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
146	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
147
148	ic->ic_wme.wme_hipri_switch_hysteresis =
149		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150
151	/* initialize management frame handlers */
152	ic->ic_send_mgmt = ieee80211_send_mgmt;
153	ic->ic_raw_xmit = null_raw_xmit;
154
155	ieee80211_adhoc_attach(ic);
156	ieee80211_sta_attach(ic);
157	ieee80211_wds_attach(ic);
158	ieee80211_hostap_attach(ic);
159#ifdef IEEE80211_SUPPORT_MESH
160	ieee80211_mesh_attach(ic);
161#endif
162	ieee80211_monitor_attach(ic);
163}
164
165void
166ieee80211_proto_detach(struct ieee80211com *ic)
167{
168	ieee80211_monitor_detach(ic);
169#ifdef IEEE80211_SUPPORT_MESH
170	ieee80211_mesh_detach(ic);
171#endif
172	ieee80211_hostap_detach(ic);
173	ieee80211_wds_detach(ic);
174	ieee80211_adhoc_detach(ic);
175	ieee80211_sta_detach(ic);
176}
177
178static void
179null_update_beacon(struct ieee80211vap *vap, int item)
180{
181}
182
183void
184ieee80211_proto_vattach(struct ieee80211vap *vap)
185{
186	struct ieee80211com *ic = vap->iv_ic;
187	struct ifnet *ifp = vap->iv_ifp;
188	int i;
189
190	/* override the 802.3 setting */
191	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192
193	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196	callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
197	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
198	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200	/*
201	 * Install default tx rate handling: no fixed rate, lowest
202	 * supported rate for mgmt and multicast frames.  Default
203	 * max retry count.  These settings can be changed by the
204	 * driver and/or user applications.
205	 */
206	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208
209		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210
211		/*
212		 * Setting the management rate to MCS 0 assumes that the
213		 * BSS Basic rate set is empty and the BSS Basic MCS set
214		 * is not.
215		 *
216		 * Since we're not checking this, default to the lowest
217		 * defined rate for this mode.
218		 *
219		 * At least one 11n AP (DLINK DIR-825) is reported to drop
220		 * some MCS management traffic (eg BA response frames.)
221		 *
222		 * See also: 9.6.0 of the 802.11n-2009 specification.
223		 */
224#ifdef	NOTYET
225		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
226			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
227			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
228		} else {
229			vap->iv_txparms[i].mgmtrate =
230			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
231			vap->iv_txparms[i].mcastrate =
232			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233		}
234#endif
235		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
236		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
237		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
238	}
239	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
240
241	vap->iv_update_beacon = null_update_beacon;
242	vap->iv_deliver_data = ieee80211_deliver_data;
243
244	/* attach support for operating mode */
245	ic->ic_vattach[vap->iv_opmode](vap);
246}
247
248void
249ieee80211_proto_vdetach(struct ieee80211vap *vap)
250{
251#define	FREEAPPIE(ie) do { \
252	if (ie != NULL) \
253		free(ie, M_80211_NODE_IE); \
254} while (0)
255	/*
256	 * Detach operating mode module.
257	 */
258	if (vap->iv_opdetach != NULL)
259		vap->iv_opdetach(vap);
260	/*
261	 * This should not be needed as we detach when reseting
262	 * the state but be conservative here since the
263	 * authenticator may do things like spawn kernel threads.
264	 */
265	if (vap->iv_auth->ia_detach != NULL)
266		vap->iv_auth->ia_detach(vap);
267	/*
268	 * Detach any ACL'ator.
269	 */
270	if (vap->iv_acl != NULL)
271		vap->iv_acl->iac_detach(vap);
272
273	FREEAPPIE(vap->iv_appie_beacon);
274	FREEAPPIE(vap->iv_appie_probereq);
275	FREEAPPIE(vap->iv_appie_proberesp);
276	FREEAPPIE(vap->iv_appie_assocreq);
277	FREEAPPIE(vap->iv_appie_assocresp);
278	FREEAPPIE(vap->iv_appie_wpa);
279#undef FREEAPPIE
280}
281
282/*
283 * Simple-minded authenticator module support.
284 */
285
286#define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
287/* XXX well-known names */
288static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
289	"wlan_internal",	/* IEEE80211_AUTH_NONE */
290	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
291	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
292	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
293	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
294	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
295};
296static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
297
298static const struct ieee80211_authenticator auth_internal = {
299	.ia_name		= "wlan_internal",
300	.ia_attach		= NULL,
301	.ia_detach		= NULL,
302	.ia_node_join		= NULL,
303	.ia_node_leave		= NULL,
304};
305
306/*
307 * Setup internal authenticators once; they are never unregistered.
308 */
309static void
310ieee80211_auth_setup(void)
311{
312	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
313	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
314	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
315}
316SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
317
318const struct ieee80211_authenticator *
319ieee80211_authenticator_get(int auth)
320{
321	if (auth >= IEEE80211_AUTH_MAX)
322		return NULL;
323	if (authenticators[auth] == NULL)
324		ieee80211_load_module(auth_modnames[auth]);
325	return authenticators[auth];
326}
327
328void
329ieee80211_authenticator_register(int type,
330	const struct ieee80211_authenticator *auth)
331{
332	if (type >= IEEE80211_AUTH_MAX)
333		return;
334	authenticators[type] = auth;
335}
336
337void
338ieee80211_authenticator_unregister(int type)
339{
340
341	if (type >= IEEE80211_AUTH_MAX)
342		return;
343	authenticators[type] = NULL;
344}
345
346/*
347 * Very simple-minded ACL module support.
348 */
349/* XXX just one for now */
350static	const struct ieee80211_aclator *acl = NULL;
351
352void
353ieee80211_aclator_register(const struct ieee80211_aclator *iac)
354{
355	printf("wlan: %s acl policy registered\n", iac->iac_name);
356	acl = iac;
357}
358
359void
360ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
361{
362	if (acl == iac)
363		acl = NULL;
364	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
365}
366
367const struct ieee80211_aclator *
368ieee80211_aclator_get(const char *name)
369{
370	if (acl == NULL)
371		ieee80211_load_module("wlan_acl");
372	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
373}
374
375void
376ieee80211_print_essid(const uint8_t *essid, int len)
377{
378	const uint8_t *p;
379	int i;
380
381	if (len > IEEE80211_NWID_LEN)
382		len = IEEE80211_NWID_LEN;
383	/* determine printable or not */
384	for (i = 0, p = essid; i < len; i++, p++) {
385		if (*p < ' ' || *p > 0x7e)
386			break;
387	}
388	if (i == len) {
389		printf("\"");
390		for (i = 0, p = essid; i < len; i++, p++)
391			printf("%c", *p);
392		printf("\"");
393	} else {
394		printf("0x");
395		for (i = 0, p = essid; i < len; i++, p++)
396			printf("%02x", *p);
397	}
398}
399
400void
401ieee80211_dump_pkt(struct ieee80211com *ic,
402	const uint8_t *buf, int len, int rate, int rssi)
403{
404	const struct ieee80211_frame *wh;
405	int i;
406
407	wh = (const struct ieee80211_frame *)buf;
408	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
409	case IEEE80211_FC1_DIR_NODS:
410		printf("NODS %s", ether_sprintf(wh->i_addr2));
411		printf("->%s", ether_sprintf(wh->i_addr1));
412		printf("(%s)", ether_sprintf(wh->i_addr3));
413		break;
414	case IEEE80211_FC1_DIR_TODS:
415		printf("TODS %s", ether_sprintf(wh->i_addr2));
416		printf("->%s", ether_sprintf(wh->i_addr3));
417		printf("(%s)", ether_sprintf(wh->i_addr1));
418		break;
419	case IEEE80211_FC1_DIR_FROMDS:
420		printf("FRDS %s", ether_sprintf(wh->i_addr3));
421		printf("->%s", ether_sprintf(wh->i_addr1));
422		printf("(%s)", ether_sprintf(wh->i_addr2));
423		break;
424	case IEEE80211_FC1_DIR_DSTODS:
425		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
426		printf("->%s", ether_sprintf(wh->i_addr3));
427		printf("(%s", ether_sprintf(wh->i_addr2));
428		printf("->%s)", ether_sprintf(wh->i_addr1));
429		break;
430	}
431	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
432	case IEEE80211_FC0_TYPE_DATA:
433		printf(" data");
434		break;
435	case IEEE80211_FC0_TYPE_MGT:
436		printf(" %s", ieee80211_mgt_subtype_name[
437		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
438		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
439		break;
440	default:
441		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
442		break;
443	}
444	if (IEEE80211_QOS_HAS_SEQ(wh)) {
445		const struct ieee80211_qosframe *qwh =
446			(const struct ieee80211_qosframe *)buf;
447		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
448			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
449	}
450	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
451		int off;
452
453		off = ieee80211_anyhdrspace(ic, wh);
454		printf(" WEP [IV %.02x %.02x %.02x",
455			buf[off+0], buf[off+1], buf[off+2]);
456		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
457			printf(" %.02x %.02x %.02x",
458				buf[off+4], buf[off+5], buf[off+6]);
459		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
460	}
461	if (rate >= 0)
462		printf(" %dM", rate / 2);
463	if (rssi >= 0)
464		printf(" +%d", rssi);
465	printf("\n");
466	if (len > 0) {
467		for (i = 0; i < len; i++) {
468			if ((i & 1) == 0)
469				printf(" ");
470			printf("%02x", buf[i]);
471		}
472		printf("\n");
473	}
474}
475
476static __inline int
477findrix(const struct ieee80211_rateset *rs, int r)
478{
479	int i;
480
481	for (i = 0; i < rs->rs_nrates; i++)
482		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
483			return i;
484	return -1;
485}
486
487int
488ieee80211_fix_rate(struct ieee80211_node *ni,
489	struct ieee80211_rateset *nrs, int flags)
490{
491#define	RV(v)	((v) & IEEE80211_RATE_VAL)
492	struct ieee80211vap *vap = ni->ni_vap;
493	struct ieee80211com *ic = ni->ni_ic;
494	int i, j, rix, error;
495	int okrate, badrate, fixedrate, ucastrate;
496	const struct ieee80211_rateset *srs;
497	uint8_t r;
498
499	error = 0;
500	okrate = badrate = 0;
501	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
502	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
503		/*
504		 * Workaround awkwardness with fixed rate.  We are called
505		 * to check both the legacy rate set and the HT rate set
506		 * but we must apply any legacy fixed rate check only to the
507		 * legacy rate set and vice versa.  We cannot tell what type
508		 * of rate set we've been given (legacy or HT) but we can
509		 * distinguish the fixed rate type (MCS have 0x80 set).
510		 * So to deal with this the caller communicates whether to
511		 * check MCS or legacy rate using the flags and we use the
512		 * type of any fixed rate to avoid applying an MCS to a
513		 * legacy rate and vice versa.
514		 */
515		if (ucastrate & 0x80) {
516			if (flags & IEEE80211_F_DOFRATE)
517				flags &= ~IEEE80211_F_DOFRATE;
518		} else if ((ucastrate & 0x80) == 0) {
519			if (flags & IEEE80211_F_DOFMCS)
520				flags &= ~IEEE80211_F_DOFMCS;
521		}
522		/* NB: required to make MCS match below work */
523		ucastrate &= IEEE80211_RATE_VAL;
524	}
525	fixedrate = IEEE80211_FIXED_RATE_NONE;
526	/*
527	 * XXX we are called to process both MCS and legacy rates;
528	 * we must use the appropriate basic rate set or chaos will
529	 * ensue; for now callers that want MCS must supply
530	 * IEEE80211_F_DOBRS; at some point we'll need to split this
531	 * function so there are two variants, one for MCS and one
532	 * for legacy rates.
533	 */
534	if (flags & IEEE80211_F_DOBRS)
535		srs = (const struct ieee80211_rateset *)
536		    ieee80211_get_suphtrates(ic, ni->ni_chan);
537	else
538		srs = ieee80211_get_suprates(ic, ni->ni_chan);
539	for (i = 0; i < nrs->rs_nrates; ) {
540		if (flags & IEEE80211_F_DOSORT) {
541			/*
542			 * Sort rates.
543			 */
544			for (j = i + 1; j < nrs->rs_nrates; j++) {
545				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
546					r = nrs->rs_rates[i];
547					nrs->rs_rates[i] = nrs->rs_rates[j];
548					nrs->rs_rates[j] = r;
549				}
550			}
551		}
552		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
553		badrate = r;
554		/*
555		 * Check for fixed rate.
556		 */
557		if (r == ucastrate)
558			fixedrate = r;
559		/*
560		 * Check against supported rates.
561		 */
562		rix = findrix(srs, r);
563		if (flags & IEEE80211_F_DONEGO) {
564			if (rix < 0) {
565				/*
566				 * A rate in the node's rate set is not
567				 * supported.  If this is a basic rate and we
568				 * are operating as a STA then this is an error.
569				 * Otherwise we just discard/ignore the rate.
570				 */
571				if ((flags & IEEE80211_F_JOIN) &&
572				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
573					error++;
574			} else if ((flags & IEEE80211_F_JOIN) == 0) {
575				/*
576				 * Overwrite with the supported rate
577				 * value so any basic rate bit is set.
578				 */
579				nrs->rs_rates[i] = srs->rs_rates[rix];
580			}
581		}
582		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
583			/*
584			 * Delete unacceptable rates.
585			 */
586			nrs->rs_nrates--;
587			for (j = i; j < nrs->rs_nrates; j++)
588				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
589			nrs->rs_rates[j] = 0;
590			continue;
591		}
592		if (rix >= 0)
593			okrate = nrs->rs_rates[i];
594		i++;
595	}
596	if (okrate == 0 || error != 0 ||
597	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
598	     fixedrate != ucastrate)) {
599		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
600		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
601		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
602		return badrate | IEEE80211_RATE_BASIC;
603	} else
604		return RV(okrate);
605#undef RV
606}
607
608/*
609 * Reset 11g-related state.
610 */
611void
612ieee80211_reset_erp(struct ieee80211com *ic)
613{
614	ic->ic_flags &= ~IEEE80211_F_USEPROT;
615	ic->ic_nonerpsta = 0;
616	ic->ic_longslotsta = 0;
617	/*
618	 * Short slot time is enabled only when operating in 11g
619	 * and not in an IBSS.  We must also honor whether or not
620	 * the driver is capable of doing it.
621	 */
622	ieee80211_set_shortslottime(ic,
623		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
624		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
625		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
626		ic->ic_opmode == IEEE80211_M_HOSTAP &&
627		(ic->ic_caps & IEEE80211_C_SHSLOT)));
628	/*
629	 * Set short preamble and ERP barker-preamble flags.
630	 */
631	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
632	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
633		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
634		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
635	} else {
636		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
637		ic->ic_flags |= IEEE80211_F_USEBARKER;
638	}
639}
640
641/*
642 * Set the short slot time state and notify the driver.
643 */
644void
645ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
646{
647	if (onoff)
648		ic->ic_flags |= IEEE80211_F_SHSLOT;
649	else
650		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
651	/* notify driver */
652	if (ic->ic_updateslot != NULL)
653		ic->ic_updateslot(ic->ic_ifp);
654}
655
656/*
657 * Check if the specified rate set supports ERP.
658 * NB: the rate set is assumed to be sorted.
659 */
660int
661ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
662{
663#define N(a)	(sizeof(a) / sizeof(a[0]))
664	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
665	int i, j;
666
667	if (rs->rs_nrates < N(rates))
668		return 0;
669	for (i = 0; i < N(rates); i++) {
670		for (j = 0; j < rs->rs_nrates; j++) {
671			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
672			if (rates[i] == r)
673				goto next;
674			if (r > rates[i])
675				return 0;
676		}
677		return 0;
678	next:
679		;
680	}
681	return 1;
682#undef N
683}
684
685/*
686 * Mark the basic rates for the rate table based on the
687 * operating mode.  For real 11g we mark all the 11b rates
688 * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
689 * 11b rates.  There's also a pseudo 11a-mode used to mark only
690 * the basic OFDM rates.
691 */
692static void
693setbasicrates(struct ieee80211_rateset *rs,
694    enum ieee80211_phymode mode, int add)
695{
696	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
697	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
698	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
699					    /* NB: mixed b/g */
700	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
701	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
702	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
703	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
704	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
705	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
706	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
707					    /* NB: mixed b/g */
708	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
709	};
710	int i, j;
711
712	for (i = 0; i < rs->rs_nrates; i++) {
713		if (!add)
714			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
715		for (j = 0; j < basic[mode].rs_nrates; j++)
716			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
717				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
718				break;
719			}
720	}
721}
722
723/*
724 * Set the basic rates in a rate set.
725 */
726void
727ieee80211_setbasicrates(struct ieee80211_rateset *rs,
728    enum ieee80211_phymode mode)
729{
730	setbasicrates(rs, mode, 0);
731}
732
733/*
734 * Add basic rates to a rate set.
735 */
736void
737ieee80211_addbasicrates(struct ieee80211_rateset *rs,
738    enum ieee80211_phymode mode)
739{
740	setbasicrates(rs, mode, 1);
741}
742
743/*
744 * WME protocol support.
745 *
746 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
747 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
748 * Draft 2.0 Test Plan (Appendix D).
749 *
750 * Static/Dynamic Turbo mode settings come from Atheros.
751 */
752typedef struct phyParamType {
753	uint8_t		aifsn;
754	uint8_t		logcwmin;
755	uint8_t		logcwmax;
756	uint16_t	txopLimit;
757	uint8_t 	acm;
758} paramType;
759
760static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
761	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
762	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
763	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
764	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
765	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
766	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
767	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
768	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
769	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
770	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
771	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
772	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
773};
774static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
775	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
776	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
777	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
778	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
779	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
780	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
781	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
782	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
783	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
784	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
785	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
786	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
787};
788static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
789	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
790	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
791	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
792	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
793	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
794	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
795	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
796	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
797	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
798	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
799	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
800	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
801};
802static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
803	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
804	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
805	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
806	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
807	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
808	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
809	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
810	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
811	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
812	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
813	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
814	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
815};
816
817static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
818	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
819	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
820	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
821	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
822	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
823	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
824	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
825	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
826	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
827	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
828	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
829	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
830};
831static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
832	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
833	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
834	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
835	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
836	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
837	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
838	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
839	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
840	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
841	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
842	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
843	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
844};
845static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
846	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
847	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
848	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
849	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
850	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
851	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
852	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
853	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
854	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
855	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
856	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
857	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
858};
859
860static void
861_setifsparams(struct wmeParams *wmep, const paramType *phy)
862{
863	wmep->wmep_aifsn = phy->aifsn;
864	wmep->wmep_logcwmin = phy->logcwmin;
865	wmep->wmep_logcwmax = phy->logcwmax;
866	wmep->wmep_txopLimit = phy->txopLimit;
867}
868
869static void
870setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
871	struct wmeParams *wmep, const paramType *phy)
872{
873	wmep->wmep_acm = phy->acm;
874	_setifsparams(wmep, phy);
875
876	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
877	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
878	    ieee80211_wme_acnames[ac], type,
879	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
880	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
881}
882
883static void
884ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
885{
886	struct ieee80211com *ic = vap->iv_ic;
887	struct ieee80211_wme_state *wme = &ic->ic_wme;
888	const paramType *pPhyParam, *pBssPhyParam;
889	struct wmeParams *wmep;
890	enum ieee80211_phymode mode;
891	int i;
892
893	IEEE80211_LOCK_ASSERT(ic);
894
895	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
896		return;
897
898	/*
899	 * Clear the wme cap_info field so a qoscount from a previous
900	 * vap doesn't confuse later code which only parses the beacon
901	 * field and updates hardware when said field changes.
902	 * Otherwise the hardware is programmed with defaults, not what
903	 * the beacon actually announces.
904	 */
905	wme->wme_wmeChanParams.cap_info = 0;
906
907	/*
908	 * Select mode; we can be called early in which case we
909	 * always use auto mode.  We know we'll be called when
910	 * entering the RUN state with bsschan setup properly
911	 * so state will eventually get set correctly
912	 */
913	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
914		mode = ieee80211_chan2mode(ic->ic_bsschan);
915	else
916		mode = IEEE80211_MODE_AUTO;
917	for (i = 0; i < WME_NUM_AC; i++) {
918		switch (i) {
919		case WME_AC_BK:
920			pPhyParam = &phyParamForAC_BK[mode];
921			pBssPhyParam = &phyParamForAC_BK[mode];
922			break;
923		case WME_AC_VI:
924			pPhyParam = &phyParamForAC_VI[mode];
925			pBssPhyParam = &bssPhyParamForAC_VI[mode];
926			break;
927		case WME_AC_VO:
928			pPhyParam = &phyParamForAC_VO[mode];
929			pBssPhyParam = &bssPhyParamForAC_VO[mode];
930			break;
931		case WME_AC_BE:
932		default:
933			pPhyParam = &phyParamForAC_BE[mode];
934			pBssPhyParam = &bssPhyParamForAC_BE[mode];
935			break;
936		}
937		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
938		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
939			setwmeparams(vap, "chan", i, wmep, pPhyParam);
940		} else {
941			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
942		}
943		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
944		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
945	}
946	/* NB: check ic_bss to avoid NULL deref on initial attach */
947	if (vap->iv_bss != NULL) {
948		/*
949		 * Calculate agressive mode switching threshold based
950		 * on beacon interval.  This doesn't need locking since
951		 * we're only called before entering the RUN state at
952		 * which point we start sending beacon frames.
953		 */
954		wme->wme_hipri_switch_thresh =
955			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
956		wme->wme_flags &= ~WME_F_AGGRMODE;
957		ieee80211_wme_updateparams(vap);
958	}
959}
960
961void
962ieee80211_wme_initparams(struct ieee80211vap *vap)
963{
964	struct ieee80211com *ic = vap->iv_ic;
965
966	IEEE80211_LOCK(ic);
967	ieee80211_wme_initparams_locked(vap);
968	IEEE80211_UNLOCK(ic);
969}
970
971/*
972 * Update WME parameters for ourself and the BSS.
973 */
974void
975ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
976{
977	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
978	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
979	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
980	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
981	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
982	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
983	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
984	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
985	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
986	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
987	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
988	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
989	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
990	};
991	struct ieee80211com *ic = vap->iv_ic;
992	struct ieee80211_wme_state *wme = &ic->ic_wme;
993	const struct wmeParams *wmep;
994	struct wmeParams *chanp, *bssp;
995	enum ieee80211_phymode mode;
996	int i;
997
998       	/*
999	 * Set up the channel access parameters for the physical
1000	 * device.  First populate the configured settings.
1001	 */
1002	for (i = 0; i < WME_NUM_AC; i++) {
1003		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1004		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1005		chanp->wmep_aifsn = wmep->wmep_aifsn;
1006		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1007		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1008		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1009
1010		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1011		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1012		chanp->wmep_aifsn = wmep->wmep_aifsn;
1013		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1014		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1015		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1016	}
1017
1018	/*
1019	 * Select mode; we can be called early in which case we
1020	 * always use auto mode.  We know we'll be called when
1021	 * entering the RUN state with bsschan setup properly
1022	 * so state will eventually get set correctly
1023	 */
1024	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1025		mode = ieee80211_chan2mode(ic->ic_bsschan);
1026	else
1027		mode = IEEE80211_MODE_AUTO;
1028
1029	/*
1030	 * This implements agressive mode as found in certain
1031	 * vendors' AP's.  When there is significant high
1032	 * priority (VI/VO) traffic in the BSS throttle back BE
1033	 * traffic by using conservative parameters.  Otherwise
1034	 * BE uses agressive params to optimize performance of
1035	 * legacy/non-QoS traffic.
1036	 */
1037        if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1038	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1039	    (vap->iv_opmode == IEEE80211_M_STA &&
1040	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1041	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1042		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1043		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1044
1045		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1046		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1047		    aggrParam[mode].logcwmin;
1048		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1049		    aggrParam[mode].logcwmax;
1050		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1051		    (vap->iv_flags & IEEE80211_F_BURST) ?
1052			aggrParam[mode].txopLimit : 0;
1053		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1054		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1055		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1056		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1057		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1058	}
1059
1060	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1061	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1062		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1063		    [IEEE80211_MODE_AUTO]	= 3,
1064		    [IEEE80211_MODE_11A]	= 3,
1065		    [IEEE80211_MODE_11B]	= 4,
1066		    [IEEE80211_MODE_11G]	= 3,
1067		    [IEEE80211_MODE_FH]		= 4,
1068		    [IEEE80211_MODE_TURBO_A]	= 3,
1069		    [IEEE80211_MODE_TURBO_G]	= 3,
1070		    [IEEE80211_MODE_STURBO_A]	= 3,
1071		    [IEEE80211_MODE_HALF]	= 3,
1072		    [IEEE80211_MODE_QUARTER]	= 3,
1073		    [IEEE80211_MODE_11NA]	= 3,
1074		    [IEEE80211_MODE_11NG]	= 3,
1075		};
1076		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1077		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1078
1079		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1080		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1081		    "update %s (chan+bss) logcwmin %u\n",
1082		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1083    	}
1084	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1085		/*
1086		 * Arrange for a beacon update and bump the parameter
1087		 * set number so associated stations load the new values.
1088		 */
1089		wme->wme_bssChanParams.cap_info =
1090			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1091		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1092	}
1093
1094	wme->wme_update(ic);
1095
1096	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1097	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1098	    vap->iv_opmode == IEEE80211_M_STA ?
1099		wme->wme_wmeChanParams.cap_info :
1100		wme->wme_bssChanParams.cap_info);
1101}
1102
1103void
1104ieee80211_wme_updateparams(struct ieee80211vap *vap)
1105{
1106	struct ieee80211com *ic = vap->iv_ic;
1107
1108	if (ic->ic_caps & IEEE80211_C_WME) {
1109		IEEE80211_LOCK(ic);
1110		ieee80211_wme_updateparams_locked(vap);
1111		IEEE80211_UNLOCK(ic);
1112	}
1113}
1114
1115static void
1116parent_updown(void *arg, int npending)
1117{
1118	struct ifnet *parent = arg;
1119
1120	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1121}
1122
1123static void
1124update_mcast(void *arg, int npending)
1125{
1126	struct ieee80211com *ic = arg;
1127	struct ifnet *parent = ic->ic_ifp;
1128
1129	ic->ic_update_mcast(parent);
1130}
1131
1132static void
1133update_promisc(void *arg, int npending)
1134{
1135	struct ieee80211com *ic = arg;
1136	struct ifnet *parent = ic->ic_ifp;
1137
1138	ic->ic_update_promisc(parent);
1139}
1140
1141static void
1142update_channel(void *arg, int npending)
1143{
1144	struct ieee80211com *ic = arg;
1145
1146	ic->ic_set_channel(ic);
1147	ieee80211_radiotap_chan_change(ic);
1148}
1149
1150/*
1151 * Block until the parent is in a known state.  This is
1152 * used after any operations that dispatch a task (e.g.
1153 * to auto-configure the parent device up/down).
1154 */
1155void
1156ieee80211_waitfor_parent(struct ieee80211com *ic)
1157{
1158	taskqueue_block(ic->ic_tq);
1159	ieee80211_draintask(ic, &ic->ic_parent_task);
1160	ieee80211_draintask(ic, &ic->ic_mcast_task);
1161	ieee80211_draintask(ic, &ic->ic_promisc_task);
1162	ieee80211_draintask(ic, &ic->ic_chan_task);
1163	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1164	taskqueue_unblock(ic->ic_tq);
1165}
1166
1167/*
1168 * Start a vap running.  If this is the first vap to be
1169 * set running on the underlying device then we
1170 * automatically bring the device up.
1171 */
1172void
1173ieee80211_start_locked(struct ieee80211vap *vap)
1174{
1175	struct ifnet *ifp = vap->iv_ifp;
1176	struct ieee80211com *ic = vap->iv_ic;
1177	struct ifnet *parent = ic->ic_ifp;
1178
1179	IEEE80211_LOCK_ASSERT(ic);
1180
1181	IEEE80211_DPRINTF(vap,
1182		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1183		"start running, %d vaps running\n", ic->ic_nrunning);
1184
1185	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1186		/*
1187		 * Mark us running.  Note that it's ok to do this first;
1188		 * if we need to bring the parent device up we defer that
1189		 * to avoid dropping the com lock.  We expect the device
1190		 * to respond to being marked up by calling back into us
1191		 * through ieee80211_start_all at which point we'll come
1192		 * back in here and complete the work.
1193		 */
1194		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1195		/*
1196		 * We are not running; if this we are the first vap
1197		 * to be brought up auto-up the parent if necessary.
1198		 */
1199		if (ic->ic_nrunning++ == 0 &&
1200		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1201			IEEE80211_DPRINTF(vap,
1202			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1203			    "%s: up parent %s\n", __func__, parent->if_xname);
1204			parent->if_flags |= IFF_UP;
1205			ieee80211_runtask(ic, &ic->ic_parent_task);
1206			return;
1207		}
1208	}
1209	/*
1210	 * If the parent is up and running, then kick the
1211	 * 802.11 state machine as appropriate.
1212	 */
1213	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1214	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1215		if (vap->iv_opmode == IEEE80211_M_STA) {
1216#if 0
1217			/* XXX bypasses scan too easily; disable for now */
1218			/*
1219			 * Try to be intelligent about clocking the state
1220			 * machine.  If we're currently in RUN state then
1221			 * we should be able to apply any new state/parameters
1222			 * simply by re-associating.  Otherwise we need to
1223			 * re-scan to select an appropriate ap.
1224			 */
1225			if (vap->iv_state >= IEEE80211_S_RUN)
1226				ieee80211_new_state_locked(vap,
1227				    IEEE80211_S_ASSOC, 1);
1228			else
1229#endif
1230				ieee80211_new_state_locked(vap,
1231				    IEEE80211_S_SCAN, 0);
1232		} else {
1233			/*
1234			 * For monitor+wds mode there's nothing to do but
1235			 * start running.  Otherwise if this is the first
1236			 * vap to be brought up, start a scan which may be
1237			 * preempted if the station is locked to a particular
1238			 * channel.
1239			 */
1240			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1241			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1242			    vap->iv_opmode == IEEE80211_M_WDS)
1243				ieee80211_new_state_locked(vap,
1244				    IEEE80211_S_RUN, -1);
1245			else
1246				ieee80211_new_state_locked(vap,
1247				    IEEE80211_S_SCAN, 0);
1248		}
1249	}
1250}
1251
1252/*
1253 * Start a single vap.
1254 */
1255void
1256ieee80211_init(void *arg)
1257{
1258	struct ieee80211vap *vap = arg;
1259
1260	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1261	    "%s\n", __func__);
1262
1263	IEEE80211_LOCK(vap->iv_ic);
1264	ieee80211_start_locked(vap);
1265	IEEE80211_UNLOCK(vap->iv_ic);
1266}
1267
1268/*
1269 * Start all runnable vap's on a device.
1270 */
1271void
1272ieee80211_start_all(struct ieee80211com *ic)
1273{
1274	struct ieee80211vap *vap;
1275
1276	IEEE80211_LOCK(ic);
1277	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1278		struct ifnet *ifp = vap->iv_ifp;
1279		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1280			ieee80211_start_locked(vap);
1281	}
1282	IEEE80211_UNLOCK(ic);
1283}
1284
1285/*
1286 * Stop a vap.  We force it down using the state machine
1287 * then mark it's ifnet not running.  If this is the last
1288 * vap running on the underlying device then we close it
1289 * too to insure it will be properly initialized when the
1290 * next vap is brought up.
1291 */
1292void
1293ieee80211_stop_locked(struct ieee80211vap *vap)
1294{
1295	struct ieee80211com *ic = vap->iv_ic;
1296	struct ifnet *ifp = vap->iv_ifp;
1297	struct ifnet *parent = ic->ic_ifp;
1298
1299	IEEE80211_LOCK_ASSERT(ic);
1300
1301	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1302	    "stop running, %d vaps running\n", ic->ic_nrunning);
1303
1304	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1305	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1306		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1307		if (--ic->ic_nrunning == 0 &&
1308		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1309			IEEE80211_DPRINTF(vap,
1310			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1311			    "down parent %s\n", parent->if_xname);
1312			parent->if_flags &= ~IFF_UP;
1313			ieee80211_runtask(ic, &ic->ic_parent_task);
1314		}
1315	}
1316}
1317
1318void
1319ieee80211_stop(struct ieee80211vap *vap)
1320{
1321	struct ieee80211com *ic = vap->iv_ic;
1322
1323	IEEE80211_LOCK(ic);
1324	ieee80211_stop_locked(vap);
1325	IEEE80211_UNLOCK(ic);
1326}
1327
1328/*
1329 * Stop all vap's running on a device.
1330 */
1331void
1332ieee80211_stop_all(struct ieee80211com *ic)
1333{
1334	struct ieee80211vap *vap;
1335
1336	IEEE80211_LOCK(ic);
1337	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1338		struct ifnet *ifp = vap->iv_ifp;
1339		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1340			ieee80211_stop_locked(vap);
1341	}
1342	IEEE80211_UNLOCK(ic);
1343
1344	ieee80211_waitfor_parent(ic);
1345}
1346
1347/*
1348 * Stop all vap's running on a device and arrange
1349 * for those that were running to be resumed.
1350 */
1351void
1352ieee80211_suspend_all(struct ieee80211com *ic)
1353{
1354	struct ieee80211vap *vap;
1355
1356	IEEE80211_LOCK(ic);
1357	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1358		struct ifnet *ifp = vap->iv_ifp;
1359		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1360			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1361			ieee80211_stop_locked(vap);
1362		}
1363	}
1364	IEEE80211_UNLOCK(ic);
1365
1366	ieee80211_waitfor_parent(ic);
1367}
1368
1369/*
1370 * Start all vap's marked for resume.
1371 */
1372void
1373ieee80211_resume_all(struct ieee80211com *ic)
1374{
1375	struct ieee80211vap *vap;
1376
1377	IEEE80211_LOCK(ic);
1378	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1379		struct ifnet *ifp = vap->iv_ifp;
1380		if (!IFNET_IS_UP_RUNNING(ifp) &&
1381		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1382			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1383			ieee80211_start_locked(vap);
1384		}
1385	}
1386	IEEE80211_UNLOCK(ic);
1387}
1388
1389void
1390ieee80211_beacon_miss(struct ieee80211com *ic)
1391{
1392	IEEE80211_LOCK(ic);
1393	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1394		/* Process in a taskq, the handler may reenter the driver */
1395		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1396	}
1397	IEEE80211_UNLOCK(ic);
1398}
1399
1400static void
1401beacon_miss(void *arg, int npending)
1402{
1403	struct ieee80211com *ic = arg;
1404	struct ieee80211vap *vap;
1405
1406	/* XXX locking */
1407	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1408		/*
1409		 * We only pass events through for sta vap's in RUN state;
1410		 * may be too restrictive but for now this saves all the
1411		 * handlers duplicating these checks.
1412		 */
1413		if (vap->iv_opmode == IEEE80211_M_STA &&
1414		    vap->iv_state >= IEEE80211_S_RUN &&
1415		    vap->iv_bmiss != NULL)
1416			vap->iv_bmiss(vap);
1417	}
1418}
1419
1420static void
1421beacon_swmiss(void *arg, int npending)
1422{
1423	struct ieee80211vap *vap = arg;
1424
1425	if (vap->iv_state != IEEE80211_S_RUN)
1426		return;
1427
1428	/* XXX Call multiple times if npending > zero? */
1429	vap->iv_bmiss(vap);
1430}
1431
1432/*
1433 * Software beacon miss handling.  Check if any beacons
1434 * were received in the last period.  If not post a
1435 * beacon miss; otherwise reset the counter.
1436 */
1437void
1438ieee80211_swbmiss(void *arg)
1439{
1440	struct ieee80211vap *vap = arg;
1441	struct ieee80211com *ic = vap->iv_ic;
1442
1443	/* XXX sleep state? */
1444	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1445	    ("wrong state %d", vap->iv_state));
1446
1447	if (ic->ic_flags & IEEE80211_F_SCAN) {
1448		/*
1449		 * If scanning just ignore and reset state.  If we get a
1450		 * bmiss after coming out of scan because we haven't had
1451		 * time to receive a beacon then we should probe the AP
1452		 * before posting a real bmiss (unless iv_bmiss_max has
1453		 * been artifiically lowered).  A cleaner solution might
1454		 * be to disable the timer on scan start/end but to handle
1455		 * case of multiple sta vap's we'd need to disable the
1456		 * timers of all affected vap's.
1457		 */
1458		vap->iv_swbmiss_count = 0;
1459	} else if (vap->iv_swbmiss_count == 0) {
1460		if (vap->iv_bmiss != NULL)
1461			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1462	} else
1463		vap->iv_swbmiss_count = 0;
1464	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1465		ieee80211_swbmiss, vap);
1466}
1467
1468/*
1469 * Start an 802.11h channel switch.  We record the parameters,
1470 * mark the operation pending, notify each vap through the
1471 * beacon update mechanism so it can update the beacon frame
1472 * contents, and then switch vap's to CSA state to block outbound
1473 * traffic.  Devices that handle CSA directly can use the state
1474 * switch to do the right thing so long as they call
1475 * ieee80211_csa_completeswitch when it's time to complete the
1476 * channel change.  Devices that depend on the net80211 layer can
1477 * use ieee80211_beacon_update to handle the countdown and the
1478 * channel switch.
1479 */
1480void
1481ieee80211_csa_startswitch(struct ieee80211com *ic,
1482	struct ieee80211_channel *c, int mode, int count)
1483{
1484	struct ieee80211vap *vap;
1485
1486	IEEE80211_LOCK_ASSERT(ic);
1487
1488	ic->ic_csa_newchan = c;
1489	ic->ic_csa_mode = mode;
1490	ic->ic_csa_count = count;
1491	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1492	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1493		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1494		    vap->iv_opmode == IEEE80211_M_IBSS ||
1495		    vap->iv_opmode == IEEE80211_M_MBSS)
1496			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1497		/* switch to CSA state to block outbound traffic */
1498		if (vap->iv_state == IEEE80211_S_RUN)
1499			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1500	}
1501	ieee80211_notify_csa(ic, c, mode, count);
1502}
1503
1504static void
1505csa_completeswitch(struct ieee80211com *ic)
1506{
1507	struct ieee80211vap *vap;
1508
1509	ic->ic_csa_newchan = NULL;
1510	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1511
1512	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1513		if (vap->iv_state == IEEE80211_S_CSA)
1514			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1515}
1516
1517/*
1518 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1519 * We clear state and move all vap's in CSA state to RUN state
1520 * so they can again transmit.
1521 */
1522void
1523ieee80211_csa_completeswitch(struct ieee80211com *ic)
1524{
1525	IEEE80211_LOCK_ASSERT(ic);
1526
1527	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1528
1529	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1530	csa_completeswitch(ic);
1531}
1532
1533/*
1534 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1535 * We clear state and move all vap's in CSA state to RUN state
1536 * so they can again transmit.
1537 */
1538void
1539ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1540{
1541	IEEE80211_LOCK_ASSERT(ic);
1542
1543	csa_completeswitch(ic);
1544}
1545
1546/*
1547 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1548 * We clear state and move all vap's in CAC state to RUN state.
1549 */
1550void
1551ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1552{
1553	struct ieee80211com *ic = vap0->iv_ic;
1554	struct ieee80211vap *vap;
1555
1556	IEEE80211_LOCK(ic);
1557	/*
1558	 * Complete CAC state change for lead vap first; then
1559	 * clock all the other vap's waiting.
1560	 */
1561	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1562	    ("wrong state %d", vap0->iv_state));
1563	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1564
1565	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1566		if (vap->iv_state == IEEE80211_S_CAC)
1567			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1568	IEEE80211_UNLOCK(ic);
1569}
1570
1571/*
1572 * Force all vap's other than the specified vap to the INIT state
1573 * and mark them as waiting for a scan to complete.  These vaps
1574 * will be brought up when the scan completes and the scanning vap
1575 * reaches RUN state by wakeupwaiting.
1576 */
1577static void
1578markwaiting(struct ieee80211vap *vap0)
1579{
1580	struct ieee80211com *ic = vap0->iv_ic;
1581	struct ieee80211vap *vap;
1582
1583	IEEE80211_LOCK_ASSERT(ic);
1584
1585	/*
1586	 * A vap list entry can not disappear since we are running on the
1587	 * taskqueue and a vap destroy will queue and drain another state
1588	 * change task.
1589	 */
1590	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1591		if (vap == vap0)
1592			continue;
1593		if (vap->iv_state != IEEE80211_S_INIT) {
1594			/* NB: iv_newstate may drop the lock */
1595			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1596			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1597		}
1598	}
1599}
1600
1601/*
1602 * Wakeup all vap's waiting for a scan to complete.  This is the
1603 * companion to markwaiting (above) and is used to coordinate
1604 * multiple vaps scanning.
1605 * This is called from the state taskqueue.
1606 */
1607static void
1608wakeupwaiting(struct ieee80211vap *vap0)
1609{
1610	struct ieee80211com *ic = vap0->iv_ic;
1611	struct ieee80211vap *vap;
1612
1613	IEEE80211_LOCK_ASSERT(ic);
1614
1615	/*
1616	 * A vap list entry can not disappear since we are running on the
1617	 * taskqueue and a vap destroy will queue and drain another state
1618	 * change task.
1619	 */
1620	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1621		if (vap == vap0)
1622			continue;
1623		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1624			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1625			/* NB: sta's cannot go INIT->RUN */
1626			/* NB: iv_newstate may drop the lock */
1627			vap->iv_newstate(vap,
1628			    vap->iv_opmode == IEEE80211_M_STA ?
1629			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1630		}
1631	}
1632}
1633
1634/*
1635 * Handle post state change work common to all operating modes.
1636 */
1637static void
1638ieee80211_newstate_cb(void *xvap, int npending)
1639{
1640	struct ieee80211vap *vap = xvap;
1641	struct ieee80211com *ic = vap->iv_ic;
1642	enum ieee80211_state nstate, ostate;
1643	int arg, rc;
1644
1645	IEEE80211_LOCK(ic);
1646	nstate = vap->iv_nstate;
1647	arg = vap->iv_nstate_arg;
1648
1649	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1650		/*
1651		 * We have been requested to drop back to the INIT before
1652		 * proceeding to the new state.
1653		 */
1654		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1655		    "%s: %s -> %s arg %d\n", __func__,
1656		    ieee80211_state_name[vap->iv_state],
1657		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1658		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1659		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1660	}
1661
1662	ostate = vap->iv_state;
1663	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1664		/*
1665		 * SCAN was forced; e.g. on beacon miss.  Force other running
1666		 * vap's to INIT state and mark them as waiting for the scan to
1667		 * complete.  This insures they don't interfere with our
1668		 * scanning.  Since we are single threaded the vaps can not
1669		 * transition again while we are executing.
1670		 *
1671		 * XXX not always right, assumes ap follows sta
1672		 */
1673		markwaiting(vap);
1674	}
1675	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1676	    "%s: %s -> %s arg %d\n", __func__,
1677	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1678
1679	rc = vap->iv_newstate(vap, nstate, arg);
1680	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1681	if (rc != 0) {
1682		/* State transition failed */
1683		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1684		KASSERT(nstate != IEEE80211_S_INIT,
1685		    ("INIT state change failed"));
1686		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1687		    "%s: %s returned error %d\n", __func__,
1688		    ieee80211_state_name[nstate], rc);
1689		goto done;
1690	}
1691
1692	/* No actual transition, skip post processing */
1693	if (ostate == nstate)
1694		goto done;
1695
1696	if (nstate == IEEE80211_S_RUN) {
1697		/*
1698		 * OACTIVE may be set on the vap if the upper layer
1699		 * tried to transmit (e.g. IPv6 NDP) before we reach
1700		 * RUN state.  Clear it and restart xmit.
1701		 *
1702		 * Note this can also happen as a result of SLEEP->RUN
1703		 * (i.e. coming out of power save mode).
1704		 */
1705		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1706		if_start(vap->iv_ifp);
1707
1708		/* bring up any vaps waiting on us */
1709		wakeupwaiting(vap);
1710	} else if (nstate == IEEE80211_S_INIT) {
1711		/*
1712		 * Flush the scan cache if we did the last scan (XXX?)
1713		 * and flush any frames on send queues from this vap.
1714		 * Note the mgt q is used only for legacy drivers and
1715		 * will go away shortly.
1716		 */
1717		ieee80211_scan_flush(vap);
1718
1719		/* XXX NB: cast for altq */
1720		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1721	}
1722done:
1723	IEEE80211_UNLOCK(ic);
1724}
1725
1726/*
1727 * Public interface for initiating a state machine change.
1728 * This routine single-threads the request and coordinates
1729 * the scheduling of multiple vaps for the purpose of selecting
1730 * an operating channel.  Specifically the following scenarios
1731 * are handled:
1732 * o only one vap can be selecting a channel so on transition to
1733 *   SCAN state if another vap is already scanning then
1734 *   mark the caller for later processing and return without
1735 *   doing anything (XXX? expectations by caller of synchronous operation)
1736 * o only one vap can be doing CAC of a channel so on transition to
1737 *   CAC state if another vap is already scanning for radar then
1738 *   mark the caller for later processing and return without
1739 *   doing anything (XXX? expectations by caller of synchronous operation)
1740 * o if another vap is already running when a request is made
1741 *   to SCAN then an operating channel has been chosen; bypass
1742 *   the scan and just join the channel
1743 *
1744 * Note that the state change call is done through the iv_newstate
1745 * method pointer so any driver routine gets invoked.  The driver
1746 * will normally call back into operating mode-specific
1747 * ieee80211_newstate routines (below) unless it needs to completely
1748 * bypass the state machine (e.g. because the firmware has it's
1749 * own idea how things should work).  Bypassing the net80211 layer
1750 * is usually a mistake and indicates lack of proper integration
1751 * with the net80211 layer.
1752 */
1753static int
1754ieee80211_new_state_locked(struct ieee80211vap *vap,
1755	enum ieee80211_state nstate, int arg)
1756{
1757	struct ieee80211com *ic = vap->iv_ic;
1758	struct ieee80211vap *vp;
1759	enum ieee80211_state ostate;
1760	int nrunning, nscanning;
1761
1762	IEEE80211_LOCK_ASSERT(ic);
1763
1764	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1765		if (vap->iv_nstate == IEEE80211_S_INIT) {
1766			/*
1767			 * XXX The vap is being stopped, do no allow any other
1768			 * state changes until this is completed.
1769			 */
1770			return -1;
1771		} else if (vap->iv_state != vap->iv_nstate) {
1772#if 0
1773			/* Warn if the previous state hasn't completed. */
1774			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1775			    "%s: pending %s -> %s transition lost\n", __func__,
1776			    ieee80211_state_name[vap->iv_state],
1777			    ieee80211_state_name[vap->iv_nstate]);
1778#else
1779			/* XXX temporarily enable to identify issues */
1780			if_printf(vap->iv_ifp,
1781			    "%s: pending %s -> %s transition lost\n",
1782			    __func__, ieee80211_state_name[vap->iv_state],
1783			    ieee80211_state_name[vap->iv_nstate]);
1784#endif
1785		}
1786	}
1787
1788	nrunning = nscanning = 0;
1789	/* XXX can track this state instead of calculating */
1790	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1791		if (vp != vap) {
1792			if (vp->iv_state >= IEEE80211_S_RUN)
1793				nrunning++;
1794			/* XXX doesn't handle bg scan */
1795			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1796			else if (vp->iv_state > IEEE80211_S_INIT)
1797				nscanning++;
1798		}
1799	}
1800	ostate = vap->iv_state;
1801	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1802	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1803	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1804	    nrunning, nscanning);
1805	switch (nstate) {
1806	case IEEE80211_S_SCAN:
1807		if (ostate == IEEE80211_S_INIT) {
1808			/*
1809			 * INIT -> SCAN happens on initial bringup.
1810			 */
1811			KASSERT(!(nscanning && nrunning),
1812			    ("%d scanning and %d running", nscanning, nrunning));
1813			if (nscanning) {
1814				/*
1815				 * Someone is scanning, defer our state
1816				 * change until the work has completed.
1817				 */
1818				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1819				    "%s: defer %s -> %s\n",
1820				    __func__, ieee80211_state_name[ostate],
1821				    ieee80211_state_name[nstate]);
1822				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1823				return 0;
1824			}
1825			if (nrunning) {
1826				/*
1827				 * Someone is operating; just join the channel
1828				 * they have chosen.
1829				 */
1830				/* XXX kill arg? */
1831				/* XXX check each opmode, adhoc? */
1832				if (vap->iv_opmode == IEEE80211_M_STA)
1833					nstate = IEEE80211_S_SCAN;
1834				else
1835					nstate = IEEE80211_S_RUN;
1836#ifdef IEEE80211_DEBUG
1837				if (nstate != IEEE80211_S_SCAN) {
1838					IEEE80211_DPRINTF(vap,
1839					    IEEE80211_MSG_STATE,
1840					    "%s: override, now %s -> %s\n",
1841					    __func__,
1842					    ieee80211_state_name[ostate],
1843					    ieee80211_state_name[nstate]);
1844				}
1845#endif
1846			}
1847		}
1848		break;
1849	case IEEE80211_S_RUN:
1850		if (vap->iv_opmode == IEEE80211_M_WDS &&
1851		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1852		    nscanning) {
1853			/*
1854			 * Legacy WDS with someone else scanning; don't
1855			 * go online until that completes as we should
1856			 * follow the other vap to the channel they choose.
1857			 */
1858			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1859			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1860			     ieee80211_state_name[ostate],
1861			     ieee80211_state_name[nstate]);
1862			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1863			return 0;
1864		}
1865		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1866		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1867		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1868		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1869			/*
1870			 * This is a DFS channel, transition to CAC state
1871			 * instead of RUN.  This allows us to initiate
1872			 * Channel Availability Check (CAC) as specified
1873			 * by 11h/DFS.
1874			 */
1875			nstate = IEEE80211_S_CAC;
1876			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1877			     "%s: override %s -> %s (DFS)\n", __func__,
1878			     ieee80211_state_name[ostate],
1879			     ieee80211_state_name[nstate]);
1880		}
1881		break;
1882	case IEEE80211_S_INIT:
1883		/* cancel any scan in progress */
1884		ieee80211_cancel_scan(vap);
1885		if (ostate == IEEE80211_S_INIT ) {
1886			/* XXX don't believe this */
1887			/* INIT -> INIT. nothing to do */
1888			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1889		}
1890		/* fall thru... */
1891	default:
1892		break;
1893	}
1894	/* defer the state change to a thread */
1895	vap->iv_nstate = nstate;
1896	vap->iv_nstate_arg = arg;
1897	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1898	ieee80211_runtask(ic, &vap->iv_nstate_task);
1899	return EINPROGRESS;
1900}
1901
1902int
1903ieee80211_new_state(struct ieee80211vap *vap,
1904	enum ieee80211_state nstate, int arg)
1905{
1906	struct ieee80211com *ic = vap->iv_ic;
1907	int rc;
1908
1909	IEEE80211_LOCK(ic);
1910	rc = ieee80211_new_state_locked(vap, nstate, arg);
1911	IEEE80211_UNLOCK(ic);
1912	return rc;
1913}
1914