1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * Copyright (c) 2012 IEEE
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/net80211/ieee80211_proto.c 344225 2019-02-17 03:21:42Z avos $");
30
31/*
32 * IEEE 802.11 protocol support.
33 */
34
35#include "opt_inet.h"
36#include "opt_wlan.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42
43#include <sys/socket.h>
44#include <sys/sockio.h>
45
46#include <net/if.h>
47#include <net/if_var.h>
48#include <net/if_media.h>
49#include <net/ethernet.h>		/* XXX for ether_sprintf */
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_adhoc.h>
53#include <net80211/ieee80211_sta.h>
54#include <net80211/ieee80211_hostap.h>
55#include <net80211/ieee80211_wds.h>
56#ifdef IEEE80211_SUPPORT_MESH
57#include <net80211/ieee80211_mesh.h>
58#endif
59#include <net80211/ieee80211_monitor.h>
60#include <net80211/ieee80211_input.h>
61
62/* XXX tunables */
63#define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
64#define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
65
66const char *mgt_subtype_name[] = {
67	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
68	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
69	"beacon",	"atim",		"disassoc",	"auth",
70	"deauth",	"action",	"action_noack",	"reserved#15"
71};
72const char *ctl_subtype_name[] = {
73	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
74	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
75	"bar",		"ba",		"ps_poll",	"rts",
76	"cts",		"ack",		"cf_end",	"cf_end_ack"
77};
78const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
79	"IBSS",		/* IEEE80211_M_IBSS */
80	"STA",		/* IEEE80211_M_STA */
81	"WDS",		/* IEEE80211_M_WDS */
82	"AHDEMO",	/* IEEE80211_M_AHDEMO */
83	"HOSTAP",	/* IEEE80211_M_HOSTAP */
84	"MONITOR",	/* IEEE80211_M_MONITOR */
85	"MBSS"		/* IEEE80211_M_MBSS */
86};
87const char *ieee80211_state_name[IEEE80211_S_MAX] = {
88	"INIT",		/* IEEE80211_S_INIT */
89	"SCAN",		/* IEEE80211_S_SCAN */
90	"AUTH",		/* IEEE80211_S_AUTH */
91	"ASSOC",	/* IEEE80211_S_ASSOC */
92	"CAC",		/* IEEE80211_S_CAC */
93	"RUN",		/* IEEE80211_S_RUN */
94	"CSA",		/* IEEE80211_S_CSA */
95	"SLEEP",	/* IEEE80211_S_SLEEP */
96};
97const char *ieee80211_wme_acnames[] = {
98	"WME_AC_BE",
99	"WME_AC_BK",
100	"WME_AC_VI",
101	"WME_AC_VO",
102	"WME_UPSD",
103};
104
105
106/*
107 * Reason code descriptions were (mostly) obtained from
108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109 */
110const char *
111ieee80211_reason_to_string(uint16_t reason)
112{
113	switch (reason) {
114	case IEEE80211_REASON_UNSPECIFIED:
115		return ("unspecified");
116	case IEEE80211_REASON_AUTH_EXPIRE:
117		return ("previous authentication is expired");
118	case IEEE80211_REASON_AUTH_LEAVE:
119		return ("sending STA is leaving/has left IBSS or ESS");
120	case IEEE80211_REASON_ASSOC_EXPIRE:
121		return ("disassociated due to inactivity");
122	case IEEE80211_REASON_ASSOC_TOOMANY:
123		return ("too many associated STAs");
124	case IEEE80211_REASON_NOT_AUTHED:
125		return ("class 2 frame received from nonauthenticated STA");
126	case IEEE80211_REASON_NOT_ASSOCED:
127		return ("class 3 frame received from nonassociated STA");
128	case IEEE80211_REASON_ASSOC_LEAVE:
129		return ("sending STA is leaving/has left BSS");
130	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131		return ("STA requesting (re)association is not authenticated");
132	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133		return ("information in the Power Capability element is "
134			"unacceptable");
135	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136		return ("information in the Supported Channels element is "
137			"unacceptable");
138	case IEEE80211_REASON_IE_INVALID:
139		return ("invalid element");
140	case IEEE80211_REASON_MIC_FAILURE:
141		return ("MIC failure");
142	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143		return ("4-Way handshake timeout");
144	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145		return ("group key update timeout");
146	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147		return ("element in 4-Way handshake different from "
148			"(re)association request/probe response/beacon frame");
149	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150		return ("invalid group cipher");
151	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152		return ("invalid pairwise cipher");
153	case IEEE80211_REASON_AKMP_INVALID:
154		return ("invalid AKMP");
155	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156		return ("unsupported version in RSN IE");
157	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158		return ("invalid capabilities in RSN IE");
159	case IEEE80211_REASON_802_1X_AUTH_FAILED:
160		return ("IEEE 802.1X authentication failed");
161	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162		return ("cipher suite rejected because of the security "
163			"policy");
164	case IEEE80211_REASON_UNSPECIFIED_QOS:
165		return ("unspecified (QoS-related)");
166	case IEEE80211_REASON_INSUFFICIENT_BW:
167		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168	case IEEE80211_REASON_TOOMANY_FRAMES:
169		return ("too many frames need to be acknowledged");
170	case IEEE80211_REASON_OUTSIDE_TXOP:
171		return ("STA is transmitting outside the limits of its TXOPs");
172	case IEEE80211_REASON_LEAVING_QBSS:
173		return ("requested from peer STA (the STA is "
174			"resetting/leaving the BSS)");
175	case IEEE80211_REASON_BAD_MECHANISM:
176		return ("requested from peer STA (it does not want to use "
177			"the mechanism)");
178	case IEEE80211_REASON_SETUP_NEEDED:
179		return ("requested from peer STA (setup is required for the "
180			"used mechanism)");
181	case IEEE80211_REASON_TIMEOUT:
182		return ("requested from peer STA (timeout)");
183	case IEEE80211_REASON_PEER_LINK_CANCELED:
184		return ("SME cancels the mesh peering instance (not related "
185			"to the maximum number of peer mesh STAs)");
186	case IEEE80211_REASON_MESH_MAX_PEERS:
187		return ("maximum number of peer mesh STAs was reached");
188	case IEEE80211_REASON_MESH_CPVIOLATION:
189		return ("the received information violates the Mesh "
190			"Configuration policy configured in the mesh STA "
191			"profile");
192	case IEEE80211_REASON_MESH_CLOSE_RCVD:
193		return ("the mesh STA has received a Mesh Peering Close "
194			"message requesting to close the mesh peering");
195	case IEEE80211_REASON_MESH_MAX_RETRIES:
196		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197			"Peering Open messages, without receiving a Mesh "
198			"Peering Confirm message");
199	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200		return ("the confirmTimer for the mesh peering instance times "
201			"out");
202	case IEEE80211_REASON_MESH_INVALID_GTK:
203		return ("the mesh STA fails to unwrap the GTK or the values "
204			"in the wrapped contents do not match");
205	case IEEE80211_REASON_MESH_INCONS_PARAMS:
206		return ("the mesh STA receives inconsistent information about "
207			"the mesh parameters between Mesh Peering Management "
208			"frames");
209	case IEEE80211_REASON_MESH_INVALID_SECURITY:
210		return ("the mesh STA fails the authenticated mesh peering "
211			"exchange because due to failure in selecting "
212			"pairwise/group ciphersuite");
213	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214		return ("the mesh STA does not have proxy information for "
215			"this external destination");
216	case IEEE80211_REASON_MESH_PERR_NO_FI:
217		return ("the mesh STA does not have forwarding information "
218			"for this destination");
219	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220		return ("the mesh STA determines that the link to the next "
221			"hop of an active path in its forwarding information "
222			"is no longer usable");
223	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224		return ("the MAC address of the STA already exists in the "
225			"mesh BSS");
226	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227		return ("the mesh STA performs channel switch to meet "
228			"regulatory requirements");
229	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230		return ("the mesh STA performs channel switch with "
231			"unspecified reason");
232	default:
233		return ("reserved/unknown");
234	}
235}
236
237static void beacon_miss(void *, int);
238static void beacon_swmiss(void *, int);
239static void parent_updown(void *, int);
240static void update_mcast(void *, int);
241static void update_promisc(void *, int);
242static void update_channel(void *, int);
243static void update_chw(void *, int);
244static void update_wme(void *, int);
245static void restart_vaps(void *, int);
246static void ieee80211_newstate_cb(void *, int);
247
248static int
249null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
250	const struct ieee80211_bpf_params *params)
251{
252
253	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
254	m_freem(m);
255	return ENETDOWN;
256}
257
258void
259ieee80211_proto_attach(struct ieee80211com *ic)
260{
261	uint8_t hdrlen;
262
263	/* override the 802.3 setting */
264	hdrlen = ic->ic_headroom
265		+ sizeof(struct ieee80211_qosframe_addr4)
266		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
267		+ IEEE80211_WEP_EXTIVLEN;
268	/* XXX no way to recalculate on ifdetach */
269	if (ALIGN(hdrlen) > max_linkhdr) {
270		/* XXX sanity check... */
271		max_linkhdr = ALIGN(hdrlen);
272		max_hdr = max_linkhdr + max_protohdr;
273		max_datalen = MHLEN - max_hdr;
274	}
275	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
276
277	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
278	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
279	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
280	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
281	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
282	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
283	TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic);
284	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
285
286	ic->ic_wme.wme_hipri_switch_hysteresis =
287		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
288
289	/* initialize management frame handlers */
290	ic->ic_send_mgmt = ieee80211_send_mgmt;
291	ic->ic_raw_xmit = null_raw_xmit;
292
293	ieee80211_adhoc_attach(ic);
294	ieee80211_sta_attach(ic);
295	ieee80211_wds_attach(ic);
296	ieee80211_hostap_attach(ic);
297#ifdef IEEE80211_SUPPORT_MESH
298	ieee80211_mesh_attach(ic);
299#endif
300	ieee80211_monitor_attach(ic);
301}
302
303void
304ieee80211_proto_detach(struct ieee80211com *ic)
305{
306	ieee80211_monitor_detach(ic);
307#ifdef IEEE80211_SUPPORT_MESH
308	ieee80211_mesh_detach(ic);
309#endif
310	ieee80211_hostap_detach(ic);
311	ieee80211_wds_detach(ic);
312	ieee80211_adhoc_detach(ic);
313	ieee80211_sta_detach(ic);
314}
315
316static void
317null_update_beacon(struct ieee80211vap *vap, int item)
318{
319}
320
321void
322ieee80211_proto_vattach(struct ieee80211vap *vap)
323{
324	struct ieee80211com *ic = vap->iv_ic;
325	struct ifnet *ifp = vap->iv_ifp;
326	int i;
327
328	/* override the 802.3 setting */
329	ifp->if_hdrlen = ic->ic_headroom
330                + sizeof(struct ieee80211_qosframe_addr4)
331                + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
332                + IEEE80211_WEP_EXTIVLEN;
333
334	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
335	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
336	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
337	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
338	callout_init(&vap->iv_mgtsend, 1);
339	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
340	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
341	/*
342	 * Install default tx rate handling: no fixed rate, lowest
343	 * supported rate for mgmt and multicast frames.  Default
344	 * max retry count.  These settings can be changed by the
345	 * driver and/or user applications.
346	 */
347	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
348		if (isclr(ic->ic_modecaps, i))
349			continue;
350
351		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
352
353		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
354
355		/*
356		 * Setting the management rate to MCS 0 assumes that the
357		 * BSS Basic rate set is empty and the BSS Basic MCS set
358		 * is not.
359		 *
360		 * Since we're not checking this, default to the lowest
361		 * defined rate for this mode.
362		 *
363		 * At least one 11n AP (DLINK DIR-825) is reported to drop
364		 * some MCS management traffic (eg BA response frames.)
365		 *
366		 * See also: 9.6.0 of the 802.11n-2009 specification.
367		 */
368#ifdef	NOTYET
369		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
370			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
371			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
372		} else {
373			vap->iv_txparms[i].mgmtrate =
374			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
375			vap->iv_txparms[i].mcastrate =
376			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
377		}
378#endif
379		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
380		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
381		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
382	}
383	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
384
385	vap->iv_update_beacon = null_update_beacon;
386	vap->iv_deliver_data = ieee80211_deliver_data;
387
388	/* attach support for operating mode */
389	ic->ic_vattach[vap->iv_opmode](vap);
390}
391
392void
393ieee80211_proto_vdetach(struct ieee80211vap *vap)
394{
395#define	FREEAPPIE(ie) do { \
396	if (ie != NULL) \
397		IEEE80211_FREE(ie, M_80211_NODE_IE); \
398} while (0)
399	/*
400	 * Detach operating mode module.
401	 */
402	if (vap->iv_opdetach != NULL)
403		vap->iv_opdetach(vap);
404	/*
405	 * This should not be needed as we detach when reseting
406	 * the state but be conservative here since the
407	 * authenticator may do things like spawn kernel threads.
408	 */
409	if (vap->iv_auth->ia_detach != NULL)
410		vap->iv_auth->ia_detach(vap);
411	/*
412	 * Detach any ACL'ator.
413	 */
414	if (vap->iv_acl != NULL)
415		vap->iv_acl->iac_detach(vap);
416
417	FREEAPPIE(vap->iv_appie_beacon);
418	FREEAPPIE(vap->iv_appie_probereq);
419	FREEAPPIE(vap->iv_appie_proberesp);
420	FREEAPPIE(vap->iv_appie_assocreq);
421	FREEAPPIE(vap->iv_appie_assocresp);
422	FREEAPPIE(vap->iv_appie_wpa);
423#undef FREEAPPIE
424}
425
426/*
427 * Simple-minded authenticator module support.
428 */
429
430#define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
431/* XXX well-known names */
432static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
433	"wlan_internal",	/* IEEE80211_AUTH_NONE */
434	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
435	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
436	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
437	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
438	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
439};
440static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
441
442static const struct ieee80211_authenticator auth_internal = {
443	.ia_name		= "wlan_internal",
444	.ia_attach		= NULL,
445	.ia_detach		= NULL,
446	.ia_node_join		= NULL,
447	.ia_node_leave		= NULL,
448};
449
450/*
451 * Setup internal authenticators once; they are never unregistered.
452 */
453static void
454ieee80211_auth_setup(void)
455{
456	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
457	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
458	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
459}
460SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
461
462const struct ieee80211_authenticator *
463ieee80211_authenticator_get(int auth)
464{
465	if (auth >= IEEE80211_AUTH_MAX)
466		return NULL;
467	if (authenticators[auth] == NULL)
468		ieee80211_load_module(auth_modnames[auth]);
469	return authenticators[auth];
470}
471
472void
473ieee80211_authenticator_register(int type,
474	const struct ieee80211_authenticator *auth)
475{
476	if (type >= IEEE80211_AUTH_MAX)
477		return;
478	authenticators[type] = auth;
479}
480
481void
482ieee80211_authenticator_unregister(int type)
483{
484
485	if (type >= IEEE80211_AUTH_MAX)
486		return;
487	authenticators[type] = NULL;
488}
489
490/*
491 * Very simple-minded ACL module support.
492 */
493/* XXX just one for now */
494static	const struct ieee80211_aclator *acl = NULL;
495
496void
497ieee80211_aclator_register(const struct ieee80211_aclator *iac)
498{
499	printf("wlan: %s acl policy registered\n", iac->iac_name);
500	acl = iac;
501}
502
503void
504ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
505{
506	if (acl == iac)
507		acl = NULL;
508	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
509}
510
511const struct ieee80211_aclator *
512ieee80211_aclator_get(const char *name)
513{
514	if (acl == NULL)
515		ieee80211_load_module("wlan_acl");
516	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
517}
518
519void
520ieee80211_print_essid(const uint8_t *essid, int len)
521{
522	const uint8_t *p;
523	int i;
524
525	if (len > IEEE80211_NWID_LEN)
526		len = IEEE80211_NWID_LEN;
527	/* determine printable or not */
528	for (i = 0, p = essid; i < len; i++, p++) {
529		if (*p < ' ' || *p > 0x7e)
530			break;
531	}
532	if (i == len) {
533		printf("\"");
534		for (i = 0, p = essid; i < len; i++, p++)
535			printf("%c", *p);
536		printf("\"");
537	} else {
538		printf("0x");
539		for (i = 0, p = essid; i < len; i++, p++)
540			printf("%02x", *p);
541	}
542}
543
544void
545ieee80211_dump_pkt(struct ieee80211com *ic,
546	const uint8_t *buf, int len, int rate, int rssi)
547{
548	const struct ieee80211_frame *wh;
549	int i;
550
551	wh = (const struct ieee80211_frame *)buf;
552	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
553	case IEEE80211_FC1_DIR_NODS:
554		printf("NODS %s", ether_sprintf(wh->i_addr2));
555		printf("->%s", ether_sprintf(wh->i_addr1));
556		printf("(%s)", ether_sprintf(wh->i_addr3));
557		break;
558	case IEEE80211_FC1_DIR_TODS:
559		printf("TODS %s", ether_sprintf(wh->i_addr2));
560		printf("->%s", ether_sprintf(wh->i_addr3));
561		printf("(%s)", ether_sprintf(wh->i_addr1));
562		break;
563	case IEEE80211_FC1_DIR_FROMDS:
564		printf("FRDS %s", ether_sprintf(wh->i_addr3));
565		printf("->%s", ether_sprintf(wh->i_addr1));
566		printf("(%s)", ether_sprintf(wh->i_addr2));
567		break;
568	case IEEE80211_FC1_DIR_DSTODS:
569		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
570		printf("->%s", ether_sprintf(wh->i_addr3));
571		printf("(%s", ether_sprintf(wh->i_addr2));
572		printf("->%s)", ether_sprintf(wh->i_addr1));
573		break;
574	}
575	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
576	case IEEE80211_FC0_TYPE_DATA:
577		printf(" data");
578		break;
579	case IEEE80211_FC0_TYPE_MGT:
580		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
581		break;
582	default:
583		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
584		break;
585	}
586	if (IEEE80211_QOS_HAS_SEQ(wh)) {
587		const struct ieee80211_qosframe *qwh =
588			(const struct ieee80211_qosframe *)buf;
589		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
590			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
591	}
592	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
593		int off;
594
595		off = ieee80211_anyhdrspace(ic, wh);
596		printf(" WEP [IV %.02x %.02x %.02x",
597			buf[off+0], buf[off+1], buf[off+2]);
598		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
599			printf(" %.02x %.02x %.02x",
600				buf[off+4], buf[off+5], buf[off+6]);
601		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
602	}
603	if (rate >= 0)
604		printf(" %dM", rate / 2);
605	if (rssi >= 0)
606		printf(" +%d", rssi);
607	printf("\n");
608	if (len > 0) {
609		for (i = 0; i < len; i++) {
610			if ((i & 1) == 0)
611				printf(" ");
612			printf("%02x", buf[i]);
613		}
614		printf("\n");
615	}
616}
617
618static __inline int
619findrix(const struct ieee80211_rateset *rs, int r)
620{
621	int i;
622
623	for (i = 0; i < rs->rs_nrates; i++)
624		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
625			return i;
626	return -1;
627}
628
629int
630ieee80211_fix_rate(struct ieee80211_node *ni,
631	struct ieee80211_rateset *nrs, int flags)
632{
633	struct ieee80211vap *vap = ni->ni_vap;
634	struct ieee80211com *ic = ni->ni_ic;
635	int i, j, rix, error;
636	int okrate, badrate, fixedrate, ucastrate;
637	const struct ieee80211_rateset *srs;
638	uint8_t r;
639
640	error = 0;
641	okrate = badrate = 0;
642	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
643	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
644		/*
645		 * Workaround awkwardness with fixed rate.  We are called
646		 * to check both the legacy rate set and the HT rate set
647		 * but we must apply any legacy fixed rate check only to the
648		 * legacy rate set and vice versa.  We cannot tell what type
649		 * of rate set we've been given (legacy or HT) but we can
650		 * distinguish the fixed rate type (MCS have 0x80 set).
651		 * So to deal with this the caller communicates whether to
652		 * check MCS or legacy rate using the flags and we use the
653		 * type of any fixed rate to avoid applying an MCS to a
654		 * legacy rate and vice versa.
655		 */
656		if (ucastrate & 0x80) {
657			if (flags & IEEE80211_F_DOFRATE)
658				flags &= ~IEEE80211_F_DOFRATE;
659		} else if ((ucastrate & 0x80) == 0) {
660			if (flags & IEEE80211_F_DOFMCS)
661				flags &= ~IEEE80211_F_DOFMCS;
662		}
663		/* NB: required to make MCS match below work */
664		ucastrate &= IEEE80211_RATE_VAL;
665	}
666	fixedrate = IEEE80211_FIXED_RATE_NONE;
667	/*
668	 * XXX we are called to process both MCS and legacy rates;
669	 * we must use the appropriate basic rate set or chaos will
670	 * ensue; for now callers that want MCS must supply
671	 * IEEE80211_F_DOBRS; at some point we'll need to split this
672	 * function so there are two variants, one for MCS and one
673	 * for legacy rates.
674	 */
675	if (flags & IEEE80211_F_DOBRS)
676		srs = (const struct ieee80211_rateset *)
677		    ieee80211_get_suphtrates(ic, ni->ni_chan);
678	else
679		srs = ieee80211_get_suprates(ic, ni->ni_chan);
680	for (i = 0; i < nrs->rs_nrates; ) {
681		if (flags & IEEE80211_F_DOSORT) {
682			/*
683			 * Sort rates.
684			 */
685			for (j = i + 1; j < nrs->rs_nrates; j++) {
686				if (IEEE80211_RV(nrs->rs_rates[i]) >
687				    IEEE80211_RV(nrs->rs_rates[j])) {
688					r = nrs->rs_rates[i];
689					nrs->rs_rates[i] = nrs->rs_rates[j];
690					nrs->rs_rates[j] = r;
691				}
692			}
693		}
694		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
695		badrate = r;
696		/*
697		 * Check for fixed rate.
698		 */
699		if (r == ucastrate)
700			fixedrate = r;
701		/*
702		 * Check against supported rates.
703		 */
704		rix = findrix(srs, r);
705		if (flags & IEEE80211_F_DONEGO) {
706			if (rix < 0) {
707				/*
708				 * A rate in the node's rate set is not
709				 * supported.  If this is a basic rate and we
710				 * are operating as a STA then this is an error.
711				 * Otherwise we just discard/ignore the rate.
712				 */
713				if ((flags & IEEE80211_F_JOIN) &&
714				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
715					error++;
716			} else if ((flags & IEEE80211_F_JOIN) == 0) {
717				/*
718				 * Overwrite with the supported rate
719				 * value so any basic rate bit is set.
720				 */
721				nrs->rs_rates[i] = srs->rs_rates[rix];
722			}
723		}
724		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
725			/*
726			 * Delete unacceptable rates.
727			 */
728			nrs->rs_nrates--;
729			for (j = i; j < nrs->rs_nrates; j++)
730				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
731			nrs->rs_rates[j] = 0;
732			continue;
733		}
734		if (rix >= 0)
735			okrate = nrs->rs_rates[i];
736		i++;
737	}
738	if (okrate == 0 || error != 0 ||
739	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
740	     fixedrate != ucastrate)) {
741		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
742		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
743		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
744		return badrate | IEEE80211_RATE_BASIC;
745	} else
746		return IEEE80211_RV(okrate);
747}
748
749/*
750 * Reset 11g-related state.
751 */
752void
753ieee80211_reset_erp(struct ieee80211com *ic)
754{
755	ic->ic_flags &= ~IEEE80211_F_USEPROT;
756	ic->ic_nonerpsta = 0;
757	ic->ic_longslotsta = 0;
758	/*
759	 * Short slot time is enabled only when operating in 11g
760	 * and not in an IBSS.  We must also honor whether or not
761	 * the driver is capable of doing it.
762	 */
763	ieee80211_set_shortslottime(ic,
764		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
765		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
766		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
767		ic->ic_opmode == IEEE80211_M_HOSTAP &&
768		(ic->ic_caps & IEEE80211_C_SHSLOT)));
769	/*
770	 * Set short preamble and ERP barker-preamble flags.
771	 */
772	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
773	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
774		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
775		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
776	} else {
777		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
778		ic->ic_flags |= IEEE80211_F_USEBARKER;
779	}
780}
781
782/*
783 * Set the short slot time state and notify the driver.
784 */
785void
786ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
787{
788	if (onoff)
789		ic->ic_flags |= IEEE80211_F_SHSLOT;
790	else
791		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
792	/* notify driver */
793	if (ic->ic_updateslot != NULL)
794		ic->ic_updateslot(ic);
795}
796
797/*
798 * Check if the specified rate set supports ERP.
799 * NB: the rate set is assumed to be sorted.
800 */
801int
802ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
803{
804	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
805	int i, j;
806
807	if (rs->rs_nrates < nitems(rates))
808		return 0;
809	for (i = 0; i < nitems(rates); i++) {
810		for (j = 0; j < rs->rs_nrates; j++) {
811			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
812			if (rates[i] == r)
813				goto next;
814			if (r > rates[i])
815				return 0;
816		}
817		return 0;
818	next:
819		;
820	}
821	return 1;
822}
823
824/*
825 * Mark the basic rates for the rate table based on the
826 * operating mode.  For real 11g we mark all the 11b rates
827 * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
828 * 11b rates.  There's also a pseudo 11a-mode used to mark only
829 * the basic OFDM rates.
830 */
831static void
832setbasicrates(struct ieee80211_rateset *rs,
833    enum ieee80211_phymode mode, int add)
834{
835	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
836	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
837	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
838					    /* NB: mixed b/g */
839	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
840	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
841	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
842	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
843	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
844	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
845	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
846					    /* NB: mixed b/g */
847	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
848	};
849	int i, j;
850
851	for (i = 0; i < rs->rs_nrates; i++) {
852		if (!add)
853			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
854		for (j = 0; j < basic[mode].rs_nrates; j++)
855			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
856				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
857				break;
858			}
859	}
860}
861
862/*
863 * Set the basic rates in a rate set.
864 */
865void
866ieee80211_setbasicrates(struct ieee80211_rateset *rs,
867    enum ieee80211_phymode mode)
868{
869	setbasicrates(rs, mode, 0);
870}
871
872/*
873 * Add basic rates to a rate set.
874 */
875void
876ieee80211_addbasicrates(struct ieee80211_rateset *rs,
877    enum ieee80211_phymode mode)
878{
879	setbasicrates(rs, mode, 1);
880}
881
882/*
883 * WME protocol support.
884 *
885 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
886 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
887 * Draft 2.0 Test Plan (Appendix D).
888 *
889 * Static/Dynamic Turbo mode settings come from Atheros.
890 */
891typedef struct phyParamType {
892	uint8_t		aifsn;
893	uint8_t		logcwmin;
894	uint8_t		logcwmax;
895	uint16_t	txopLimit;
896	uint8_t 	acm;
897} paramType;
898
899static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
900	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
901	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
902	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
903	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
904	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
905	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
906	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
907	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
908	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
909	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
910	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
911	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
912};
913static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
914	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
915	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
916	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
917	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
918	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
919	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
920	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
921	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
922	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
923	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
924	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
925	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
926};
927static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
928	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
929	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
930	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
931	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
932	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
933	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
934	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
935	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
936	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
937	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
938	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
939	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
940};
941static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
942	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
943	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
944	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
945	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
946	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
947	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
948	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
949	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
950	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
951	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
952	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
953	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
954};
955
956static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
957	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
958	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
959	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
960	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
961	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
962	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
963	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
964	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
965	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
966	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
967	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
968	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
969};
970static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
971	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
972	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
973	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
974	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
975	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
976	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
977	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
978	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
979	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
980	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
981	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
982	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
983};
984static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
985	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
986	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
987	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
988	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
989	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
990	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
991	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
992	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
993	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
994	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
995	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
996	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
997};
998
999static void
1000_setifsparams(struct wmeParams *wmep, const paramType *phy)
1001{
1002	wmep->wmep_aifsn = phy->aifsn;
1003	wmep->wmep_logcwmin = phy->logcwmin;
1004	wmep->wmep_logcwmax = phy->logcwmax;
1005	wmep->wmep_txopLimit = phy->txopLimit;
1006}
1007
1008static void
1009setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1010	struct wmeParams *wmep, const paramType *phy)
1011{
1012	wmep->wmep_acm = phy->acm;
1013	_setifsparams(wmep, phy);
1014
1015	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1016	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1017	    ieee80211_wme_acnames[ac], type,
1018	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1019	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1020}
1021
1022static void
1023ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1024{
1025	struct ieee80211com *ic = vap->iv_ic;
1026	struct ieee80211_wme_state *wme = &ic->ic_wme;
1027	const paramType *pPhyParam, *pBssPhyParam;
1028	struct wmeParams *wmep;
1029	enum ieee80211_phymode mode;
1030	int i;
1031
1032	IEEE80211_LOCK_ASSERT(ic);
1033
1034	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1035		return;
1036
1037	/*
1038	 * Clear the wme cap_info field so a qoscount from a previous
1039	 * vap doesn't confuse later code which only parses the beacon
1040	 * field and updates hardware when said field changes.
1041	 * Otherwise the hardware is programmed with defaults, not what
1042	 * the beacon actually announces.
1043	 */
1044	wme->wme_wmeChanParams.cap_info = 0;
1045
1046	/*
1047	 * Select mode; we can be called early in which case we
1048	 * always use auto mode.  We know we'll be called when
1049	 * entering the RUN state with bsschan setup properly
1050	 * so state will eventually get set correctly
1051	 */
1052	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1053		mode = ieee80211_chan2mode(ic->ic_bsschan);
1054	else
1055		mode = IEEE80211_MODE_AUTO;
1056	for (i = 0; i < WME_NUM_AC; i++) {
1057		switch (i) {
1058		case WME_AC_BK:
1059			pPhyParam = &phyParamForAC_BK[mode];
1060			pBssPhyParam = &phyParamForAC_BK[mode];
1061			break;
1062		case WME_AC_VI:
1063			pPhyParam = &phyParamForAC_VI[mode];
1064			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1065			break;
1066		case WME_AC_VO:
1067			pPhyParam = &phyParamForAC_VO[mode];
1068			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1069			break;
1070		case WME_AC_BE:
1071		default:
1072			pPhyParam = &phyParamForAC_BE[mode];
1073			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1074			break;
1075		}
1076		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1077		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1078			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1079		} else {
1080			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1081		}
1082		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1083		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1084	}
1085	/* NB: check ic_bss to avoid NULL deref on initial attach */
1086	if (vap->iv_bss != NULL) {
1087		/*
1088		 * Calculate aggressive mode switching threshold based
1089		 * on beacon interval.  This doesn't need locking since
1090		 * we're only called before entering the RUN state at
1091		 * which point we start sending beacon frames.
1092		 */
1093		wme->wme_hipri_switch_thresh =
1094			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1095		wme->wme_flags &= ~WME_F_AGGRMODE;
1096		ieee80211_wme_updateparams(vap);
1097	}
1098}
1099
1100void
1101ieee80211_wme_initparams(struct ieee80211vap *vap)
1102{
1103	struct ieee80211com *ic = vap->iv_ic;
1104
1105	IEEE80211_LOCK(ic);
1106	ieee80211_wme_initparams_locked(vap);
1107	IEEE80211_UNLOCK(ic);
1108}
1109
1110/*
1111 * Update WME parameters for ourself and the BSS.
1112 */
1113void
1114ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1115{
1116	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1117	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1118	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1119	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1120	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1121	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1122	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1123	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1124	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1125	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1126	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1127	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1128	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1129	};
1130	struct ieee80211com *ic = vap->iv_ic;
1131	struct ieee80211_wme_state *wme = &ic->ic_wme;
1132	const struct wmeParams *wmep;
1133	struct wmeParams *chanp, *bssp;
1134	enum ieee80211_phymode mode;
1135	int i;
1136	int do_aggrmode = 0;
1137
1138       	/*
1139	 * Set up the channel access parameters for the physical
1140	 * device.  First populate the configured settings.
1141	 */
1142	for (i = 0; i < WME_NUM_AC; i++) {
1143		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1144		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1145		chanp->wmep_aifsn = wmep->wmep_aifsn;
1146		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1147		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1148		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1149
1150		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1151		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1152		chanp->wmep_aifsn = wmep->wmep_aifsn;
1153		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1154		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1155		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1156	}
1157
1158	/*
1159	 * Select mode; we can be called early in which case we
1160	 * always use auto mode.  We know we'll be called when
1161	 * entering the RUN state with bsschan setup properly
1162	 * so state will eventually get set correctly
1163	 */
1164	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1165		mode = ieee80211_chan2mode(ic->ic_bsschan);
1166	else
1167		mode = IEEE80211_MODE_AUTO;
1168
1169	/*
1170	 * This implements aggressive mode as found in certain
1171	 * vendors' AP's.  When there is significant high
1172	 * priority (VI/VO) traffic in the BSS throttle back BE
1173	 * traffic by using conservative parameters.  Otherwise
1174	 * BE uses aggressive params to optimize performance of
1175	 * legacy/non-QoS traffic.
1176	 */
1177
1178	/* Hostap? Only if aggressive mode is enabled */
1179        if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1180	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1181		do_aggrmode = 1;
1182
1183	/*
1184	 * Station? Only if we're in a non-QoS BSS.
1185	 */
1186	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1187	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1188		do_aggrmode = 1;
1189
1190	/*
1191	 * IBSS? Only if we we have WME enabled.
1192	 */
1193	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1194	    (vap->iv_flags & IEEE80211_F_WME))
1195		do_aggrmode = 1;
1196
1197	/*
1198	 * If WME is disabled on this VAP, default to aggressive mode
1199	 * regardless of the configuration.
1200	 */
1201	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1202		do_aggrmode = 1;
1203
1204	/* XXX WDS? */
1205
1206	/* XXX MBSS? */
1207
1208	if (do_aggrmode) {
1209		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1210		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1211
1212		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1213		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1214		    aggrParam[mode].logcwmin;
1215		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1216		    aggrParam[mode].logcwmax;
1217		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1218		    (vap->iv_flags & IEEE80211_F_BURST) ?
1219			aggrParam[mode].txopLimit : 0;
1220		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1221		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1222		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1223		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1224		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1225	}
1226
1227
1228	/*
1229	 * Change the contention window based on the number of associated
1230	 * stations.  If the number of associated stations is 1 and
1231	 * aggressive mode is enabled, lower the contention window even
1232	 * further.
1233	 */
1234	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1235	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1236		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1237		    [IEEE80211_MODE_AUTO]	= 3,
1238		    [IEEE80211_MODE_11A]	= 3,
1239		    [IEEE80211_MODE_11B]	= 4,
1240		    [IEEE80211_MODE_11G]	= 3,
1241		    [IEEE80211_MODE_FH]		= 4,
1242		    [IEEE80211_MODE_TURBO_A]	= 3,
1243		    [IEEE80211_MODE_TURBO_G]	= 3,
1244		    [IEEE80211_MODE_STURBO_A]	= 3,
1245		    [IEEE80211_MODE_HALF]	= 3,
1246		    [IEEE80211_MODE_QUARTER]	= 3,
1247		    [IEEE80211_MODE_11NA]	= 3,
1248		    [IEEE80211_MODE_11NG]	= 3,
1249		};
1250		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1251		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1252
1253		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1254		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1255		    "update %s (chan+bss) logcwmin %u\n",
1256		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1257	}
1258
1259	/*
1260	 * Arrange for the beacon update.
1261	 *
1262	 * XXX what about MBSS, WDS?
1263	 */
1264	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1265	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1266		/*
1267		 * Arrange for a beacon update and bump the parameter
1268		 * set number so associated stations load the new values.
1269		 */
1270		wme->wme_bssChanParams.cap_info =
1271			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1272		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1273	}
1274
1275	/* schedule the deferred WME update */
1276	ieee80211_runtask(ic, &ic->ic_wme_task);
1277
1278	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1279	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1280	    vap->iv_opmode == IEEE80211_M_STA ?
1281		wme->wme_wmeChanParams.cap_info :
1282		wme->wme_bssChanParams.cap_info);
1283}
1284
1285void
1286ieee80211_wme_updateparams(struct ieee80211vap *vap)
1287{
1288	struct ieee80211com *ic = vap->iv_ic;
1289
1290	if (ic->ic_caps & IEEE80211_C_WME) {
1291		IEEE80211_LOCK(ic);
1292		ieee80211_wme_updateparams_locked(vap);
1293		IEEE80211_UNLOCK(ic);
1294	}
1295}
1296
1297static void
1298parent_updown(void *arg, int npending)
1299{
1300	struct ieee80211com *ic = arg;
1301
1302	ic->ic_parent(ic);
1303}
1304
1305static void
1306update_mcast(void *arg, int npending)
1307{
1308	struct ieee80211com *ic = arg;
1309
1310	ic->ic_update_mcast(ic);
1311}
1312
1313static void
1314update_promisc(void *arg, int npending)
1315{
1316	struct ieee80211com *ic = arg;
1317
1318	ic->ic_update_promisc(ic);
1319}
1320
1321static void
1322update_channel(void *arg, int npending)
1323{
1324	struct ieee80211com *ic = arg;
1325
1326	ic->ic_set_channel(ic);
1327	ieee80211_radiotap_chan_change(ic);
1328}
1329
1330static void
1331update_chw(void *arg, int npending)
1332{
1333	struct ieee80211com *ic = arg;
1334
1335	/*
1336	 * XXX should we defer the channel width _config_ update until now?
1337	 */
1338	ic->ic_update_chw(ic);
1339}
1340
1341static void
1342update_wme(void *arg, int npending)
1343{
1344	struct ieee80211com *ic = arg;
1345
1346	/*
1347	 * XXX should we defer the WME configuration update until now?
1348	 */
1349	ic->ic_wme.wme_update(ic);
1350}
1351
1352static void
1353restart_vaps(void *arg, int npending)
1354{
1355	struct ieee80211com *ic = arg;
1356
1357	ieee80211_suspend_all(ic);
1358	ieee80211_resume_all(ic);
1359}
1360
1361/*
1362 * Block until the parent is in a known state.  This is
1363 * used after any operations that dispatch a task (e.g.
1364 * to auto-configure the parent device up/down).
1365 */
1366void
1367ieee80211_waitfor_parent(struct ieee80211com *ic)
1368{
1369	taskqueue_block(ic->ic_tq);
1370	ieee80211_draintask(ic, &ic->ic_parent_task);
1371	ieee80211_draintask(ic, &ic->ic_mcast_task);
1372	ieee80211_draintask(ic, &ic->ic_promisc_task);
1373	ieee80211_draintask(ic, &ic->ic_chan_task);
1374	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1375	ieee80211_draintask(ic, &ic->ic_chw_task);
1376	ieee80211_draintask(ic, &ic->ic_wme_task);
1377	taskqueue_unblock(ic->ic_tq);
1378}
1379
1380/*
1381 * Check to see whether the current channel needs reset.
1382 *
1383 * Some devices don't handle being given an invalid channel
1384 * in their operating mode very well (eg wpi(4) will throw a
1385 * firmware exception.)
1386 *
1387 * Return 0 if we're ok, 1 if the channel needs to be reset.
1388 *
1389 * See PR kern/202502.
1390 */
1391static int
1392ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1393{
1394	struct ieee80211com *ic = vap->iv_ic;
1395
1396	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1397	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1398	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1399	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1400		return (1);
1401	return (0);
1402}
1403
1404/*
1405 * Reset the curchan to a known good state.
1406 */
1407static void
1408ieee80211_start_reset_chan(struct ieee80211vap *vap)
1409{
1410	struct ieee80211com *ic = vap->iv_ic;
1411
1412	ic->ic_curchan = &ic->ic_channels[0];
1413}
1414
1415/*
1416 * Start a vap running.  If this is the first vap to be
1417 * set running on the underlying device then we
1418 * automatically bring the device up.
1419 */
1420void
1421ieee80211_start_locked(struct ieee80211vap *vap)
1422{
1423	struct ifnet *ifp = vap->iv_ifp;
1424	struct ieee80211com *ic = vap->iv_ic;
1425
1426	IEEE80211_LOCK_ASSERT(ic);
1427
1428	IEEE80211_DPRINTF(vap,
1429		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1430		"start running, %d vaps running\n", ic->ic_nrunning);
1431
1432	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1433		/*
1434		 * Mark us running.  Note that it's ok to do this first;
1435		 * if we need to bring the parent device up we defer that
1436		 * to avoid dropping the com lock.  We expect the device
1437		 * to respond to being marked up by calling back into us
1438		 * through ieee80211_start_all at which point we'll come
1439		 * back in here and complete the work.
1440		 */
1441		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1442		/*
1443		 * We are not running; if this we are the first vap
1444		 * to be brought up auto-up the parent if necessary.
1445		 */
1446		if (ic->ic_nrunning++ == 0) {
1447
1448			/* reset the channel to a known good channel */
1449			if (ieee80211_start_check_reset_chan(vap))
1450				ieee80211_start_reset_chan(vap);
1451
1452			IEEE80211_DPRINTF(vap,
1453			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1454			    "%s: up parent %s\n", __func__, ic->ic_name);
1455			ieee80211_runtask(ic, &ic->ic_parent_task);
1456			return;
1457		}
1458	}
1459	/*
1460	 * If the parent is up and running, then kick the
1461	 * 802.11 state machine as appropriate.
1462	 */
1463	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1464		if (vap->iv_opmode == IEEE80211_M_STA) {
1465#if 0
1466			/* XXX bypasses scan too easily; disable for now */
1467			/*
1468			 * Try to be intelligent about clocking the state
1469			 * machine.  If we're currently in RUN state then
1470			 * we should be able to apply any new state/parameters
1471			 * simply by re-associating.  Otherwise we need to
1472			 * re-scan to select an appropriate ap.
1473			 */
1474			if (vap->iv_state >= IEEE80211_S_RUN)
1475				ieee80211_new_state_locked(vap,
1476				    IEEE80211_S_ASSOC, 1);
1477			else
1478#endif
1479				ieee80211_new_state_locked(vap,
1480				    IEEE80211_S_SCAN, 0);
1481		} else {
1482			/*
1483			 * For monitor+wds mode there's nothing to do but
1484			 * start running.  Otherwise if this is the first
1485			 * vap to be brought up, start a scan which may be
1486			 * preempted if the station is locked to a particular
1487			 * channel.
1488			 */
1489			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1490			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1491			    vap->iv_opmode == IEEE80211_M_WDS)
1492				ieee80211_new_state_locked(vap,
1493				    IEEE80211_S_RUN, -1);
1494			else
1495				ieee80211_new_state_locked(vap,
1496				    IEEE80211_S_SCAN, 0);
1497		}
1498	}
1499}
1500
1501/*
1502 * Start a single vap.
1503 */
1504void
1505ieee80211_init(void *arg)
1506{
1507	struct ieee80211vap *vap = arg;
1508
1509	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1510	    "%s\n", __func__);
1511
1512	IEEE80211_LOCK(vap->iv_ic);
1513	ieee80211_start_locked(vap);
1514	IEEE80211_UNLOCK(vap->iv_ic);
1515}
1516
1517/*
1518 * Start all runnable vap's on a device.
1519 */
1520void
1521ieee80211_start_all(struct ieee80211com *ic)
1522{
1523	struct ieee80211vap *vap;
1524
1525	IEEE80211_LOCK(ic);
1526	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1527		struct ifnet *ifp = vap->iv_ifp;
1528		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1529			ieee80211_start_locked(vap);
1530	}
1531	IEEE80211_UNLOCK(ic);
1532}
1533
1534/*
1535 * Stop a vap.  We force it down using the state machine
1536 * then mark it's ifnet not running.  If this is the last
1537 * vap running on the underlying device then we close it
1538 * too to insure it will be properly initialized when the
1539 * next vap is brought up.
1540 */
1541void
1542ieee80211_stop_locked(struct ieee80211vap *vap)
1543{
1544	struct ieee80211com *ic = vap->iv_ic;
1545	struct ifnet *ifp = vap->iv_ifp;
1546
1547	IEEE80211_LOCK_ASSERT(ic);
1548
1549	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1550	    "stop running, %d vaps running\n", ic->ic_nrunning);
1551
1552	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1553	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1554		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1555		if (--ic->ic_nrunning == 0) {
1556			IEEE80211_DPRINTF(vap,
1557			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1558			    "down parent %s\n", ic->ic_name);
1559			ieee80211_runtask(ic, &ic->ic_parent_task);
1560		}
1561	}
1562}
1563
1564void
1565ieee80211_stop(struct ieee80211vap *vap)
1566{
1567	struct ieee80211com *ic = vap->iv_ic;
1568
1569	IEEE80211_LOCK(ic);
1570	ieee80211_stop_locked(vap);
1571	IEEE80211_UNLOCK(ic);
1572}
1573
1574/*
1575 * Stop all vap's running on a device.
1576 */
1577void
1578ieee80211_stop_all(struct ieee80211com *ic)
1579{
1580	struct ieee80211vap *vap;
1581
1582	IEEE80211_LOCK(ic);
1583	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1584		struct ifnet *ifp = vap->iv_ifp;
1585		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1586			ieee80211_stop_locked(vap);
1587	}
1588	IEEE80211_UNLOCK(ic);
1589
1590	ieee80211_waitfor_parent(ic);
1591}
1592
1593/*
1594 * Stop all vap's running on a device and arrange
1595 * for those that were running to be resumed.
1596 */
1597void
1598ieee80211_suspend_all(struct ieee80211com *ic)
1599{
1600	struct ieee80211vap *vap;
1601
1602	IEEE80211_LOCK(ic);
1603	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1604		struct ifnet *ifp = vap->iv_ifp;
1605		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1606			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1607			ieee80211_stop_locked(vap);
1608		}
1609	}
1610	IEEE80211_UNLOCK(ic);
1611
1612	ieee80211_waitfor_parent(ic);
1613}
1614
1615/*
1616 * Start all vap's marked for resume.
1617 */
1618void
1619ieee80211_resume_all(struct ieee80211com *ic)
1620{
1621	struct ieee80211vap *vap;
1622
1623	IEEE80211_LOCK(ic);
1624	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1625		struct ifnet *ifp = vap->iv_ifp;
1626		if (!IFNET_IS_UP_RUNNING(ifp) &&
1627		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1628			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1629			ieee80211_start_locked(vap);
1630		}
1631	}
1632	IEEE80211_UNLOCK(ic);
1633}
1634
1635/*
1636 * Restart all vap's running on a device.
1637 */
1638void
1639ieee80211_restart_all(struct ieee80211com *ic)
1640{
1641	/*
1642	 * NB: do not use ieee80211_runtask here, we will
1643	 * block & drain net80211 taskqueue.
1644	 */
1645	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1646}
1647
1648void
1649ieee80211_beacon_miss(struct ieee80211com *ic)
1650{
1651	IEEE80211_LOCK(ic);
1652	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1653		/* Process in a taskq, the handler may reenter the driver */
1654		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1655	}
1656	IEEE80211_UNLOCK(ic);
1657}
1658
1659static void
1660beacon_miss(void *arg, int npending)
1661{
1662	struct ieee80211com *ic = arg;
1663	struct ieee80211vap *vap;
1664
1665	IEEE80211_LOCK(ic);
1666	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1667		/*
1668		 * We only pass events through for sta vap's in RUN+ state;
1669		 * may be too restrictive but for now this saves all the
1670		 * handlers duplicating these checks.
1671		 */
1672		if (vap->iv_opmode == IEEE80211_M_STA &&
1673		    vap->iv_state >= IEEE80211_S_RUN &&
1674		    vap->iv_bmiss != NULL)
1675			vap->iv_bmiss(vap);
1676	}
1677	IEEE80211_UNLOCK(ic);
1678}
1679
1680static void
1681beacon_swmiss(void *arg, int npending)
1682{
1683	struct ieee80211vap *vap = arg;
1684	struct ieee80211com *ic = vap->iv_ic;
1685
1686	IEEE80211_LOCK(ic);
1687	if (vap->iv_state >= IEEE80211_S_RUN) {
1688		/* XXX Call multiple times if npending > zero? */
1689		vap->iv_bmiss(vap);
1690	}
1691	IEEE80211_UNLOCK(ic);
1692}
1693
1694/*
1695 * Software beacon miss handling.  Check if any beacons
1696 * were received in the last period.  If not post a
1697 * beacon miss; otherwise reset the counter.
1698 */
1699void
1700ieee80211_swbmiss(void *arg)
1701{
1702	struct ieee80211vap *vap = arg;
1703	struct ieee80211com *ic = vap->iv_ic;
1704
1705	IEEE80211_LOCK_ASSERT(ic);
1706
1707	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1708	    ("wrong state %d", vap->iv_state));
1709
1710	if (ic->ic_flags & IEEE80211_F_SCAN) {
1711		/*
1712		 * If scanning just ignore and reset state.  If we get a
1713		 * bmiss after coming out of scan because we haven't had
1714		 * time to receive a beacon then we should probe the AP
1715		 * before posting a real bmiss (unless iv_bmiss_max has
1716		 * been artifiically lowered).  A cleaner solution might
1717		 * be to disable the timer on scan start/end but to handle
1718		 * case of multiple sta vap's we'd need to disable the
1719		 * timers of all affected vap's.
1720		 */
1721		vap->iv_swbmiss_count = 0;
1722	} else if (vap->iv_swbmiss_count == 0) {
1723		if (vap->iv_bmiss != NULL)
1724			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1725	} else
1726		vap->iv_swbmiss_count = 0;
1727	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1728		ieee80211_swbmiss, vap);
1729}
1730
1731/*
1732 * Start an 802.11h channel switch.  We record the parameters,
1733 * mark the operation pending, notify each vap through the
1734 * beacon update mechanism so it can update the beacon frame
1735 * contents, and then switch vap's to CSA state to block outbound
1736 * traffic.  Devices that handle CSA directly can use the state
1737 * switch to do the right thing so long as they call
1738 * ieee80211_csa_completeswitch when it's time to complete the
1739 * channel change.  Devices that depend on the net80211 layer can
1740 * use ieee80211_beacon_update to handle the countdown and the
1741 * channel switch.
1742 */
1743void
1744ieee80211_csa_startswitch(struct ieee80211com *ic,
1745	struct ieee80211_channel *c, int mode, int count)
1746{
1747	struct ieee80211vap *vap;
1748
1749	IEEE80211_LOCK_ASSERT(ic);
1750
1751	ic->ic_csa_newchan = c;
1752	ic->ic_csa_mode = mode;
1753	ic->ic_csa_count = count;
1754	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1755	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1756		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1757		    vap->iv_opmode == IEEE80211_M_IBSS ||
1758		    vap->iv_opmode == IEEE80211_M_MBSS)
1759			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1760		/* switch to CSA state to block outbound traffic */
1761		if (vap->iv_state == IEEE80211_S_RUN)
1762			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1763	}
1764	ieee80211_notify_csa(ic, c, mode, count);
1765}
1766
1767/*
1768 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1769 * This is called by both the completion and cancellation functions
1770 * so each VAP is placed back in the RUN state and can thus transmit.
1771 */
1772static void
1773csa_completeswitch(struct ieee80211com *ic)
1774{
1775	struct ieee80211vap *vap;
1776
1777	ic->ic_csa_newchan = NULL;
1778	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1779
1780	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1781		if (vap->iv_state == IEEE80211_S_CSA)
1782			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1783}
1784
1785/*
1786 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1787 * We clear state and move all vap's in CSA state to RUN state
1788 * so they can again transmit.
1789 *
1790 * Although this may not be completely correct, update the BSS channel
1791 * for each VAP to the newly configured channel. The setcurchan sets
1792 * the current operating channel for the interface (so the radio does
1793 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1794 * reported information via ioctl.
1795 */
1796void
1797ieee80211_csa_completeswitch(struct ieee80211com *ic)
1798{
1799	struct ieee80211vap *vap;
1800
1801	IEEE80211_LOCK_ASSERT(ic);
1802
1803	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1804
1805	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1806	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1807		if (vap->iv_state == IEEE80211_S_CSA)
1808			vap->iv_bss->ni_chan = ic->ic_curchan;
1809
1810	csa_completeswitch(ic);
1811}
1812
1813/*
1814 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1815 * We clear state and move all vap's in CSA state to RUN state
1816 * so they can again transmit.
1817 */
1818void
1819ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1820{
1821	IEEE80211_LOCK_ASSERT(ic);
1822
1823	csa_completeswitch(ic);
1824}
1825
1826/*
1827 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1828 * We clear state and move all vap's in CAC state to RUN state.
1829 */
1830void
1831ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1832{
1833	struct ieee80211com *ic = vap0->iv_ic;
1834	struct ieee80211vap *vap;
1835
1836	IEEE80211_LOCK(ic);
1837	/*
1838	 * Complete CAC state change for lead vap first; then
1839	 * clock all the other vap's waiting.
1840	 */
1841	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1842	    ("wrong state %d", vap0->iv_state));
1843	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1844
1845	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1846		if (vap->iv_state == IEEE80211_S_CAC)
1847			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1848	IEEE80211_UNLOCK(ic);
1849}
1850
1851/*
1852 * Force all vap's other than the specified vap to the INIT state
1853 * and mark them as waiting for a scan to complete.  These vaps
1854 * will be brought up when the scan completes and the scanning vap
1855 * reaches RUN state by wakeupwaiting.
1856 */
1857static void
1858markwaiting(struct ieee80211vap *vap0)
1859{
1860	struct ieee80211com *ic = vap0->iv_ic;
1861	struct ieee80211vap *vap;
1862
1863	IEEE80211_LOCK_ASSERT(ic);
1864
1865	/*
1866	 * A vap list entry can not disappear since we are running on the
1867	 * taskqueue and a vap destroy will queue and drain another state
1868	 * change task.
1869	 */
1870	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1871		if (vap == vap0)
1872			continue;
1873		if (vap->iv_state != IEEE80211_S_INIT) {
1874			/* NB: iv_newstate may drop the lock */
1875			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1876			IEEE80211_LOCK_ASSERT(ic);
1877			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1878		}
1879	}
1880}
1881
1882/*
1883 * Wakeup all vap's waiting for a scan to complete.  This is the
1884 * companion to markwaiting (above) and is used to coordinate
1885 * multiple vaps scanning.
1886 * This is called from the state taskqueue.
1887 */
1888static void
1889wakeupwaiting(struct ieee80211vap *vap0)
1890{
1891	struct ieee80211com *ic = vap0->iv_ic;
1892	struct ieee80211vap *vap;
1893
1894	IEEE80211_LOCK_ASSERT(ic);
1895
1896	/*
1897	 * A vap list entry can not disappear since we are running on the
1898	 * taskqueue and a vap destroy will queue and drain another state
1899	 * change task.
1900	 */
1901	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1902		if (vap == vap0)
1903			continue;
1904		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1905			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1906			/* NB: sta's cannot go INIT->RUN */
1907			/* NB: iv_newstate may drop the lock */
1908			vap->iv_newstate(vap,
1909			    vap->iv_opmode == IEEE80211_M_STA ?
1910			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1911			IEEE80211_LOCK_ASSERT(ic);
1912		}
1913	}
1914}
1915
1916/*
1917 * Handle post state change work common to all operating modes.
1918 */
1919static void
1920ieee80211_newstate_cb(void *xvap, int npending)
1921{
1922	struct ieee80211vap *vap = xvap;
1923	struct ieee80211com *ic = vap->iv_ic;
1924	enum ieee80211_state nstate, ostate;
1925	int arg, rc;
1926
1927	IEEE80211_LOCK(ic);
1928	nstate = vap->iv_nstate;
1929	arg = vap->iv_nstate_arg;
1930
1931	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1932		/*
1933		 * We have been requested to drop back to the INIT before
1934		 * proceeding to the new state.
1935		 */
1936		/* Deny any state changes while we are here. */
1937		vap->iv_nstate = IEEE80211_S_INIT;
1938		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1939		    "%s: %s -> %s arg %d\n", __func__,
1940		    ieee80211_state_name[vap->iv_state],
1941		    ieee80211_state_name[vap->iv_nstate], arg);
1942		vap->iv_newstate(vap, vap->iv_nstate, 0);
1943		IEEE80211_LOCK_ASSERT(ic);
1944		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1945		    IEEE80211_FEXT_STATEWAIT);
1946		/* enqueue new state transition after cancel_scan() task */
1947		ieee80211_new_state_locked(vap, nstate, arg);
1948		goto done;
1949	}
1950
1951	ostate = vap->iv_state;
1952	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1953		/*
1954		 * SCAN was forced; e.g. on beacon miss.  Force other running
1955		 * vap's to INIT state and mark them as waiting for the scan to
1956		 * complete.  This insures they don't interfere with our
1957		 * scanning.  Since we are single threaded the vaps can not
1958		 * transition again while we are executing.
1959		 *
1960		 * XXX not always right, assumes ap follows sta
1961		 */
1962		markwaiting(vap);
1963	}
1964	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1965	    "%s: %s -> %s arg %d\n", __func__,
1966	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1967
1968	rc = vap->iv_newstate(vap, nstate, arg);
1969	IEEE80211_LOCK_ASSERT(ic);
1970	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1971	if (rc != 0) {
1972		/* State transition failed */
1973		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1974		KASSERT(nstate != IEEE80211_S_INIT,
1975		    ("INIT state change failed"));
1976		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1977		    "%s: %s returned error %d\n", __func__,
1978		    ieee80211_state_name[nstate], rc);
1979		goto done;
1980	}
1981
1982	/* No actual transition, skip post processing */
1983	if (ostate == nstate)
1984		goto done;
1985
1986	if (nstate == IEEE80211_S_RUN) {
1987		/*
1988		 * OACTIVE may be set on the vap if the upper layer
1989		 * tried to transmit (e.g. IPv6 NDP) before we reach
1990		 * RUN state.  Clear it and restart xmit.
1991		 *
1992		 * Note this can also happen as a result of SLEEP->RUN
1993		 * (i.e. coming out of power save mode).
1994		 */
1995		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1996
1997		/*
1998		 * XXX TODO Kick-start a VAP queue - this should be a method!
1999		 */
2000
2001		/* bring up any vaps waiting on us */
2002		wakeupwaiting(vap);
2003	} else if (nstate == IEEE80211_S_INIT) {
2004		/*
2005		 * Flush the scan cache if we did the last scan (XXX?)
2006		 * and flush any frames on send queues from this vap.
2007		 * Note the mgt q is used only for legacy drivers and
2008		 * will go away shortly.
2009		 */
2010		ieee80211_scan_flush(vap);
2011
2012		/*
2013		 * XXX TODO: ic/vap queue flush
2014		 */
2015	}
2016done:
2017	IEEE80211_UNLOCK(ic);
2018}
2019
2020/*
2021 * Public interface for initiating a state machine change.
2022 * This routine single-threads the request and coordinates
2023 * the scheduling of multiple vaps for the purpose of selecting
2024 * an operating channel.  Specifically the following scenarios
2025 * are handled:
2026 * o only one vap can be selecting a channel so on transition to
2027 *   SCAN state if another vap is already scanning then
2028 *   mark the caller for later processing and return without
2029 *   doing anything (XXX? expectations by caller of synchronous operation)
2030 * o only one vap can be doing CAC of a channel so on transition to
2031 *   CAC state if another vap is already scanning for radar then
2032 *   mark the caller for later processing and return without
2033 *   doing anything (XXX? expectations by caller of synchronous operation)
2034 * o if another vap is already running when a request is made
2035 *   to SCAN then an operating channel has been chosen; bypass
2036 *   the scan and just join the channel
2037 *
2038 * Note that the state change call is done through the iv_newstate
2039 * method pointer so any driver routine gets invoked.  The driver
2040 * will normally call back into operating mode-specific
2041 * ieee80211_newstate routines (below) unless it needs to completely
2042 * bypass the state machine (e.g. because the firmware has it's
2043 * own idea how things should work).  Bypassing the net80211 layer
2044 * is usually a mistake and indicates lack of proper integration
2045 * with the net80211 layer.
2046 */
2047int
2048ieee80211_new_state_locked(struct ieee80211vap *vap,
2049	enum ieee80211_state nstate, int arg)
2050{
2051	struct ieee80211com *ic = vap->iv_ic;
2052	struct ieee80211vap *vp;
2053	enum ieee80211_state ostate;
2054	int nrunning, nscanning;
2055
2056	IEEE80211_LOCK_ASSERT(ic);
2057
2058	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2059		if (vap->iv_nstate == IEEE80211_S_INIT ||
2060		    ((vap->iv_state == IEEE80211_S_INIT ||
2061		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2062		    vap->iv_nstate == IEEE80211_S_SCAN &&
2063		    nstate > IEEE80211_S_SCAN)) {
2064			/*
2065			 * XXX The vap is being stopped/started,
2066			 * do not allow any other state changes
2067			 * until this is completed.
2068			 */
2069			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2070			    "%s: %s -> %s (%s) transition discarded\n",
2071			    __func__,
2072			    ieee80211_state_name[vap->iv_state],
2073			    ieee80211_state_name[nstate],
2074			    ieee80211_state_name[vap->iv_nstate]);
2075			return -1;
2076		} else if (vap->iv_state != vap->iv_nstate) {
2077#if 0
2078			/* Warn if the previous state hasn't completed. */
2079			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2080			    "%s: pending %s -> %s transition lost\n", __func__,
2081			    ieee80211_state_name[vap->iv_state],
2082			    ieee80211_state_name[vap->iv_nstate]);
2083#else
2084			/* XXX temporarily enable to identify issues */
2085			if_printf(vap->iv_ifp,
2086			    "%s: pending %s -> %s transition lost\n",
2087			    __func__, ieee80211_state_name[vap->iv_state],
2088			    ieee80211_state_name[vap->iv_nstate]);
2089#endif
2090		}
2091	}
2092
2093	nrunning = nscanning = 0;
2094	/* XXX can track this state instead of calculating */
2095	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2096		if (vp != vap) {
2097			if (vp->iv_state >= IEEE80211_S_RUN)
2098				nrunning++;
2099			/* XXX doesn't handle bg scan */
2100			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2101			else if (vp->iv_state > IEEE80211_S_INIT)
2102				nscanning++;
2103		}
2104	}
2105	ostate = vap->iv_state;
2106	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2107	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2108	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2109	    nrunning, nscanning);
2110	switch (nstate) {
2111	case IEEE80211_S_SCAN:
2112		if (ostate == IEEE80211_S_INIT) {
2113			/*
2114			 * INIT -> SCAN happens on initial bringup.
2115			 */
2116			KASSERT(!(nscanning && nrunning),
2117			    ("%d scanning and %d running", nscanning, nrunning));
2118			if (nscanning) {
2119				/*
2120				 * Someone is scanning, defer our state
2121				 * change until the work has completed.
2122				 */
2123				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2124				    "%s: defer %s -> %s\n",
2125				    __func__, ieee80211_state_name[ostate],
2126				    ieee80211_state_name[nstate]);
2127				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2128				return 0;
2129			}
2130			if (nrunning) {
2131				/*
2132				 * Someone is operating; just join the channel
2133				 * they have chosen.
2134				 */
2135				/* XXX kill arg? */
2136				/* XXX check each opmode, adhoc? */
2137				if (vap->iv_opmode == IEEE80211_M_STA)
2138					nstate = IEEE80211_S_SCAN;
2139				else
2140					nstate = IEEE80211_S_RUN;
2141#ifdef IEEE80211_DEBUG
2142				if (nstate != IEEE80211_S_SCAN) {
2143					IEEE80211_DPRINTF(vap,
2144					    IEEE80211_MSG_STATE,
2145					    "%s: override, now %s -> %s\n",
2146					    __func__,
2147					    ieee80211_state_name[ostate],
2148					    ieee80211_state_name[nstate]);
2149				}
2150#endif
2151			}
2152		}
2153		break;
2154	case IEEE80211_S_RUN:
2155		if (vap->iv_opmode == IEEE80211_M_WDS &&
2156		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2157		    nscanning) {
2158			/*
2159			 * Legacy WDS with someone else scanning; don't
2160			 * go online until that completes as we should
2161			 * follow the other vap to the channel they choose.
2162			 */
2163			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2164			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2165			     ieee80211_state_name[ostate],
2166			     ieee80211_state_name[nstate]);
2167			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2168			return 0;
2169		}
2170		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2171		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2172		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2173		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2174			/*
2175			 * This is a DFS channel, transition to CAC state
2176			 * instead of RUN.  This allows us to initiate
2177			 * Channel Availability Check (CAC) as specified
2178			 * by 11h/DFS.
2179			 */
2180			nstate = IEEE80211_S_CAC;
2181			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2182			     "%s: override %s -> %s (DFS)\n", __func__,
2183			     ieee80211_state_name[ostate],
2184			     ieee80211_state_name[nstate]);
2185		}
2186		break;
2187	case IEEE80211_S_INIT:
2188		/* cancel any scan in progress */
2189		ieee80211_cancel_scan(vap);
2190		if (ostate == IEEE80211_S_INIT ) {
2191			/* XXX don't believe this */
2192			/* INIT -> INIT. nothing to do */
2193			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2194		}
2195		/* fall thru... */
2196	default:
2197		break;
2198	}
2199	/* defer the state change to a thread */
2200	vap->iv_nstate = nstate;
2201	vap->iv_nstate_arg = arg;
2202	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2203	ieee80211_runtask(ic, &vap->iv_nstate_task);
2204	return EINPROGRESS;
2205}
2206
2207int
2208ieee80211_new_state(struct ieee80211vap *vap,
2209	enum ieee80211_state nstate, int arg)
2210{
2211	struct ieee80211com *ic = vap->iv_ic;
2212	int rc;
2213
2214	IEEE80211_LOCK(ic);
2215	rc = ieee80211_new_state_locked(vap, nstate, arg);
2216	IEEE80211_UNLOCK(ic);
2217	return rc;
2218}
2219