ieee80211_proto.c revision 195618
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $");
29
30/*
31 * IEEE 802.11 protocol support.
32 */
33
34#include "opt_inet.h"
35#include "opt_wlan.h"
36
37#include <sys/param.h>
38#include <sys/kernel.h>
39#include <sys/systm.h>
40
41#include <sys/socket.h>
42#include <sys/sockio.h>
43
44#include <net/if.h>
45#include <net/if_media.h>
46#include <net/ethernet.h>		/* XXX for ether_sprintf */
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_adhoc.h>
50#include <net80211/ieee80211_sta.h>
51#include <net80211/ieee80211_hostap.h>
52#include <net80211/ieee80211_wds.h>
53#ifdef IEEE80211_SUPPORT_MESH
54#include <net80211/ieee80211_mesh.h>
55#endif
56#include <net80211/ieee80211_monitor.h>
57#include <net80211/ieee80211_input.h>
58
59/* XXX tunables */
60#define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61#define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62
63const char *ieee80211_mgt_subtype_name[] = {
64	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66	"beacon",	"atim",		"disassoc",	"auth",
67	"deauth",	"action",	"reserved#14",	"reserved#15"
68};
69const char *ieee80211_ctl_subtype_name[] = {
70	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73	"cts",		"ack",		"cf_end",	"cf_end_ack"
74};
75const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76	"IBSS",		/* IEEE80211_M_IBSS */
77	"STA",		/* IEEE80211_M_STA */
78	"WDS",		/* IEEE80211_M_WDS */
79	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81	"MONITOR",	/* IEEE80211_M_MONITOR */
82	"MBSS"		/* IEEE80211_M_MBSS */
83};
84const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85	"INIT",		/* IEEE80211_S_INIT */
86	"SCAN",		/* IEEE80211_S_SCAN */
87	"AUTH",		/* IEEE80211_S_AUTH */
88	"ASSOC",	/* IEEE80211_S_ASSOC */
89	"CAC",		/* IEEE80211_S_CAC */
90	"RUN",		/* IEEE80211_S_RUN */
91	"CSA",		/* IEEE80211_S_CSA */
92	"SLEEP",	/* IEEE80211_S_SLEEP */
93};
94const char *ieee80211_wme_acnames[] = {
95	"WME_AC_BE",
96	"WME_AC_BK",
97	"WME_AC_VI",
98	"WME_AC_VO",
99	"WME_UPSD",
100};
101
102static void beacon_miss(void *, int);
103static void beacon_swmiss(void *, int);
104static void parent_updown(void *, int);
105static void update_mcast(void *, int);
106static void update_promisc(void *, int);
107static void update_channel(void *, int);
108static void ieee80211_newstate_cb(void *, int);
109static int ieee80211_new_state_locked(struct ieee80211vap *,
110	enum ieee80211_state, int);
111
112static int
113null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114	const struct ieee80211_bpf_params *params)
115{
116	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117
118	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119	m_freem(m);
120	return ENETDOWN;
121}
122
123void
124ieee80211_proto_attach(struct ieee80211com *ic)
125{
126	struct ifnet *ifp = ic->ic_ifp;
127
128	/* override the 802.3 setting */
129	ifp->if_hdrlen = ic->ic_headroom
130		+ sizeof(struct ieee80211_qosframe_addr4)
131		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132		+ IEEE80211_WEP_EXTIVLEN;
133	/* XXX no way to recalculate on ifdetach */
134	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135		/* XXX sanity check... */
136		max_linkhdr = ALIGN(ifp->if_hdrlen);
137		max_hdr = max_linkhdr + max_protohdr;
138		max_datalen = MHLEN - max_hdr;
139	}
140	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141
142	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
143	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
144	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
145	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
146	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
147
148	ic->ic_wme.wme_hipri_switch_hysteresis =
149		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150
151	/* initialize management frame handlers */
152	ic->ic_send_mgmt = ieee80211_send_mgmt;
153	ic->ic_raw_xmit = null_raw_xmit;
154
155	ieee80211_adhoc_attach(ic);
156	ieee80211_sta_attach(ic);
157	ieee80211_wds_attach(ic);
158	ieee80211_hostap_attach(ic);
159#ifdef IEEE80211_SUPPORT_MESH
160	ieee80211_mesh_attach(ic);
161#endif
162	ieee80211_monitor_attach(ic);
163}
164
165void
166ieee80211_proto_detach(struct ieee80211com *ic)
167{
168	ieee80211_monitor_detach(ic);
169#ifdef IEEE80211_SUPPORT_MESH
170	ieee80211_mesh_detach(ic);
171#endif
172	ieee80211_hostap_detach(ic);
173	ieee80211_wds_detach(ic);
174	ieee80211_adhoc_detach(ic);
175	ieee80211_sta_detach(ic);
176}
177
178static void
179null_update_beacon(struct ieee80211vap *vap, int item)
180{
181}
182
183void
184ieee80211_proto_vattach(struct ieee80211vap *vap)
185{
186	struct ieee80211com *ic = vap->iv_ic;
187	struct ifnet *ifp = vap->iv_ifp;
188	int i;
189
190	/* override the 802.3 setting */
191	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192
193	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196	callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
197	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
198	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200	/*
201	 * Install default tx rate handling: no fixed rate, lowest
202	 * supported rate for mgmt and multicast frames.  Default
203	 * max retry count.  These settings can be changed by the
204	 * driver and/or user applications.
205	 */
206	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208
209		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
211			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
212			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
213		} else {
214			vap->iv_txparms[i].mgmtrate =
215			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
216			vap->iv_txparms[i].mcastrate =
217			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
218		}
219		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
220	}
221	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
222
223	vap->iv_update_beacon = null_update_beacon;
224	vap->iv_deliver_data = ieee80211_deliver_data;
225
226	/* attach support for operating mode */
227	ic->ic_vattach[vap->iv_opmode](vap);
228}
229
230void
231ieee80211_proto_vdetach(struct ieee80211vap *vap)
232{
233#define	FREEAPPIE(ie) do { \
234	if (ie != NULL) \
235		free(ie, M_80211_NODE_IE); \
236} while (0)
237	/*
238	 * Detach operating mode module.
239	 */
240	if (vap->iv_opdetach != NULL)
241		vap->iv_opdetach(vap);
242	/*
243	 * This should not be needed as we detach when reseting
244	 * the state but be conservative here since the
245	 * authenticator may do things like spawn kernel threads.
246	 */
247	if (vap->iv_auth->ia_detach != NULL)
248		vap->iv_auth->ia_detach(vap);
249	/*
250	 * Detach any ACL'ator.
251	 */
252	if (vap->iv_acl != NULL)
253		vap->iv_acl->iac_detach(vap);
254
255	FREEAPPIE(vap->iv_appie_beacon);
256	FREEAPPIE(vap->iv_appie_probereq);
257	FREEAPPIE(vap->iv_appie_proberesp);
258	FREEAPPIE(vap->iv_appie_assocreq);
259	FREEAPPIE(vap->iv_appie_assocresp);
260	FREEAPPIE(vap->iv_appie_wpa);
261#undef FREEAPPIE
262}
263
264/*
265 * Simple-minded authenticator module support.
266 */
267
268#define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
269/* XXX well-known names */
270static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
271	"wlan_internal",	/* IEEE80211_AUTH_NONE */
272	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
273	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
274	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
275	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
276	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
277};
278static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
279
280static const struct ieee80211_authenticator auth_internal = {
281	.ia_name		= "wlan_internal",
282	.ia_attach		= NULL,
283	.ia_detach		= NULL,
284	.ia_node_join		= NULL,
285	.ia_node_leave		= NULL,
286};
287
288/*
289 * Setup internal authenticators once; they are never unregistered.
290 */
291static void
292ieee80211_auth_setup(void)
293{
294	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
295	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
296	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
297}
298SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
299
300const struct ieee80211_authenticator *
301ieee80211_authenticator_get(int auth)
302{
303	if (auth >= IEEE80211_AUTH_MAX)
304		return NULL;
305	if (authenticators[auth] == NULL)
306		ieee80211_load_module(auth_modnames[auth]);
307	return authenticators[auth];
308}
309
310void
311ieee80211_authenticator_register(int type,
312	const struct ieee80211_authenticator *auth)
313{
314	if (type >= IEEE80211_AUTH_MAX)
315		return;
316	authenticators[type] = auth;
317}
318
319void
320ieee80211_authenticator_unregister(int type)
321{
322
323	if (type >= IEEE80211_AUTH_MAX)
324		return;
325	authenticators[type] = NULL;
326}
327
328/*
329 * Very simple-minded ACL module support.
330 */
331/* XXX just one for now */
332static	const struct ieee80211_aclator *acl = NULL;
333
334void
335ieee80211_aclator_register(const struct ieee80211_aclator *iac)
336{
337	printf("wlan: %s acl policy registered\n", iac->iac_name);
338	acl = iac;
339}
340
341void
342ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
343{
344	if (acl == iac)
345		acl = NULL;
346	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
347}
348
349const struct ieee80211_aclator *
350ieee80211_aclator_get(const char *name)
351{
352	if (acl == NULL)
353		ieee80211_load_module("wlan_acl");
354	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
355}
356
357void
358ieee80211_print_essid(const uint8_t *essid, int len)
359{
360	const uint8_t *p;
361	int i;
362
363	if (len > IEEE80211_NWID_LEN)
364		len = IEEE80211_NWID_LEN;
365	/* determine printable or not */
366	for (i = 0, p = essid; i < len; i++, p++) {
367		if (*p < ' ' || *p > 0x7e)
368			break;
369	}
370	if (i == len) {
371		printf("\"");
372		for (i = 0, p = essid; i < len; i++, p++)
373			printf("%c", *p);
374		printf("\"");
375	} else {
376		printf("0x");
377		for (i = 0, p = essid; i < len; i++, p++)
378			printf("%02x", *p);
379	}
380}
381
382void
383ieee80211_dump_pkt(struct ieee80211com *ic,
384	const uint8_t *buf, int len, int rate, int rssi)
385{
386	const struct ieee80211_frame *wh;
387	int i;
388
389	wh = (const struct ieee80211_frame *)buf;
390	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
391	case IEEE80211_FC1_DIR_NODS:
392		printf("NODS %s", ether_sprintf(wh->i_addr2));
393		printf("->%s", ether_sprintf(wh->i_addr1));
394		printf("(%s)", ether_sprintf(wh->i_addr3));
395		break;
396	case IEEE80211_FC1_DIR_TODS:
397		printf("TODS %s", ether_sprintf(wh->i_addr2));
398		printf("->%s", ether_sprintf(wh->i_addr3));
399		printf("(%s)", ether_sprintf(wh->i_addr1));
400		break;
401	case IEEE80211_FC1_DIR_FROMDS:
402		printf("FRDS %s", ether_sprintf(wh->i_addr3));
403		printf("->%s", ether_sprintf(wh->i_addr1));
404		printf("(%s)", ether_sprintf(wh->i_addr2));
405		break;
406	case IEEE80211_FC1_DIR_DSTODS:
407		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
408		printf("->%s", ether_sprintf(wh->i_addr3));
409		printf("(%s", ether_sprintf(wh->i_addr2));
410		printf("->%s)", ether_sprintf(wh->i_addr1));
411		break;
412	}
413	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
414	case IEEE80211_FC0_TYPE_DATA:
415		printf(" data");
416		break;
417	case IEEE80211_FC0_TYPE_MGT:
418		printf(" %s", ieee80211_mgt_subtype_name[
419		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
420		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
421		break;
422	default:
423		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
424		break;
425	}
426	if (IEEE80211_QOS_HAS_SEQ(wh)) {
427		const struct ieee80211_qosframe *qwh =
428			(const struct ieee80211_qosframe *)buf;
429		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
430			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
431	}
432	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
433		int off;
434
435		off = ieee80211_anyhdrspace(ic, wh);
436		printf(" WEP [IV %.02x %.02x %.02x",
437			buf[off+0], buf[off+1], buf[off+2]);
438		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
439			printf(" %.02x %.02x %.02x",
440				buf[off+4], buf[off+5], buf[off+6]);
441		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
442	}
443	if (rate >= 0)
444		printf(" %dM", rate / 2);
445	if (rssi >= 0)
446		printf(" +%d", rssi);
447	printf("\n");
448	if (len > 0) {
449		for (i = 0; i < len; i++) {
450			if ((i & 1) == 0)
451				printf(" ");
452			printf("%02x", buf[i]);
453		}
454		printf("\n");
455	}
456}
457
458static __inline int
459findrix(const struct ieee80211_rateset *rs, int r)
460{
461	int i;
462
463	for (i = 0; i < rs->rs_nrates; i++)
464		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
465			return i;
466	return -1;
467}
468
469int
470ieee80211_fix_rate(struct ieee80211_node *ni,
471	struct ieee80211_rateset *nrs, int flags)
472{
473#define	RV(v)	((v) & IEEE80211_RATE_VAL)
474	struct ieee80211vap *vap = ni->ni_vap;
475	struct ieee80211com *ic = ni->ni_ic;
476	int i, j, rix, error;
477	int okrate, badrate, fixedrate, ucastrate;
478	const struct ieee80211_rateset *srs;
479	uint8_t r;
480
481	error = 0;
482	okrate = badrate = 0;
483	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
484	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
485		/*
486		 * Workaround awkwardness with fixed rate.  We are called
487		 * to check both the legacy rate set and the HT rate set
488		 * but we must apply any legacy fixed rate check only to the
489		 * legacy rate set and vice versa.  We cannot tell what type
490		 * of rate set we've been given (legacy or HT) but we can
491		 * distinguish the fixed rate type (MCS have 0x80 set).
492		 * So to deal with this the caller communicates whether to
493		 * check MCS or legacy rate using the flags and we use the
494		 * type of any fixed rate to avoid applying an MCS to a
495		 * legacy rate and vice versa.
496		 */
497		if (ucastrate & 0x80) {
498			if (flags & IEEE80211_F_DOFRATE)
499				flags &= ~IEEE80211_F_DOFRATE;
500		} else if ((ucastrate & 0x80) == 0) {
501			if (flags & IEEE80211_F_DOFMCS)
502				flags &= ~IEEE80211_F_DOFMCS;
503		}
504		/* NB: required to make MCS match below work */
505		ucastrate &= IEEE80211_RATE_VAL;
506	}
507	fixedrate = IEEE80211_FIXED_RATE_NONE;
508	/*
509	 * XXX we are called to process both MCS and legacy rates;
510	 * we must use the appropriate basic rate set or chaos will
511	 * ensue; for now callers that want MCS must supply
512	 * IEEE80211_F_DOBRS; at some point we'll need to split this
513	 * function so there are two variants, one for MCS and one
514	 * for legacy rates.
515	 */
516	if (flags & IEEE80211_F_DOBRS)
517		srs = (const struct ieee80211_rateset *)
518		    ieee80211_get_suphtrates(ic, ni->ni_chan);
519	else
520		srs = ieee80211_get_suprates(ic, ni->ni_chan);
521	for (i = 0; i < nrs->rs_nrates; ) {
522		if (flags & IEEE80211_F_DOSORT) {
523			/*
524			 * Sort rates.
525			 */
526			for (j = i + 1; j < nrs->rs_nrates; j++) {
527				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
528					r = nrs->rs_rates[i];
529					nrs->rs_rates[i] = nrs->rs_rates[j];
530					nrs->rs_rates[j] = r;
531				}
532			}
533		}
534		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
535		badrate = r;
536		/*
537		 * Check for fixed rate.
538		 */
539		if (r == ucastrate)
540			fixedrate = r;
541		/*
542		 * Check against supported rates.
543		 */
544		rix = findrix(srs, r);
545		if (flags & IEEE80211_F_DONEGO) {
546			if (rix < 0) {
547				/*
548				 * A rate in the node's rate set is not
549				 * supported.  If this is a basic rate and we
550				 * are operating as a STA then this is an error.
551				 * Otherwise we just discard/ignore the rate.
552				 */
553				if ((flags & IEEE80211_F_JOIN) &&
554				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
555					error++;
556			} else if ((flags & IEEE80211_F_JOIN) == 0) {
557				/*
558				 * Overwrite with the supported rate
559				 * value so any basic rate bit is set.
560				 */
561				nrs->rs_rates[i] = srs->rs_rates[rix];
562			}
563		}
564		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
565			/*
566			 * Delete unacceptable rates.
567			 */
568			nrs->rs_nrates--;
569			for (j = i; j < nrs->rs_nrates; j++)
570				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
571			nrs->rs_rates[j] = 0;
572			continue;
573		}
574		if (rix >= 0)
575			okrate = nrs->rs_rates[i];
576		i++;
577	}
578	if (okrate == 0 || error != 0 ||
579	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
580	     fixedrate != ucastrate)) {
581		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
582		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
583		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
584		return badrate | IEEE80211_RATE_BASIC;
585	} else
586		return RV(okrate);
587#undef RV
588}
589
590/*
591 * Reset 11g-related state.
592 */
593void
594ieee80211_reset_erp(struct ieee80211com *ic)
595{
596	ic->ic_flags &= ~IEEE80211_F_USEPROT;
597	ic->ic_nonerpsta = 0;
598	ic->ic_longslotsta = 0;
599	/*
600	 * Short slot time is enabled only when operating in 11g
601	 * and not in an IBSS.  We must also honor whether or not
602	 * the driver is capable of doing it.
603	 */
604	ieee80211_set_shortslottime(ic,
605		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
606		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
607		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
608		ic->ic_opmode == IEEE80211_M_HOSTAP &&
609		(ic->ic_caps & IEEE80211_C_SHSLOT)));
610	/*
611	 * Set short preamble and ERP barker-preamble flags.
612	 */
613	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
614	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
615		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
616		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
617	} else {
618		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
619		ic->ic_flags |= IEEE80211_F_USEBARKER;
620	}
621}
622
623/*
624 * Set the short slot time state and notify the driver.
625 */
626void
627ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
628{
629	if (onoff)
630		ic->ic_flags |= IEEE80211_F_SHSLOT;
631	else
632		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
633	/* notify driver */
634	if (ic->ic_updateslot != NULL)
635		ic->ic_updateslot(ic->ic_ifp);
636}
637
638/*
639 * Check if the specified rate set supports ERP.
640 * NB: the rate set is assumed to be sorted.
641 */
642int
643ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
644{
645#define N(a)	(sizeof(a) / sizeof(a[0]))
646	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
647	int i, j;
648
649	if (rs->rs_nrates < N(rates))
650		return 0;
651	for (i = 0; i < N(rates); i++) {
652		for (j = 0; j < rs->rs_nrates; j++) {
653			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
654			if (rates[i] == r)
655				goto next;
656			if (r > rates[i])
657				return 0;
658		}
659		return 0;
660	next:
661		;
662	}
663	return 1;
664#undef N
665}
666
667/*
668 * Mark the basic rates for the rate table based on the
669 * operating mode.  For real 11g we mark all the 11b rates
670 * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
671 * 11b rates.  There's also a pseudo 11a-mode used to mark only
672 * the basic OFDM rates.
673 */
674static void
675setbasicrates(struct ieee80211_rateset *rs,
676    enum ieee80211_phymode mode, int add)
677{
678	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
679	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
680	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
681					    /* NB: mixed b/g */
682	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
683	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
684	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
685	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
686	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
687	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
688	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
689					    /* NB: mixed b/g */
690	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
691	};
692	int i, j;
693
694	for (i = 0; i < rs->rs_nrates; i++) {
695		if (!add)
696			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
697		for (j = 0; j < basic[mode].rs_nrates; j++)
698			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
699				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
700				break;
701			}
702	}
703}
704
705/*
706 * Set the basic rates in a rate set.
707 */
708void
709ieee80211_setbasicrates(struct ieee80211_rateset *rs,
710    enum ieee80211_phymode mode)
711{
712	setbasicrates(rs, mode, 0);
713}
714
715/*
716 * Add basic rates to a rate set.
717 */
718void
719ieee80211_addbasicrates(struct ieee80211_rateset *rs,
720    enum ieee80211_phymode mode)
721{
722	setbasicrates(rs, mode, 1);
723}
724
725/*
726 * WME protocol support.
727 *
728 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
729 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
730 * Draft 2.0 Test Plan (Appendix D).
731 *
732 * Static/Dynamic Turbo mode settings come from Atheros.
733 */
734typedef struct phyParamType {
735	uint8_t		aifsn;
736	uint8_t		logcwmin;
737	uint8_t		logcwmax;
738	uint16_t	txopLimit;
739	uint8_t 	acm;
740} paramType;
741
742static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
743	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
744	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
745	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
746	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
747	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
748	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
749	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
750	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
751	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
752	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
753	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
754	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
755};
756static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
757	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
758	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
759	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
760	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
761	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
762	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
763	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
764	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
765	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
766	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
767	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
768	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
769};
770static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
771	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
772	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
773	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
774	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
775	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
776	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
777	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
778	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
779	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
780	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
781	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
782	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
783};
784static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
785	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
786	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
787	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
788	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
789	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
790	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
791	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
792	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
793	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
794	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
795	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
796	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
797};
798
799static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
800	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
801	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
802	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
803	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
804	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
805	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
806	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
807	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
808	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
809	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
810	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
811	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
812};
813static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
814	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
815	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
816	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
817	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
818	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
819	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
820	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
821	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
822	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
823	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
824	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
825	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
826};
827static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
828	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
829	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
830	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
831	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
832	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
833	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
834	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
835	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
836	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
837	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
838	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
839	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
840};
841
842static void
843_setifsparams(struct wmeParams *wmep, const paramType *phy)
844{
845	wmep->wmep_aifsn = phy->aifsn;
846	wmep->wmep_logcwmin = phy->logcwmin;
847	wmep->wmep_logcwmax = phy->logcwmax;
848	wmep->wmep_txopLimit = phy->txopLimit;
849}
850
851static void
852setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
853	struct wmeParams *wmep, const paramType *phy)
854{
855	wmep->wmep_acm = phy->acm;
856	_setifsparams(wmep, phy);
857
858	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
859	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
860	    ieee80211_wme_acnames[ac], type,
861	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
862	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
863}
864
865static void
866ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
867{
868	struct ieee80211com *ic = vap->iv_ic;
869	struct ieee80211_wme_state *wme = &ic->ic_wme;
870	const paramType *pPhyParam, *pBssPhyParam;
871	struct wmeParams *wmep;
872	enum ieee80211_phymode mode;
873	int i;
874
875	IEEE80211_LOCK_ASSERT(ic);
876
877	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
878		return;
879
880	/*
881	 * Select mode; we can be called early in which case we
882	 * always use auto mode.  We know we'll be called when
883	 * entering the RUN state with bsschan setup properly
884	 * so state will eventually get set correctly
885	 */
886	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
887		mode = ieee80211_chan2mode(ic->ic_bsschan);
888	else
889		mode = IEEE80211_MODE_AUTO;
890	for (i = 0; i < WME_NUM_AC; i++) {
891		switch (i) {
892		case WME_AC_BK:
893			pPhyParam = &phyParamForAC_BK[mode];
894			pBssPhyParam = &phyParamForAC_BK[mode];
895			break;
896		case WME_AC_VI:
897			pPhyParam = &phyParamForAC_VI[mode];
898			pBssPhyParam = &bssPhyParamForAC_VI[mode];
899			break;
900		case WME_AC_VO:
901			pPhyParam = &phyParamForAC_VO[mode];
902			pBssPhyParam = &bssPhyParamForAC_VO[mode];
903			break;
904		case WME_AC_BE:
905		default:
906			pPhyParam = &phyParamForAC_BE[mode];
907			pBssPhyParam = &bssPhyParamForAC_BE[mode];
908			break;
909		}
910		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
911		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
912			setwmeparams(vap, "chan", i, wmep, pPhyParam);
913		} else {
914			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
915		}
916		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
917		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
918	}
919	/* NB: check ic_bss to avoid NULL deref on initial attach */
920	if (vap->iv_bss != NULL) {
921		/*
922		 * Calculate agressive mode switching threshold based
923		 * on beacon interval.  This doesn't need locking since
924		 * we're only called before entering the RUN state at
925		 * which point we start sending beacon frames.
926		 */
927		wme->wme_hipri_switch_thresh =
928			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
929		wme->wme_flags &= ~WME_F_AGGRMODE;
930		ieee80211_wme_updateparams(vap);
931	}
932}
933
934void
935ieee80211_wme_initparams(struct ieee80211vap *vap)
936{
937	struct ieee80211com *ic = vap->iv_ic;
938
939	IEEE80211_LOCK(ic);
940	ieee80211_wme_initparams_locked(vap);
941	IEEE80211_UNLOCK(ic);
942}
943
944/*
945 * Update WME parameters for ourself and the BSS.
946 */
947void
948ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
949{
950	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
951	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
952	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
953	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
954	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
955	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
956	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
957	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
958	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
959	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
960	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
961	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
962	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
963	};
964	struct ieee80211com *ic = vap->iv_ic;
965	struct ieee80211_wme_state *wme = &ic->ic_wme;
966	const struct wmeParams *wmep;
967	struct wmeParams *chanp, *bssp;
968	enum ieee80211_phymode mode;
969	int i;
970
971       	/*
972	 * Set up the channel access parameters for the physical
973	 * device.  First populate the configured settings.
974	 */
975	for (i = 0; i < WME_NUM_AC; i++) {
976		chanp = &wme->wme_chanParams.cap_wmeParams[i];
977		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
978		chanp->wmep_aifsn = wmep->wmep_aifsn;
979		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
980		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
981		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
982
983		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
984		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
985		chanp->wmep_aifsn = wmep->wmep_aifsn;
986		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
987		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
988		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
989	}
990
991	/*
992	 * Select mode; we can be called early in which case we
993	 * always use auto mode.  We know we'll be called when
994	 * entering the RUN state with bsschan setup properly
995	 * so state will eventually get set correctly
996	 */
997	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
998		mode = ieee80211_chan2mode(ic->ic_bsschan);
999	else
1000		mode = IEEE80211_MODE_AUTO;
1001
1002	/*
1003	 * This implements agressive mode as found in certain
1004	 * vendors' AP's.  When there is significant high
1005	 * priority (VI/VO) traffic in the BSS throttle back BE
1006	 * traffic by using conservative parameters.  Otherwise
1007	 * BE uses agressive params to optimize performance of
1008	 * legacy/non-QoS traffic.
1009	 */
1010        if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1011	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1012	    (vap->iv_opmode == IEEE80211_M_STA &&
1013	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1014	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1015		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1016		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1017
1018		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1019		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1020		    aggrParam[mode].logcwmin;
1021		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1022		    aggrParam[mode].logcwmax;
1023		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1024		    (vap->iv_flags & IEEE80211_F_BURST) ?
1025			aggrParam[mode].txopLimit : 0;
1026		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1027		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1028		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1029		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1030		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1031	}
1032
1033	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1034	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1035		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1036		    [IEEE80211_MODE_AUTO]	= 3,
1037		    [IEEE80211_MODE_11A]	= 3,
1038		    [IEEE80211_MODE_11B]	= 4,
1039		    [IEEE80211_MODE_11G]	= 3,
1040		    [IEEE80211_MODE_FH]		= 4,
1041		    [IEEE80211_MODE_TURBO_A]	= 3,
1042		    [IEEE80211_MODE_TURBO_G]	= 3,
1043		    [IEEE80211_MODE_STURBO_A]	= 3,
1044		    [IEEE80211_MODE_HALF]	= 3,
1045		    [IEEE80211_MODE_QUARTER]	= 3,
1046		    [IEEE80211_MODE_11NA]	= 3,
1047		    [IEEE80211_MODE_11NG]	= 3,
1048		};
1049		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1050		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1051
1052		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1053		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1054		    "update %s (chan+bss) logcwmin %u\n",
1055		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1056    	}
1057	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1058		/*
1059		 * Arrange for a beacon update and bump the parameter
1060		 * set number so associated stations load the new values.
1061		 */
1062		wme->wme_bssChanParams.cap_info =
1063			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1064		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1065	}
1066
1067	wme->wme_update(ic);
1068
1069	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1070	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1071	    vap->iv_opmode == IEEE80211_M_STA ?
1072		wme->wme_wmeChanParams.cap_info :
1073		wme->wme_bssChanParams.cap_info);
1074}
1075
1076void
1077ieee80211_wme_updateparams(struct ieee80211vap *vap)
1078{
1079	struct ieee80211com *ic = vap->iv_ic;
1080
1081	if (ic->ic_caps & IEEE80211_C_WME) {
1082		IEEE80211_LOCK(ic);
1083		ieee80211_wme_updateparams_locked(vap);
1084		IEEE80211_UNLOCK(ic);
1085	}
1086}
1087
1088static void
1089parent_updown(void *arg, int npending)
1090{
1091	struct ifnet *parent = arg;
1092
1093	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1094}
1095
1096static void
1097update_mcast(void *arg, int npending)
1098{
1099	struct ieee80211com *ic = arg;
1100	struct ifnet *parent = ic->ic_ifp;
1101
1102	ic->ic_update_mcast(parent);
1103}
1104
1105static void
1106update_promisc(void *arg, int npending)
1107{
1108	struct ieee80211com *ic = arg;
1109	struct ifnet *parent = ic->ic_ifp;
1110
1111	ic->ic_update_promisc(parent);
1112}
1113
1114static void
1115update_channel(void *arg, int npending)
1116{
1117	struct ieee80211com *ic = arg;
1118
1119	ic->ic_set_channel(ic);
1120	ieee80211_radiotap_chan_change(ic);
1121}
1122
1123/*
1124 * Block until the parent is in a known state.  This is
1125 * used after any operations that dispatch a task (e.g.
1126 * to auto-configure the parent device up/down).
1127 */
1128void
1129ieee80211_waitfor_parent(struct ieee80211com *ic)
1130{
1131	taskqueue_block(ic->ic_tq);
1132	ieee80211_draintask(ic, &ic->ic_parent_task);
1133	ieee80211_draintask(ic, &ic->ic_mcast_task);
1134	ieee80211_draintask(ic, &ic->ic_promisc_task);
1135	ieee80211_draintask(ic, &ic->ic_chan_task);
1136	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1137	taskqueue_unblock(ic->ic_tq);
1138}
1139
1140/*
1141 * Start a vap running.  If this is the first vap to be
1142 * set running on the underlying device then we
1143 * automatically bring the device up.
1144 */
1145void
1146ieee80211_start_locked(struct ieee80211vap *vap)
1147{
1148	struct ifnet *ifp = vap->iv_ifp;
1149	struct ieee80211com *ic = vap->iv_ic;
1150	struct ifnet *parent = ic->ic_ifp;
1151
1152	IEEE80211_LOCK_ASSERT(ic);
1153
1154	IEEE80211_DPRINTF(vap,
1155		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1156		"start running, %d vaps running\n", ic->ic_nrunning);
1157
1158	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1159		/*
1160		 * Mark us running.  Note that it's ok to do this first;
1161		 * if we need to bring the parent device up we defer that
1162		 * to avoid dropping the com lock.  We expect the device
1163		 * to respond to being marked up by calling back into us
1164		 * through ieee80211_start_all at which point we'll come
1165		 * back in here and complete the work.
1166		 */
1167		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1168		/*
1169		 * We are not running; if this we are the first vap
1170		 * to be brought up auto-up the parent if necessary.
1171		 */
1172		if (ic->ic_nrunning++ == 0 &&
1173		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1174			IEEE80211_DPRINTF(vap,
1175			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1176			    "%s: up parent %s\n", __func__, parent->if_xname);
1177			parent->if_flags |= IFF_UP;
1178			ieee80211_runtask(ic, &ic->ic_parent_task);
1179			return;
1180		}
1181	}
1182	/*
1183	 * If the parent is up and running, then kick the
1184	 * 802.11 state machine as appropriate.
1185	 */
1186	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1187	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1188		if (vap->iv_opmode == IEEE80211_M_STA) {
1189#if 0
1190			/* XXX bypasses scan too easily; disable for now */
1191			/*
1192			 * Try to be intelligent about clocking the state
1193			 * machine.  If we're currently in RUN state then
1194			 * we should be able to apply any new state/parameters
1195			 * simply by re-associating.  Otherwise we need to
1196			 * re-scan to select an appropriate ap.
1197			 */
1198			if (vap->iv_state >= IEEE80211_S_RUN)
1199				ieee80211_new_state_locked(vap,
1200				    IEEE80211_S_ASSOC, 1);
1201			else
1202#endif
1203				ieee80211_new_state_locked(vap,
1204				    IEEE80211_S_SCAN, 0);
1205		} else {
1206			/*
1207			 * For monitor+wds mode there's nothing to do but
1208			 * start running.  Otherwise if this is the first
1209			 * vap to be brought up, start a scan which may be
1210			 * preempted if the station is locked to a particular
1211			 * channel.
1212			 */
1213			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1214			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1215			    vap->iv_opmode == IEEE80211_M_WDS)
1216				ieee80211_new_state_locked(vap,
1217				    IEEE80211_S_RUN, -1);
1218			else
1219				ieee80211_new_state_locked(vap,
1220				    IEEE80211_S_SCAN, 0);
1221		}
1222	}
1223}
1224
1225/*
1226 * Start a single vap.
1227 */
1228void
1229ieee80211_init(void *arg)
1230{
1231	struct ieee80211vap *vap = arg;
1232
1233	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1234	    "%s\n", __func__);
1235
1236	IEEE80211_LOCK(vap->iv_ic);
1237	ieee80211_start_locked(vap);
1238	IEEE80211_UNLOCK(vap->iv_ic);
1239}
1240
1241/*
1242 * Start all runnable vap's on a device.
1243 */
1244void
1245ieee80211_start_all(struct ieee80211com *ic)
1246{
1247	struct ieee80211vap *vap;
1248
1249	IEEE80211_LOCK(ic);
1250	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1251		struct ifnet *ifp = vap->iv_ifp;
1252		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1253			ieee80211_start_locked(vap);
1254	}
1255	IEEE80211_UNLOCK(ic);
1256}
1257
1258/*
1259 * Stop a vap.  We force it down using the state machine
1260 * then mark it's ifnet not running.  If this is the last
1261 * vap running on the underlying device then we close it
1262 * too to insure it will be properly initialized when the
1263 * next vap is brought up.
1264 */
1265void
1266ieee80211_stop_locked(struct ieee80211vap *vap)
1267{
1268	struct ieee80211com *ic = vap->iv_ic;
1269	struct ifnet *ifp = vap->iv_ifp;
1270	struct ifnet *parent = ic->ic_ifp;
1271
1272	IEEE80211_LOCK_ASSERT(ic);
1273
1274	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1275	    "stop running, %d vaps running\n", ic->ic_nrunning);
1276
1277	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1278	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1279		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1280		if (--ic->ic_nrunning == 0 &&
1281		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1282			IEEE80211_DPRINTF(vap,
1283			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1284			    "down parent %s\n", parent->if_xname);
1285			parent->if_flags &= ~IFF_UP;
1286			ieee80211_runtask(ic, &ic->ic_parent_task);
1287		}
1288	}
1289}
1290
1291void
1292ieee80211_stop(struct ieee80211vap *vap)
1293{
1294	struct ieee80211com *ic = vap->iv_ic;
1295
1296	IEEE80211_LOCK(ic);
1297	ieee80211_stop_locked(vap);
1298	IEEE80211_UNLOCK(ic);
1299}
1300
1301/*
1302 * Stop all vap's running on a device.
1303 */
1304void
1305ieee80211_stop_all(struct ieee80211com *ic)
1306{
1307	struct ieee80211vap *vap;
1308
1309	IEEE80211_LOCK(ic);
1310	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1311		struct ifnet *ifp = vap->iv_ifp;
1312		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1313			ieee80211_stop_locked(vap);
1314	}
1315	IEEE80211_UNLOCK(ic);
1316
1317	ieee80211_waitfor_parent(ic);
1318}
1319
1320/*
1321 * Stop all vap's running on a device and arrange
1322 * for those that were running to be resumed.
1323 */
1324void
1325ieee80211_suspend_all(struct ieee80211com *ic)
1326{
1327	struct ieee80211vap *vap;
1328
1329	IEEE80211_LOCK(ic);
1330	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1331		struct ifnet *ifp = vap->iv_ifp;
1332		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1333			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1334			ieee80211_stop_locked(vap);
1335		}
1336	}
1337	IEEE80211_UNLOCK(ic);
1338
1339	ieee80211_waitfor_parent(ic);
1340}
1341
1342/*
1343 * Start all vap's marked for resume.
1344 */
1345void
1346ieee80211_resume_all(struct ieee80211com *ic)
1347{
1348	struct ieee80211vap *vap;
1349
1350	IEEE80211_LOCK(ic);
1351	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1352		struct ifnet *ifp = vap->iv_ifp;
1353		if (!IFNET_IS_UP_RUNNING(ifp) &&
1354		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1355			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1356			ieee80211_start_locked(vap);
1357		}
1358	}
1359	IEEE80211_UNLOCK(ic);
1360}
1361
1362void
1363ieee80211_beacon_miss(struct ieee80211com *ic)
1364{
1365	IEEE80211_LOCK(ic);
1366	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1367		/* Process in a taskq, the handler may reenter the driver */
1368		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1369	}
1370	IEEE80211_UNLOCK(ic);
1371}
1372
1373static void
1374beacon_miss(void *arg, int npending)
1375{
1376	struct ieee80211com *ic = arg;
1377	struct ieee80211vap *vap;
1378
1379	/* XXX locking */
1380	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1381		/*
1382		 * We only pass events through for sta vap's in RUN state;
1383		 * may be too restrictive but for now this saves all the
1384		 * handlers duplicating these checks.
1385		 */
1386		if (vap->iv_opmode == IEEE80211_M_STA &&
1387		    vap->iv_state >= IEEE80211_S_RUN &&
1388		    vap->iv_bmiss != NULL)
1389			vap->iv_bmiss(vap);
1390	}
1391}
1392
1393static void
1394beacon_swmiss(void *arg, int npending)
1395{
1396	struct ieee80211vap *vap = arg;
1397
1398	if (vap->iv_state != IEEE80211_S_RUN)
1399		return;
1400
1401	/* XXX Call multiple times if npending > zero? */
1402	vap->iv_bmiss(vap);
1403}
1404
1405/*
1406 * Software beacon miss handling.  Check if any beacons
1407 * were received in the last period.  If not post a
1408 * beacon miss; otherwise reset the counter.
1409 */
1410void
1411ieee80211_swbmiss(void *arg)
1412{
1413	struct ieee80211vap *vap = arg;
1414	struct ieee80211com *ic = vap->iv_ic;
1415
1416	/* XXX sleep state? */
1417	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1418	    ("wrong state %d", vap->iv_state));
1419
1420	if (ic->ic_flags & IEEE80211_F_SCAN) {
1421		/*
1422		 * If scanning just ignore and reset state.  If we get a
1423		 * bmiss after coming out of scan because we haven't had
1424		 * time to receive a beacon then we should probe the AP
1425		 * before posting a real bmiss (unless iv_bmiss_max has
1426		 * been artifiically lowered).  A cleaner solution might
1427		 * be to disable the timer on scan start/end but to handle
1428		 * case of multiple sta vap's we'd need to disable the
1429		 * timers of all affected vap's.
1430		 */
1431		vap->iv_swbmiss_count = 0;
1432	} else if (vap->iv_swbmiss_count == 0) {
1433		if (vap->iv_bmiss != NULL)
1434			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1435		if (vap->iv_bmiss_count == 0)	/* don't re-arm timer */
1436			return;
1437	} else
1438		vap->iv_swbmiss_count = 0;
1439	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1440		ieee80211_swbmiss, vap);
1441}
1442
1443/*
1444 * Start an 802.11h channel switch.  We record the parameters,
1445 * mark the operation pending, notify each vap through the
1446 * beacon update mechanism so it can update the beacon frame
1447 * contents, and then switch vap's to CSA state to block outbound
1448 * traffic.  Devices that handle CSA directly can use the state
1449 * switch to do the right thing so long as they call
1450 * ieee80211_csa_completeswitch when it's time to complete the
1451 * channel change.  Devices that depend on the net80211 layer can
1452 * use ieee80211_beacon_update to handle the countdown and the
1453 * channel switch.
1454 */
1455void
1456ieee80211_csa_startswitch(struct ieee80211com *ic,
1457	struct ieee80211_channel *c, int mode, int count)
1458{
1459	struct ieee80211vap *vap;
1460
1461	IEEE80211_LOCK_ASSERT(ic);
1462
1463	ic->ic_csa_newchan = c;
1464	ic->ic_csa_mode = mode;
1465	ic->ic_csa_count = count;
1466	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1467	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1468		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1469		    vap->iv_opmode == IEEE80211_M_IBSS ||
1470		    vap->iv_opmode == IEEE80211_M_MBSS)
1471			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1472		/* switch to CSA state to block outbound traffic */
1473		if (vap->iv_state == IEEE80211_S_RUN)
1474			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1475	}
1476	ieee80211_notify_csa(ic, c, mode, count);
1477}
1478
1479static void
1480csa_completeswitch(struct ieee80211com *ic)
1481{
1482	struct ieee80211vap *vap;
1483
1484	ic->ic_csa_newchan = NULL;
1485	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1486
1487	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1488		if (vap->iv_state == IEEE80211_S_CSA)
1489			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1490}
1491
1492/*
1493 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1494 * We clear state and move all vap's in CSA state to RUN state
1495 * so they can again transmit.
1496 */
1497void
1498ieee80211_csa_completeswitch(struct ieee80211com *ic)
1499{
1500	IEEE80211_LOCK_ASSERT(ic);
1501
1502	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1503
1504	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1505	csa_completeswitch(ic);
1506}
1507
1508/*
1509 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1510 * We clear state and move all vap's in CSA state to RUN state
1511 * so they can again transmit.
1512 */
1513void
1514ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1515{
1516	IEEE80211_LOCK_ASSERT(ic);
1517
1518	csa_completeswitch(ic);
1519}
1520
1521/*
1522 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1523 * We clear state and move all vap's in CAC state to RUN state.
1524 */
1525void
1526ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1527{
1528	struct ieee80211com *ic = vap0->iv_ic;
1529	struct ieee80211vap *vap;
1530
1531	IEEE80211_LOCK(ic);
1532	/*
1533	 * Complete CAC state change for lead vap first; then
1534	 * clock all the other vap's waiting.
1535	 */
1536	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1537	    ("wrong state %d", vap0->iv_state));
1538	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1539
1540	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1541		if (vap->iv_state == IEEE80211_S_CAC)
1542			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1543	IEEE80211_UNLOCK(ic);
1544}
1545
1546/*
1547 * Force all vap's other than the specified vap to the INIT state
1548 * and mark them as waiting for a scan to complete.  These vaps
1549 * will be brought up when the scan completes and the scanning vap
1550 * reaches RUN state by wakeupwaiting.
1551 */
1552static void
1553markwaiting(struct ieee80211vap *vap0)
1554{
1555	struct ieee80211com *ic = vap0->iv_ic;
1556	struct ieee80211vap *vap;
1557
1558	IEEE80211_LOCK_ASSERT(ic);
1559
1560	/*
1561	 * A vap list entry can not disappear since we are running on the
1562	 * taskqueue and a vap destroy will queue and drain another state
1563	 * change task.
1564	 */
1565	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1566		if (vap == vap0)
1567			continue;
1568		if (vap->iv_state != IEEE80211_S_INIT) {
1569			/* NB: iv_newstate may drop the lock */
1570			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1571			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1572		}
1573	}
1574}
1575
1576/*
1577 * Wakeup all vap's waiting for a scan to complete.  This is the
1578 * companion to markwaiting (above) and is used to coordinate
1579 * multiple vaps scanning.
1580 * This is called from the state taskqueue.
1581 */
1582static void
1583wakeupwaiting(struct ieee80211vap *vap0)
1584{
1585	struct ieee80211com *ic = vap0->iv_ic;
1586	struct ieee80211vap *vap;
1587
1588	IEEE80211_LOCK_ASSERT(ic);
1589
1590	/*
1591	 * A vap list entry can not disappear since we are running on the
1592	 * taskqueue and a vap destroy will queue and drain another state
1593	 * change task.
1594	 */
1595	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1596		if (vap == vap0)
1597			continue;
1598		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1599			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1600			/* NB: sta's cannot go INIT->RUN */
1601			/* NB: iv_newstate may drop the lock */
1602			vap->iv_newstate(vap,
1603			    vap->iv_opmode == IEEE80211_M_STA ?
1604			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1605		}
1606	}
1607}
1608
1609/*
1610 * Handle post state change work common to all operating modes.
1611 */
1612static void
1613ieee80211_newstate_cb(void *xvap, int npending)
1614{
1615	struct ieee80211vap *vap = xvap;
1616	struct ieee80211com *ic = vap->iv_ic;
1617	enum ieee80211_state nstate, ostate;
1618	int arg, rc;
1619
1620	IEEE80211_LOCK(ic);
1621	nstate = vap->iv_nstate;
1622	arg = vap->iv_nstate_arg;
1623
1624	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1625		/*
1626		 * We have been requested to drop back to the INIT before
1627		 * proceeding to the new state.
1628		 */
1629		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1630		    "%s: %s -> %s arg %d\n", __func__,
1631		    ieee80211_state_name[vap->iv_state],
1632		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1633		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1634		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1635	}
1636
1637	ostate = vap->iv_state;
1638	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1639		/*
1640		 * SCAN was forced; e.g. on beacon miss.  Force other running
1641		 * vap's to INIT state and mark them as waiting for the scan to
1642		 * complete.  This insures they don't interfere with our
1643		 * scanning.  Since we are single threaded the vaps can not
1644		 * transition again while we are executing.
1645		 *
1646		 * XXX not always right, assumes ap follows sta
1647		 */
1648		markwaiting(vap);
1649	}
1650	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1651	    "%s: %s -> %s arg %d\n", __func__,
1652	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1653
1654	rc = vap->iv_newstate(vap, nstate, arg);
1655	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1656	if (rc != 0) {
1657		/* State transition failed */
1658		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1659		KASSERT(nstate != IEEE80211_S_INIT,
1660		    ("INIT state change failed"));
1661		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1662		    "%s: %s returned error %d\n", __func__,
1663		    ieee80211_state_name[nstate], rc);
1664		goto done;
1665	}
1666
1667	/* No actual transition, skip post processing */
1668	if (ostate == nstate)
1669		goto done;
1670
1671	if (nstate == IEEE80211_S_RUN) {
1672		/*
1673		 * OACTIVE may be set on the vap if the upper layer
1674		 * tried to transmit (e.g. IPv6 NDP) before we reach
1675		 * RUN state.  Clear it and restart xmit.
1676		 *
1677		 * Note this can also happen as a result of SLEEP->RUN
1678		 * (i.e. coming out of power save mode).
1679		 */
1680		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1681		if_start(vap->iv_ifp);
1682
1683		/* bring up any vaps waiting on us */
1684		wakeupwaiting(vap);
1685	} else if (nstate == IEEE80211_S_INIT) {
1686		/*
1687		 * Flush the scan cache if we did the last scan (XXX?)
1688		 * and flush any frames on send queues from this vap.
1689		 * Note the mgt q is used only for legacy drivers and
1690		 * will go away shortly.
1691		 */
1692		ieee80211_scan_flush(vap);
1693
1694		/* XXX NB: cast for altq */
1695		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1696	}
1697done:
1698	IEEE80211_UNLOCK(ic);
1699}
1700
1701/*
1702 * Public interface for initiating a state machine change.
1703 * This routine single-threads the request and coordinates
1704 * the scheduling of multiple vaps for the purpose of selecting
1705 * an operating channel.  Specifically the following scenarios
1706 * are handled:
1707 * o only one vap can be selecting a channel so on transition to
1708 *   SCAN state if another vap is already scanning then
1709 *   mark the caller for later processing and return without
1710 *   doing anything (XXX? expectations by caller of synchronous operation)
1711 * o only one vap can be doing CAC of a channel so on transition to
1712 *   CAC state if another vap is already scanning for radar then
1713 *   mark the caller for later processing and return without
1714 *   doing anything (XXX? expectations by caller of synchronous operation)
1715 * o if another vap is already running when a request is made
1716 *   to SCAN then an operating channel has been chosen; bypass
1717 *   the scan and just join the channel
1718 *
1719 * Note that the state change call is done through the iv_newstate
1720 * method pointer so any driver routine gets invoked.  The driver
1721 * will normally call back into operating mode-specific
1722 * ieee80211_newstate routines (below) unless it needs to completely
1723 * bypass the state machine (e.g. because the firmware has it's
1724 * own idea how things should work).  Bypassing the net80211 layer
1725 * is usually a mistake and indicates lack of proper integration
1726 * with the net80211 layer.
1727 */
1728static int
1729ieee80211_new_state_locked(struct ieee80211vap *vap,
1730	enum ieee80211_state nstate, int arg)
1731{
1732	struct ieee80211com *ic = vap->iv_ic;
1733	struct ieee80211vap *vp;
1734	enum ieee80211_state ostate;
1735	int nrunning, nscanning;
1736
1737	IEEE80211_LOCK_ASSERT(ic);
1738
1739	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1740		if (vap->iv_nstate == IEEE80211_S_INIT) {
1741			/*
1742			 * XXX The vap is being stopped, do no allow any other
1743			 * state changes until this is completed.
1744			 */
1745			return -1;
1746		} else if (vap->iv_state != vap->iv_nstate) {
1747#if 0
1748			/* Warn if the previous state hasn't completed. */
1749			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1750			    "%s: pending %s -> %s transition lost\n", __func__,
1751			    ieee80211_state_name[vap->iv_state],
1752			    ieee80211_state_name[vap->iv_nstate]);
1753#else
1754			/* XXX temporarily enable to identify issues */
1755			if_printf(vap->iv_ifp,
1756			    "%s: pending %s -> %s transition lost\n",
1757			    __func__, ieee80211_state_name[vap->iv_state],
1758			    ieee80211_state_name[vap->iv_nstate]);
1759#endif
1760		}
1761	}
1762
1763	nrunning = nscanning = 0;
1764	/* XXX can track this state instead of calculating */
1765	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1766		if (vp != vap) {
1767			if (vp->iv_state >= IEEE80211_S_RUN)
1768				nrunning++;
1769			/* XXX doesn't handle bg scan */
1770			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1771			else if (vp->iv_state > IEEE80211_S_INIT)
1772				nscanning++;
1773		}
1774	}
1775	ostate = vap->iv_state;
1776	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1777	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1778	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1779	    nrunning, nscanning);
1780	switch (nstate) {
1781	case IEEE80211_S_SCAN:
1782		if (ostate == IEEE80211_S_INIT) {
1783			/*
1784			 * INIT -> SCAN happens on initial bringup.
1785			 */
1786			KASSERT(!(nscanning && nrunning),
1787			    ("%d scanning and %d running", nscanning, nrunning));
1788			if (nscanning) {
1789				/*
1790				 * Someone is scanning, defer our state
1791				 * change until the work has completed.
1792				 */
1793				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1794				    "%s: defer %s -> %s\n",
1795				    __func__, ieee80211_state_name[ostate],
1796				    ieee80211_state_name[nstate]);
1797				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1798				return 0;
1799			}
1800			if (nrunning) {
1801				/*
1802				 * Someone is operating; just join the channel
1803				 * they have chosen.
1804				 */
1805				/* XXX kill arg? */
1806				/* XXX check each opmode, adhoc? */
1807				if (vap->iv_opmode == IEEE80211_M_STA)
1808					nstate = IEEE80211_S_SCAN;
1809				else
1810					nstate = IEEE80211_S_RUN;
1811#ifdef IEEE80211_DEBUG
1812				if (nstate != IEEE80211_S_SCAN) {
1813					IEEE80211_DPRINTF(vap,
1814					    IEEE80211_MSG_STATE,
1815					    "%s: override, now %s -> %s\n",
1816					    __func__,
1817					    ieee80211_state_name[ostate],
1818					    ieee80211_state_name[nstate]);
1819				}
1820#endif
1821			}
1822		}
1823		break;
1824	case IEEE80211_S_RUN:
1825		if (vap->iv_opmode == IEEE80211_M_WDS &&
1826		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1827		    nscanning) {
1828			/*
1829			 * Legacy WDS with someone else scanning; don't
1830			 * go online until that completes as we should
1831			 * follow the other vap to the channel they choose.
1832			 */
1833			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1834			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1835			     ieee80211_state_name[ostate],
1836			     ieee80211_state_name[nstate]);
1837			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1838			return 0;
1839		}
1840		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1841		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1842		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1843		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1844			/*
1845			 * This is a DFS channel, transition to CAC state
1846			 * instead of RUN.  This allows us to initiate
1847			 * Channel Availability Check (CAC) as specified
1848			 * by 11h/DFS.
1849			 */
1850			nstate = IEEE80211_S_CAC;
1851			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1852			     "%s: override %s -> %s (DFS)\n", __func__,
1853			     ieee80211_state_name[ostate],
1854			     ieee80211_state_name[nstate]);
1855		}
1856		break;
1857	case IEEE80211_S_INIT:
1858		/* cancel any scan in progress */
1859		ieee80211_cancel_scan(vap);
1860		if (ostate == IEEE80211_S_INIT ) {
1861			/* XXX don't believe this */
1862			/* INIT -> INIT. nothing to do */
1863			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1864		}
1865		/* fall thru... */
1866	default:
1867		break;
1868	}
1869	/* defer the state change to a thread */
1870	vap->iv_nstate = nstate;
1871	vap->iv_nstate_arg = arg;
1872	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1873	ieee80211_runtask(ic, &vap->iv_nstate_task);
1874	return EINPROGRESS;
1875}
1876
1877int
1878ieee80211_new_state(struct ieee80211vap *vap,
1879	enum ieee80211_state nstate, int arg)
1880{
1881	struct ieee80211com *ic = vap->iv_ic;
1882	int rc;
1883
1884	IEEE80211_LOCK(ic);
1885	rc = ieee80211_new_state_locked(vap, nstate, arg);
1886	IEEE80211_UNLOCK(ic);
1887	return rc;
1888}
1889