ieee80211.c revision 206358
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $");
29
30/*
31 * IEEE 802.11 generic handler
32 */
33#include "opt_wlan.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38
39#include <sys/socket.h>
40
41#include <net/if.h>
42#include <net/if_dl.h>
43#include <net/if_media.h>
44#include <net/if_types.h>
45#include <net/ethernet.h>
46
47#include <net80211/ieee80211_var.h>
48#include <net80211/ieee80211_regdomain.h>
49#ifdef IEEE80211_SUPPORT_SUPERG
50#include <net80211/ieee80211_superg.h>
51#endif
52#include <net80211/ieee80211_ratectl.h>
53
54#include <net/bpf.h>
55
56const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57	[IEEE80211_MODE_AUTO]	  = "auto",
58	[IEEE80211_MODE_11A]	  = "11a",
59	[IEEE80211_MODE_11B]	  = "11b",
60	[IEEE80211_MODE_11G]	  = "11g",
61	[IEEE80211_MODE_FH]	  = "FH",
62	[IEEE80211_MODE_TURBO_A]  = "turboA",
63	[IEEE80211_MODE_TURBO_G]  = "turboG",
64	[IEEE80211_MODE_STURBO_A] = "sturboA",
65	[IEEE80211_MODE_HALF]	  = "half",
66	[IEEE80211_MODE_QUARTER]  = "quarter",
67	[IEEE80211_MODE_11NA]	  = "11na",
68	[IEEE80211_MODE_11NG]	  = "11ng",
69};
70/* map ieee80211_opmode to the corresponding capability bit */
71const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78#ifdef IEEE80211_SUPPORT_MESH
79	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80#endif
81};
82
83static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85
86static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89static	int ieee80211_media_setup(struct ieee80211com *ic,
90		struct ifmedia *media, int caps, int addsta,
91		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93static	int ieee80211com_media_change(struct ifnet *);
94static	int media_status(enum ieee80211_opmode,
95		const struct ieee80211_channel *);
96
97MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
98
99/*
100 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
101 */
102#define	B(r)	((r) | IEEE80211_RATE_BASIC)
103static const struct ieee80211_rateset ieee80211_rateset_11a =
104	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
105static const struct ieee80211_rateset ieee80211_rateset_half =
106	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
107static const struct ieee80211_rateset ieee80211_rateset_quarter =
108	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
109static const struct ieee80211_rateset ieee80211_rateset_11b =
110	{ 4, { B(2), B(4), B(11), B(22) } };
111/* NB: OFDM rates are handled specially based on mode */
112static const struct ieee80211_rateset ieee80211_rateset_11g =
113	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
114#undef B
115
116/*
117 * Fill in 802.11 available channel set, mark
118 * all available channels as active, and pick
119 * a default channel if not already specified.
120 */
121static void
122ieee80211_chan_init(struct ieee80211com *ic)
123{
124#define	DEFAULTRATES(m, def) do { \
125	if (ic->ic_sup_rates[m].rs_nrates == 0) \
126		ic->ic_sup_rates[m] = def; \
127} while (0)
128	struct ieee80211_channel *c;
129	int i;
130
131	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
132		("invalid number of channels specified: %u", ic->ic_nchans));
133	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
134	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
135	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
136	for (i = 0; i < ic->ic_nchans; i++) {
137		c = &ic->ic_channels[i];
138		KASSERT(c->ic_flags != 0, ("channel with no flags"));
139		/*
140		 * Help drivers that work only with frequencies by filling
141		 * in IEEE channel #'s if not already calculated.  Note this
142		 * mimics similar work done in ieee80211_setregdomain when
143		 * changing regulatory state.
144		 */
145		if (c->ic_ieee == 0)
146			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
147		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
148			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
149			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
150			    c->ic_flags);
151		/* default max tx power to max regulatory */
152		if (c->ic_maxpower == 0)
153			c->ic_maxpower = 2*c->ic_maxregpower;
154		setbit(ic->ic_chan_avail, c->ic_ieee);
155		/*
156		 * Identify mode capabilities.
157		 */
158		if (IEEE80211_IS_CHAN_A(c))
159			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
160		if (IEEE80211_IS_CHAN_B(c))
161			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
162		if (IEEE80211_IS_CHAN_ANYG(c))
163			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
164		if (IEEE80211_IS_CHAN_FHSS(c))
165			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
166		if (IEEE80211_IS_CHAN_108A(c))
167			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
168		if (IEEE80211_IS_CHAN_108G(c))
169			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
170		if (IEEE80211_IS_CHAN_ST(c))
171			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
172		if (IEEE80211_IS_CHAN_HALF(c))
173			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
174		if (IEEE80211_IS_CHAN_QUARTER(c))
175			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
176		if (IEEE80211_IS_CHAN_HTA(c))
177			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
178		if (IEEE80211_IS_CHAN_HTG(c))
179			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
180	}
181	/* initialize candidate channels to all available */
182	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
183		sizeof(ic->ic_chan_avail));
184
185	/* sort channel table to allow lookup optimizations */
186	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
187
188	/* invalidate any previous state */
189	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
190	ic->ic_prevchan = NULL;
191	ic->ic_csa_newchan = NULL;
192	/* arbitrarily pick the first channel */
193	ic->ic_curchan = &ic->ic_channels[0];
194	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
195
196	/* fillin well-known rate sets if driver has not specified */
197	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
198	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
199	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
200	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
201	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
202	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
203	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
204	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
205	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
206	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
207
208	/*
209	 * Set auto mode to reset active channel state and any desired channel.
210	 */
211	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
212#undef DEFAULTRATES
213}
214
215static void
216null_update_mcast(struct ifnet *ifp)
217{
218	if_printf(ifp, "need multicast update callback\n");
219}
220
221static void
222null_update_promisc(struct ifnet *ifp)
223{
224	if_printf(ifp, "need promiscuous mode update callback\n");
225}
226
227static int
228null_transmit(struct ifnet *ifp, struct mbuf *m)
229{
230	m_freem(m);
231	ifp->if_oerrors++;
232	return EACCES;		/* XXX EIO/EPERM? */
233}
234
235static int
236null_output(struct ifnet *ifp, struct mbuf *m,
237	struct sockaddr *dst, struct route *ro)
238{
239	if_printf(ifp, "discard raw packet\n");
240	return null_transmit(ifp, m);
241}
242
243static void
244null_input(struct ifnet *ifp, struct mbuf *m)
245{
246	if_printf(ifp, "if_input should not be called\n");
247	m_freem(m);
248}
249
250/*
251 * Attach/setup the common net80211 state.  Called by
252 * the driver on attach to prior to creating any vap's.
253 */
254void
255ieee80211_ifattach(struct ieee80211com *ic,
256	const uint8_t macaddr[IEEE80211_ADDR_LEN])
257{
258	struct ifnet *ifp = ic->ic_ifp;
259	struct sockaddr_dl *sdl;
260	struct ifaddr *ifa;
261
262	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
263
264	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
265	TAILQ_INIT(&ic->ic_vaps);
266
267	/* Create a taskqueue for all state changes */
268	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
269	    taskqueue_thread_enqueue, &ic->ic_tq);
270	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
271	    ifp->if_xname);
272	/*
273	 * Fill in 802.11 available channel set, mark all
274	 * available channels as active, and pick a default
275	 * channel if not already specified.
276	 */
277	ieee80211_media_init(ic);
278
279	ic->ic_update_mcast = null_update_mcast;
280	ic->ic_update_promisc = null_update_promisc;
281
282	ic->ic_hash_key = arc4random();
283	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
284	ic->ic_lintval = ic->ic_bintval;
285	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
286
287	ieee80211_crypto_attach(ic);
288	ieee80211_node_attach(ic);
289	ieee80211_power_attach(ic);
290	ieee80211_proto_attach(ic);
291#ifdef IEEE80211_SUPPORT_SUPERG
292	ieee80211_superg_attach(ic);
293#endif
294	ieee80211_ht_attach(ic);
295	ieee80211_scan_attach(ic);
296	ieee80211_regdomain_attach(ic);
297	ieee80211_dfs_attach(ic);
298
299	ieee80211_sysctl_attach(ic);
300
301	ifp->if_addrlen = IEEE80211_ADDR_LEN;
302	ifp->if_hdrlen = 0;
303	if_attach(ifp);
304	ifp->if_mtu = IEEE80211_MTU_MAX;
305	ifp->if_broadcastaddr = ieee80211broadcastaddr;
306	ifp->if_output = null_output;
307	ifp->if_input = null_input;	/* just in case */
308	ifp->if_resolvemulti = NULL;	/* NB: callers check */
309
310	ifa = ifaddr_byindex(ifp->if_index);
311	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
312	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
313	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
314	sdl->sdl_alen = IEEE80211_ADDR_LEN;
315	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
316	ifa_free(ifa);
317}
318
319/*
320 * Detach net80211 state on device detach.  Tear down
321 * all vap's and reclaim all common state prior to the
322 * device state going away.  Note we may call back into
323 * driver; it must be prepared for this.
324 */
325void
326ieee80211_ifdetach(struct ieee80211com *ic)
327{
328	struct ifnet *ifp = ic->ic_ifp;
329	struct ieee80211vap *vap;
330
331	if_detach(ifp);
332
333	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
334		ieee80211_vap_destroy(vap);
335	ieee80211_waitfor_parent(ic);
336
337	ieee80211_sysctl_detach(ic);
338	ieee80211_dfs_detach(ic);
339	ieee80211_regdomain_detach(ic);
340	ieee80211_scan_detach(ic);
341#ifdef IEEE80211_SUPPORT_SUPERG
342	ieee80211_superg_detach(ic);
343#endif
344	ieee80211_ht_detach(ic);
345	/* NB: must be called before ieee80211_node_detach */
346	ieee80211_proto_detach(ic);
347	ieee80211_crypto_detach(ic);
348	ieee80211_power_detach(ic);
349	ieee80211_node_detach(ic);
350
351	ifmedia_removeall(&ic->ic_media);
352	taskqueue_free(ic->ic_tq);
353	IEEE80211_LOCK_DESTROY(ic);
354}
355
356/*
357 * Default reset method for use with the ioctl support.  This
358 * method is invoked after any state change in the 802.11
359 * layer that should be propagated to the hardware but not
360 * require re-initialization of the 802.11 state machine (e.g
361 * rescanning for an ap).  We always return ENETRESET which
362 * should cause the driver to re-initialize the device. Drivers
363 * can override this method to implement more optimized support.
364 */
365static int
366default_reset(struct ieee80211vap *vap, u_long cmd)
367{
368	return ENETRESET;
369}
370
371/*
372 * Prepare a vap for use.  Drivers use this call to
373 * setup net80211 state in new vap's prior attaching
374 * them with ieee80211_vap_attach (below).
375 */
376int
377ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
378	const char name[IFNAMSIZ], int unit, int opmode, int flags,
379	const uint8_t bssid[IEEE80211_ADDR_LEN],
380	const uint8_t macaddr[IEEE80211_ADDR_LEN])
381{
382	struct ifnet *ifp;
383
384	ifp = if_alloc(IFT_ETHER);
385	if (ifp == NULL) {
386		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
387		    __func__);
388		return ENOMEM;
389	}
390	if_initname(ifp, name, unit);
391	ifp->if_softc = vap;			/* back pointer */
392	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
393	ifp->if_start = ieee80211_start;
394	ifp->if_ioctl = ieee80211_ioctl;
395	ifp->if_init = ieee80211_init;
396	/* NB: input+output filled in by ether_ifattach */
397	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
398	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
399	IFQ_SET_READY(&ifp->if_snd);
400
401	vap->iv_ifp = ifp;
402	vap->iv_ic = ic;
403	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
404	vap->iv_flags_ext = ic->ic_flags_ext;
405	vap->iv_flags_ven = ic->ic_flags_ven;
406	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
407	vap->iv_htcaps = ic->ic_htcaps;
408	vap->iv_htextcaps = ic->ic_htextcaps;
409	vap->iv_opmode = opmode;
410	vap->iv_caps |= ieee80211_opcap[opmode];
411	switch (opmode) {
412	case IEEE80211_M_WDS:
413		/*
414		 * WDS links must specify the bssid of the far end.
415		 * For legacy operation this is a static relationship.
416		 * For non-legacy operation the station must associate
417		 * and be authorized to pass traffic.  Plumbing the
418		 * vap to the proper node happens when the vap
419		 * transitions to RUN state.
420		 */
421		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
422		vap->iv_flags |= IEEE80211_F_DESBSSID;
423		if (flags & IEEE80211_CLONE_WDSLEGACY)
424			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
425		break;
426#ifdef IEEE80211_SUPPORT_TDMA
427	case IEEE80211_M_AHDEMO:
428		if (flags & IEEE80211_CLONE_TDMA) {
429			/* NB: checked before clone operation allowed */
430			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
431			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
432			/*
433			 * Propagate TDMA capability to mark vap; this
434			 * cannot be removed and is used to distinguish
435			 * regular ahdemo operation from ahdemo+tdma.
436			 */
437			vap->iv_caps |= IEEE80211_C_TDMA;
438		}
439		break;
440#endif
441	}
442	/* auto-enable s/w beacon miss support */
443	if (flags & IEEE80211_CLONE_NOBEACONS)
444		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
445	/* auto-generated or user supplied MAC address */
446	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
447		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
448	/*
449	 * Enable various functionality by default if we're
450	 * capable; the driver can override us if it knows better.
451	 */
452	if (vap->iv_caps & IEEE80211_C_WME)
453		vap->iv_flags |= IEEE80211_F_WME;
454	if (vap->iv_caps & IEEE80211_C_BURST)
455		vap->iv_flags |= IEEE80211_F_BURST;
456	/* NB: bg scanning only makes sense for station mode right now */
457	if (vap->iv_opmode == IEEE80211_M_STA &&
458	    (vap->iv_caps & IEEE80211_C_BGSCAN))
459		vap->iv_flags |= IEEE80211_F_BGSCAN;
460	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
461	/* NB: DFS support only makes sense for ap mode right now */
462	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
463	    (vap->iv_caps & IEEE80211_C_DFS))
464		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
465
466	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
467	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
468	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
469	/*
470	 * Install a default reset method for the ioctl support;
471	 * the driver can override this.
472	 */
473	vap->iv_reset = default_reset;
474
475	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
476
477	ieee80211_sysctl_vattach(vap);
478	ieee80211_crypto_vattach(vap);
479	ieee80211_node_vattach(vap);
480	ieee80211_power_vattach(vap);
481	ieee80211_proto_vattach(vap);
482#ifdef IEEE80211_SUPPORT_SUPERG
483	ieee80211_superg_vattach(vap);
484#endif
485	ieee80211_ht_vattach(vap);
486	ieee80211_scan_vattach(vap);
487	ieee80211_regdomain_vattach(vap);
488	ieee80211_radiotap_vattach(vap);
489
490	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR);
491
492	return 0;
493}
494
495/*
496 * Activate a vap.  State should have been prepared with a
497 * call to ieee80211_vap_setup and by the driver.  On return
498 * from this call the vap is ready for use.
499 */
500int
501ieee80211_vap_attach(struct ieee80211vap *vap,
502	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
503{
504	struct ifnet *ifp = vap->iv_ifp;
505	struct ieee80211com *ic = vap->iv_ic;
506	struct ifmediareq imr;
507	int maxrate;
508
509	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
510	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
511	    __func__, ieee80211_opmode_name[vap->iv_opmode],
512	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
513
514	/*
515	 * Do late attach work that cannot happen until after
516	 * the driver has had a chance to override defaults.
517	 */
518	ieee80211_node_latevattach(vap);
519	ieee80211_power_latevattach(vap);
520
521	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
522	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
523	ieee80211_media_status(ifp, &imr);
524	/* NB: strip explicit mode; we're actually in autoselect */
525	ifmedia_set(&vap->iv_media,
526	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
527	if (maxrate)
528		ifp->if_baudrate = IF_Mbps(maxrate);
529
530	ether_ifattach(ifp, vap->iv_myaddr);
531	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
532		/* NB: disallow transmit */
533		ifp->if_transmit = null_transmit;
534		ifp->if_output = null_output;
535	} else {
536		/* hook output method setup by ether_ifattach */
537		vap->iv_output = ifp->if_output;
538		ifp->if_output = ieee80211_output;
539	}
540	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
541
542	IEEE80211_LOCK(ic);
543	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
544	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
545#ifdef IEEE80211_SUPPORT_SUPERG
546	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
547#endif
548	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
549	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
550	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
551	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
552	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
553	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
554	IEEE80211_UNLOCK(ic);
555
556	return 1;
557}
558
559/*
560 * Tear down vap state and reclaim the ifnet.
561 * The driver is assumed to have prepared for
562 * this; e.g. by turning off interrupts for the
563 * underlying device.
564 */
565void
566ieee80211_vap_detach(struct ieee80211vap *vap)
567{
568	struct ieee80211com *ic = vap->iv_ic;
569	struct ifnet *ifp = vap->iv_ifp;
570
571	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
572	    __func__, ieee80211_opmode_name[vap->iv_opmode],
573	    ic->ic_ifp->if_xname);
574
575	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
576	ether_ifdetach(ifp);
577
578	ieee80211_stop(vap);
579
580	/*
581	 * Flush any deferred vap tasks.
582	 */
583	ieee80211_draintask(ic, &vap->iv_nstate_task);
584	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
585
586	/* XXX band-aid until ifnet handles this for us */
587	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
588
589	IEEE80211_LOCK(ic);
590	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
591	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
592	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
593#ifdef IEEE80211_SUPPORT_SUPERG
594	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
595#endif
596	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
597	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
598	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
599	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
600	/* NB: this handles the bpfdetach done below */
601	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
602	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
603	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
604	IEEE80211_UNLOCK(ic);
605
606	ifmedia_removeall(&vap->iv_media);
607
608	ieee80211_radiotap_vdetach(vap);
609	ieee80211_regdomain_vdetach(vap);
610	ieee80211_scan_vdetach(vap);
611#ifdef IEEE80211_SUPPORT_SUPERG
612	ieee80211_superg_vdetach(vap);
613#endif
614	ieee80211_ht_vdetach(vap);
615	/* NB: must be before ieee80211_node_vdetach */
616	ieee80211_proto_vdetach(vap);
617	ieee80211_crypto_vdetach(vap);
618	ieee80211_power_vdetach(vap);
619	ieee80211_node_vdetach(vap);
620	ieee80211_sysctl_vdetach(vap);
621
622	if_free(ifp);
623}
624
625/*
626 * Synchronize flag bit state in the parent ifnet structure
627 * according to the state of all vap ifnet's.  This is used,
628 * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
629 */
630void
631ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
632{
633	struct ifnet *ifp = ic->ic_ifp;
634	struct ieee80211vap *vap;
635	int bit, oflags;
636
637	IEEE80211_LOCK_ASSERT(ic);
638
639	bit = 0;
640	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
641		if (vap->iv_ifp->if_flags & flag) {
642			/*
643			 * XXX the bridge sets PROMISC but we don't want to
644			 * enable it on the device, discard here so all the
645			 * drivers don't need to special-case it
646			 */
647			if (flag == IFF_PROMISC &&
648			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
649			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
650			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
651				continue;
652			bit = 1;
653			break;
654		}
655	oflags = ifp->if_flags;
656	if (bit)
657		ifp->if_flags |= flag;
658	else
659		ifp->if_flags &= ~flag;
660	if ((ifp->if_flags ^ oflags) & flag) {
661		/* XXX should we return 1/0 and let caller do this? */
662		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
663			if (flag == IFF_PROMISC)
664				ieee80211_runtask(ic, &ic->ic_promisc_task);
665			else if (flag == IFF_ALLMULTI)
666				ieee80211_runtask(ic, &ic->ic_mcast_task);
667		}
668	}
669}
670
671/*
672 * Synchronize flag bit state in the com structure
673 * according to the state of all vap's.  This is used,
674 * for example, to handle state changes via ioctls.
675 */
676static void
677ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
678{
679	struct ieee80211vap *vap;
680	int bit;
681
682	IEEE80211_LOCK_ASSERT(ic);
683
684	bit = 0;
685	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
686		if (vap->iv_flags & flag) {
687			bit = 1;
688			break;
689		}
690	if (bit)
691		ic->ic_flags |= flag;
692	else
693		ic->ic_flags &= ~flag;
694}
695
696void
697ieee80211_syncflag(struct ieee80211vap *vap, int flag)
698{
699	struct ieee80211com *ic = vap->iv_ic;
700
701	IEEE80211_LOCK(ic);
702	if (flag < 0) {
703		flag = -flag;
704		vap->iv_flags &= ~flag;
705	} else
706		vap->iv_flags |= flag;
707	ieee80211_syncflag_locked(ic, flag);
708	IEEE80211_UNLOCK(ic);
709}
710
711/*
712 * Synchronize flags_ht bit state in the com structure
713 * according to the state of all vap's.  This is used,
714 * for example, to handle state changes via ioctls.
715 */
716static void
717ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
718{
719	struct ieee80211vap *vap;
720	int bit;
721
722	IEEE80211_LOCK_ASSERT(ic);
723
724	bit = 0;
725	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
726		if (vap->iv_flags_ht & flag) {
727			bit = 1;
728			break;
729		}
730	if (bit)
731		ic->ic_flags_ht |= flag;
732	else
733		ic->ic_flags_ht &= ~flag;
734}
735
736void
737ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
738{
739	struct ieee80211com *ic = vap->iv_ic;
740
741	IEEE80211_LOCK(ic);
742	if (flag < 0) {
743		flag = -flag;
744		vap->iv_flags_ht &= ~flag;
745	} else
746		vap->iv_flags_ht |= flag;
747	ieee80211_syncflag_ht_locked(ic, flag);
748	IEEE80211_UNLOCK(ic);
749}
750
751/*
752 * Synchronize flags_ext bit state in the com structure
753 * according to the state of all vap's.  This is used,
754 * for example, to handle state changes via ioctls.
755 */
756static void
757ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
758{
759	struct ieee80211vap *vap;
760	int bit;
761
762	IEEE80211_LOCK_ASSERT(ic);
763
764	bit = 0;
765	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
766		if (vap->iv_flags_ext & flag) {
767			bit = 1;
768			break;
769		}
770	if (bit)
771		ic->ic_flags_ext |= flag;
772	else
773		ic->ic_flags_ext &= ~flag;
774}
775
776void
777ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
778{
779	struct ieee80211com *ic = vap->iv_ic;
780
781	IEEE80211_LOCK(ic);
782	if (flag < 0) {
783		flag = -flag;
784		vap->iv_flags_ext &= ~flag;
785	} else
786		vap->iv_flags_ext |= flag;
787	ieee80211_syncflag_ext_locked(ic, flag);
788	IEEE80211_UNLOCK(ic);
789}
790
791static __inline int
792mapgsm(u_int freq, u_int flags)
793{
794	freq *= 10;
795	if (flags & IEEE80211_CHAN_QUARTER)
796		freq += 5;
797	else if (flags & IEEE80211_CHAN_HALF)
798		freq += 10;
799	else
800		freq += 20;
801	/* NB: there is no 907/20 wide but leave room */
802	return (freq - 906*10) / 5;
803}
804
805static __inline int
806mappsb(u_int freq, u_int flags)
807{
808	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
809}
810
811/*
812 * Convert MHz frequency to IEEE channel number.
813 */
814int
815ieee80211_mhz2ieee(u_int freq, u_int flags)
816{
817#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
818	if (flags & IEEE80211_CHAN_GSM)
819		return mapgsm(freq, flags);
820	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
821		if (freq == 2484)
822			return 14;
823		if (freq < 2484)
824			return ((int) freq - 2407) / 5;
825		else
826			return 15 + ((freq - 2512) / 20);
827	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
828		if (freq <= 5000) {
829			/* XXX check regdomain? */
830			if (IS_FREQ_IN_PSB(freq))
831				return mappsb(freq, flags);
832			return (freq - 4000) / 5;
833		} else
834			return (freq - 5000) / 5;
835	} else {				/* either, guess */
836		if (freq == 2484)
837			return 14;
838		if (freq < 2484) {
839			if (907 <= freq && freq <= 922)
840				return mapgsm(freq, flags);
841			return ((int) freq - 2407) / 5;
842		}
843		if (freq < 5000) {
844			if (IS_FREQ_IN_PSB(freq))
845				return mappsb(freq, flags);
846			else if (freq > 4900)
847				return (freq - 4000) / 5;
848			else
849				return 15 + ((freq - 2512) / 20);
850		}
851		return (freq - 5000) / 5;
852	}
853#undef IS_FREQ_IN_PSB
854}
855
856/*
857 * Convert channel to IEEE channel number.
858 */
859int
860ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
861{
862	if (c == NULL) {
863		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
864		return 0;		/* XXX */
865	}
866	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
867}
868
869/*
870 * Convert IEEE channel number to MHz frequency.
871 */
872u_int
873ieee80211_ieee2mhz(u_int chan, u_int flags)
874{
875	if (flags & IEEE80211_CHAN_GSM)
876		return 907 + 5 * (chan / 10);
877	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
878		if (chan == 14)
879			return 2484;
880		if (chan < 14)
881			return 2407 + chan*5;
882		else
883			return 2512 + ((chan-15)*20);
884	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
885		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
886			chan -= 37;
887			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
888		}
889		return 5000 + (chan*5);
890	} else {				/* either, guess */
891		/* XXX can't distinguish PSB+GSM channels */
892		if (chan == 14)
893			return 2484;
894		if (chan < 14)			/* 0-13 */
895			return 2407 + chan*5;
896		if (chan < 27)			/* 15-26 */
897			return 2512 + ((chan-15)*20);
898		return 5000 + (chan*5);
899	}
900}
901
902/*
903 * Locate a channel given a frequency+flags.  We cache
904 * the previous lookup to optimize switching between two
905 * channels--as happens with dynamic turbo.
906 */
907struct ieee80211_channel *
908ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
909{
910	struct ieee80211_channel *c;
911	int i;
912
913	flags &= IEEE80211_CHAN_ALLTURBO;
914	c = ic->ic_prevchan;
915	if (c != NULL && c->ic_freq == freq &&
916	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
917		return c;
918	/* brute force search */
919	for (i = 0; i < ic->ic_nchans; i++) {
920		c = &ic->ic_channels[i];
921		if (c->ic_freq == freq &&
922		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
923			return c;
924	}
925	return NULL;
926}
927
928/*
929 * Locate a channel given a channel number+flags.  We cache
930 * the previous lookup to optimize switching between two
931 * channels--as happens with dynamic turbo.
932 */
933struct ieee80211_channel *
934ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
935{
936	struct ieee80211_channel *c;
937	int i;
938
939	flags &= IEEE80211_CHAN_ALLTURBO;
940	c = ic->ic_prevchan;
941	if (c != NULL && c->ic_ieee == ieee &&
942	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
943		return c;
944	/* brute force search */
945	for (i = 0; i < ic->ic_nchans; i++) {
946		c = &ic->ic_channels[i];
947		if (c->ic_ieee == ieee &&
948		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
949			return c;
950	}
951	return NULL;
952}
953
954static void
955addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
956{
957#define	ADD(_ic, _s, _o) \
958	ifmedia_add(media, \
959		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
960	static const u_int mopts[IEEE80211_MODE_MAX] = {
961	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
962	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
963	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
964	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
965	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
966	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
967	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
968	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
969	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
970	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
971	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
972	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
973	};
974	u_int mopt;
975
976	mopt = mopts[mode];
977	if (addsta)
978		ADD(ic, mword, mopt);	/* STA mode has no cap */
979	if (caps & IEEE80211_C_IBSS)
980		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
981	if (caps & IEEE80211_C_HOSTAP)
982		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
983	if (caps & IEEE80211_C_AHDEMO)
984		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
985	if (caps & IEEE80211_C_MONITOR)
986		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
987	if (caps & IEEE80211_C_WDS)
988		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
989	if (caps & IEEE80211_C_MBSS)
990		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
991#undef ADD
992}
993
994/*
995 * Setup the media data structures according to the channel and
996 * rate tables.
997 */
998static int
999ieee80211_media_setup(struct ieee80211com *ic,
1000	struct ifmedia *media, int caps, int addsta,
1001	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1002{
1003	int i, j, mode, rate, maxrate, mword, r;
1004	const struct ieee80211_rateset *rs;
1005	struct ieee80211_rateset allrates;
1006
1007	/*
1008	 * Fill in media characteristics.
1009	 */
1010	ifmedia_init(media, 0, media_change, media_stat);
1011	maxrate = 0;
1012	/*
1013	 * Add media for legacy operating modes.
1014	 */
1015	memset(&allrates, 0, sizeof(allrates));
1016	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1017		if (isclr(ic->ic_modecaps, mode))
1018			continue;
1019		addmedia(media, caps, addsta, mode, IFM_AUTO);
1020		if (mode == IEEE80211_MODE_AUTO)
1021			continue;
1022		rs = &ic->ic_sup_rates[mode];
1023		for (i = 0; i < rs->rs_nrates; i++) {
1024			rate = rs->rs_rates[i];
1025			mword = ieee80211_rate2media(ic, rate, mode);
1026			if (mword == 0)
1027				continue;
1028			addmedia(media, caps, addsta, mode, mword);
1029			/*
1030			 * Add legacy rate to the collection of all rates.
1031			 */
1032			r = rate & IEEE80211_RATE_VAL;
1033			for (j = 0; j < allrates.rs_nrates; j++)
1034				if (allrates.rs_rates[j] == r)
1035					break;
1036			if (j == allrates.rs_nrates) {
1037				/* unique, add to the set */
1038				allrates.rs_rates[j] = r;
1039				allrates.rs_nrates++;
1040			}
1041			rate = (rate & IEEE80211_RATE_VAL) / 2;
1042			if (rate > maxrate)
1043				maxrate = rate;
1044		}
1045	}
1046	for (i = 0; i < allrates.rs_nrates; i++) {
1047		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1048				IEEE80211_MODE_AUTO);
1049		if (mword == 0)
1050			continue;
1051		/* NB: remove media options from mword */
1052		addmedia(media, caps, addsta,
1053		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1054	}
1055	/*
1056	 * Add HT/11n media.  Note that we do not have enough
1057	 * bits in the media subtype to express the MCS so we
1058	 * use a "placeholder" media subtype and any fixed MCS
1059	 * must be specified with a different mechanism.
1060	 */
1061	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1062		if (isclr(ic->ic_modecaps, mode))
1063			continue;
1064		addmedia(media, caps, addsta, mode, IFM_AUTO);
1065		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1066	}
1067	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1068	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1069		addmedia(media, caps, addsta,
1070		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1071		/* XXX could walk htrates */
1072		/* XXX known array size */
1073		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1074			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1075	}
1076	return maxrate;
1077}
1078
1079void
1080ieee80211_media_init(struct ieee80211com *ic)
1081{
1082	struct ifnet *ifp = ic->ic_ifp;
1083	int maxrate;
1084
1085	/* NB: this works because the structure is initialized to zero */
1086	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1087		/*
1088		 * We are re-initializing the channel list; clear
1089		 * the existing media state as the media routines
1090		 * don't suppress duplicates.
1091		 */
1092		ifmedia_removeall(&ic->ic_media);
1093	}
1094	ieee80211_chan_init(ic);
1095
1096	/*
1097	 * Recalculate media settings in case new channel list changes
1098	 * the set of available modes.
1099	 */
1100	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1101		ieee80211com_media_change, ieee80211com_media_status);
1102	/* NB: strip explicit mode; we're actually in autoselect */
1103	ifmedia_set(&ic->ic_media,
1104	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1105		(IFM_MMASK | IFM_IEEE80211_TURBO));
1106	if (maxrate)
1107		ifp->if_baudrate = IF_Mbps(maxrate);
1108
1109	/* XXX need to propagate new media settings to vap's */
1110}
1111
1112/* XXX inline or eliminate? */
1113const struct ieee80211_rateset *
1114ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1115{
1116	/* XXX does this work for 11ng basic rates? */
1117	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1118}
1119
1120void
1121ieee80211_announce(struct ieee80211com *ic)
1122{
1123	struct ifnet *ifp = ic->ic_ifp;
1124	int i, mode, rate, mword;
1125	const struct ieee80211_rateset *rs;
1126
1127	/* NB: skip AUTO since it has no rates */
1128	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1129		if (isclr(ic->ic_modecaps, mode))
1130			continue;
1131		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1132		rs = &ic->ic_sup_rates[mode];
1133		for (i = 0; i < rs->rs_nrates; i++) {
1134			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1135			if (mword == 0)
1136				continue;
1137			rate = ieee80211_media2rate(mword);
1138			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1139			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1140		}
1141		printf("\n");
1142	}
1143	ieee80211_ht_announce(ic);
1144}
1145
1146void
1147ieee80211_announce_channels(struct ieee80211com *ic)
1148{
1149	const struct ieee80211_channel *c;
1150	char type;
1151	int i, cw;
1152
1153	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1154	for (i = 0; i < ic->ic_nchans; i++) {
1155		c = &ic->ic_channels[i];
1156		if (IEEE80211_IS_CHAN_ST(c))
1157			type = 'S';
1158		else if (IEEE80211_IS_CHAN_108A(c))
1159			type = 'T';
1160		else if (IEEE80211_IS_CHAN_108G(c))
1161			type = 'G';
1162		else if (IEEE80211_IS_CHAN_HT(c))
1163			type = 'n';
1164		else if (IEEE80211_IS_CHAN_A(c))
1165			type = 'a';
1166		else if (IEEE80211_IS_CHAN_ANYG(c))
1167			type = 'g';
1168		else if (IEEE80211_IS_CHAN_B(c))
1169			type = 'b';
1170		else
1171			type = 'f';
1172		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1173			cw = 40;
1174		else if (IEEE80211_IS_CHAN_HALF(c))
1175			cw = 10;
1176		else if (IEEE80211_IS_CHAN_QUARTER(c))
1177			cw = 5;
1178		else
1179			cw = 20;
1180		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1181			, c->ic_ieee, c->ic_freq, type
1182			, cw
1183			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1184			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1185			, c->ic_maxregpower
1186			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1187			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1188		);
1189	}
1190}
1191
1192static int
1193media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1194{
1195	switch (IFM_MODE(ime->ifm_media)) {
1196	case IFM_IEEE80211_11A:
1197		*mode = IEEE80211_MODE_11A;
1198		break;
1199	case IFM_IEEE80211_11B:
1200		*mode = IEEE80211_MODE_11B;
1201		break;
1202	case IFM_IEEE80211_11G:
1203		*mode = IEEE80211_MODE_11G;
1204		break;
1205	case IFM_IEEE80211_FH:
1206		*mode = IEEE80211_MODE_FH;
1207		break;
1208	case IFM_IEEE80211_11NA:
1209		*mode = IEEE80211_MODE_11NA;
1210		break;
1211	case IFM_IEEE80211_11NG:
1212		*mode = IEEE80211_MODE_11NG;
1213		break;
1214	case IFM_AUTO:
1215		*mode = IEEE80211_MODE_AUTO;
1216		break;
1217	default:
1218		return 0;
1219	}
1220	/*
1221	 * Turbo mode is an ``option''.
1222	 * XXX does not apply to AUTO
1223	 */
1224	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1225		if (*mode == IEEE80211_MODE_11A) {
1226			if (flags & IEEE80211_F_TURBOP)
1227				*mode = IEEE80211_MODE_TURBO_A;
1228			else
1229				*mode = IEEE80211_MODE_STURBO_A;
1230		} else if (*mode == IEEE80211_MODE_11G)
1231			*mode = IEEE80211_MODE_TURBO_G;
1232		else
1233			return 0;
1234	}
1235	/* XXX HT40 +/- */
1236	return 1;
1237}
1238
1239/*
1240 * Handle a media change request on the underlying interface.
1241 */
1242int
1243ieee80211com_media_change(struct ifnet *ifp)
1244{
1245	return EINVAL;
1246}
1247
1248/*
1249 * Handle a media change request on the vap interface.
1250 */
1251int
1252ieee80211_media_change(struct ifnet *ifp)
1253{
1254	struct ieee80211vap *vap = ifp->if_softc;
1255	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1256	uint16_t newmode;
1257
1258	if (!media2mode(ime, vap->iv_flags, &newmode))
1259		return EINVAL;
1260	if (vap->iv_des_mode != newmode) {
1261		vap->iv_des_mode = newmode;
1262		/* XXX kick state machine if up+running */
1263	}
1264	return 0;
1265}
1266
1267/*
1268 * Common code to calculate the media status word
1269 * from the operating mode and channel state.
1270 */
1271static int
1272media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1273{
1274	int status;
1275
1276	status = IFM_IEEE80211;
1277	switch (opmode) {
1278	case IEEE80211_M_STA:
1279		break;
1280	case IEEE80211_M_IBSS:
1281		status |= IFM_IEEE80211_ADHOC;
1282		break;
1283	case IEEE80211_M_HOSTAP:
1284		status |= IFM_IEEE80211_HOSTAP;
1285		break;
1286	case IEEE80211_M_MONITOR:
1287		status |= IFM_IEEE80211_MONITOR;
1288		break;
1289	case IEEE80211_M_AHDEMO:
1290		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1291		break;
1292	case IEEE80211_M_WDS:
1293		status |= IFM_IEEE80211_WDS;
1294		break;
1295	case IEEE80211_M_MBSS:
1296		status |= IFM_IEEE80211_MBSS;
1297		break;
1298	}
1299	if (IEEE80211_IS_CHAN_HTA(chan)) {
1300		status |= IFM_IEEE80211_11NA;
1301	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1302		status |= IFM_IEEE80211_11NG;
1303	} else if (IEEE80211_IS_CHAN_A(chan)) {
1304		status |= IFM_IEEE80211_11A;
1305	} else if (IEEE80211_IS_CHAN_B(chan)) {
1306		status |= IFM_IEEE80211_11B;
1307	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1308		status |= IFM_IEEE80211_11G;
1309	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1310		status |= IFM_IEEE80211_FH;
1311	}
1312	/* XXX else complain? */
1313
1314	if (IEEE80211_IS_CHAN_TURBO(chan))
1315		status |= IFM_IEEE80211_TURBO;
1316#if 0
1317	if (IEEE80211_IS_CHAN_HT20(chan))
1318		status |= IFM_IEEE80211_HT20;
1319	if (IEEE80211_IS_CHAN_HT40(chan))
1320		status |= IFM_IEEE80211_HT40;
1321#endif
1322	return status;
1323}
1324
1325static void
1326ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1327{
1328	struct ieee80211com *ic = ifp->if_l2com;
1329	struct ieee80211vap *vap;
1330
1331	imr->ifm_status = IFM_AVALID;
1332	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1333		if (vap->iv_ifp->if_flags & IFF_UP) {
1334			imr->ifm_status |= IFM_ACTIVE;
1335			break;
1336		}
1337	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1338	if (imr->ifm_status & IFM_ACTIVE)
1339		imr->ifm_current = imr->ifm_active;
1340}
1341
1342void
1343ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1344{
1345	struct ieee80211vap *vap = ifp->if_softc;
1346	struct ieee80211com *ic = vap->iv_ic;
1347	enum ieee80211_phymode mode;
1348
1349	imr->ifm_status = IFM_AVALID;
1350	/*
1351	 * NB: use the current channel's mode to lock down a xmit
1352	 * rate only when running; otherwise we may have a mismatch
1353	 * in which case the rate will not be convertible.
1354	 */
1355	if (vap->iv_state == IEEE80211_S_RUN) {
1356		imr->ifm_status |= IFM_ACTIVE;
1357		mode = ieee80211_chan2mode(ic->ic_curchan);
1358	} else
1359		mode = IEEE80211_MODE_AUTO;
1360	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1361	/*
1362	 * Calculate a current rate if possible.
1363	 */
1364	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1365		/*
1366		 * A fixed rate is set, report that.
1367		 */
1368		imr->ifm_active |= ieee80211_rate2media(ic,
1369			vap->iv_txparms[mode].ucastrate, mode);
1370	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1371		/*
1372		 * In station mode report the current transmit rate.
1373		 */
1374		imr->ifm_active |= ieee80211_rate2media(ic,
1375			vap->iv_bss->ni_txrate, mode);
1376	} else
1377		imr->ifm_active |= IFM_AUTO;
1378	if (imr->ifm_status & IFM_ACTIVE)
1379		imr->ifm_current = imr->ifm_active;
1380}
1381
1382/*
1383 * Set the current phy mode and recalculate the active channel
1384 * set based on the available channels for this mode.  Also
1385 * select a new default/current channel if the current one is
1386 * inappropriate for this mode.
1387 */
1388int
1389ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1390{
1391	/*
1392	 * Adjust basic rates in 11b/11g supported rate set.
1393	 * Note that if operating on a hal/quarter rate channel
1394	 * this is a noop as those rates sets are different
1395	 * and used instead.
1396	 */
1397	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1398		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1399
1400	ic->ic_curmode = mode;
1401	ieee80211_reset_erp(ic);	/* reset ERP state */
1402
1403	return 0;
1404}
1405
1406/*
1407 * Return the phy mode for with the specified channel.
1408 */
1409enum ieee80211_phymode
1410ieee80211_chan2mode(const struct ieee80211_channel *chan)
1411{
1412
1413	if (IEEE80211_IS_CHAN_HTA(chan))
1414		return IEEE80211_MODE_11NA;
1415	else if (IEEE80211_IS_CHAN_HTG(chan))
1416		return IEEE80211_MODE_11NG;
1417	else if (IEEE80211_IS_CHAN_108G(chan))
1418		return IEEE80211_MODE_TURBO_G;
1419	else if (IEEE80211_IS_CHAN_ST(chan))
1420		return IEEE80211_MODE_STURBO_A;
1421	else if (IEEE80211_IS_CHAN_TURBO(chan))
1422		return IEEE80211_MODE_TURBO_A;
1423	else if (IEEE80211_IS_CHAN_HALF(chan))
1424		return IEEE80211_MODE_HALF;
1425	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1426		return IEEE80211_MODE_QUARTER;
1427	else if (IEEE80211_IS_CHAN_A(chan))
1428		return IEEE80211_MODE_11A;
1429	else if (IEEE80211_IS_CHAN_ANYG(chan))
1430		return IEEE80211_MODE_11G;
1431	else if (IEEE80211_IS_CHAN_B(chan))
1432		return IEEE80211_MODE_11B;
1433	else if (IEEE80211_IS_CHAN_FHSS(chan))
1434		return IEEE80211_MODE_FH;
1435
1436	/* NB: should not get here */
1437	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1438		__func__, chan->ic_freq, chan->ic_flags);
1439	return IEEE80211_MODE_11B;
1440}
1441
1442struct ratemedia {
1443	u_int	match;	/* rate + mode */
1444	u_int	media;	/* if_media rate */
1445};
1446
1447static int
1448findmedia(const struct ratemedia rates[], int n, u_int match)
1449{
1450	int i;
1451
1452	for (i = 0; i < n; i++)
1453		if (rates[i].match == match)
1454			return rates[i].media;
1455	return IFM_AUTO;
1456}
1457
1458/*
1459 * Convert IEEE80211 rate value to ifmedia subtype.
1460 * Rate is either a legacy rate in units of 0.5Mbps
1461 * or an MCS index.
1462 */
1463int
1464ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1465{
1466#define	N(a)	(sizeof(a) / sizeof(a[0]))
1467	static const struct ratemedia rates[] = {
1468		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1469		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1470		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1471		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1472		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1473		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1474		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1475		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1476		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1477		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1478		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1479		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1480		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1481		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1482		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1483		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1484		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1485		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1486		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1487		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1488		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1489		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1490		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1491		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1492		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1493		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1494		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1495		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1496		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1497		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1498		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1499	};
1500	static const struct ratemedia htrates[] = {
1501		{   0, IFM_IEEE80211_MCS },
1502		{   1, IFM_IEEE80211_MCS },
1503		{   2, IFM_IEEE80211_MCS },
1504		{   3, IFM_IEEE80211_MCS },
1505		{   4, IFM_IEEE80211_MCS },
1506		{   5, IFM_IEEE80211_MCS },
1507		{   6, IFM_IEEE80211_MCS },
1508		{   7, IFM_IEEE80211_MCS },
1509		{   8, IFM_IEEE80211_MCS },
1510		{   9, IFM_IEEE80211_MCS },
1511		{  10, IFM_IEEE80211_MCS },
1512		{  11, IFM_IEEE80211_MCS },
1513		{  12, IFM_IEEE80211_MCS },
1514		{  13, IFM_IEEE80211_MCS },
1515		{  14, IFM_IEEE80211_MCS },
1516		{  15, IFM_IEEE80211_MCS },
1517	};
1518	int m;
1519
1520	/*
1521	 * Check 11n rates first for match as an MCS.
1522	 */
1523	if (mode == IEEE80211_MODE_11NA) {
1524		if (rate & IEEE80211_RATE_MCS) {
1525			rate &= ~IEEE80211_RATE_MCS;
1526			m = findmedia(htrates, N(htrates), rate);
1527			if (m != IFM_AUTO)
1528				return m | IFM_IEEE80211_11NA;
1529		}
1530	} else if (mode == IEEE80211_MODE_11NG) {
1531		/* NB: 12 is ambiguous, it will be treated as an MCS */
1532		if (rate & IEEE80211_RATE_MCS) {
1533			rate &= ~IEEE80211_RATE_MCS;
1534			m = findmedia(htrates, N(htrates), rate);
1535			if (m != IFM_AUTO)
1536				return m | IFM_IEEE80211_11NG;
1537		}
1538	}
1539	rate &= IEEE80211_RATE_VAL;
1540	switch (mode) {
1541	case IEEE80211_MODE_11A:
1542	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1543	case IEEE80211_MODE_QUARTER:
1544	case IEEE80211_MODE_11NA:
1545	case IEEE80211_MODE_TURBO_A:
1546	case IEEE80211_MODE_STURBO_A:
1547		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1548	case IEEE80211_MODE_11B:
1549		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1550	case IEEE80211_MODE_FH:
1551		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1552	case IEEE80211_MODE_AUTO:
1553		/* NB: ic may be NULL for some drivers */
1554		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1555			return findmedia(rates, N(rates),
1556			    rate | IFM_IEEE80211_FH);
1557		/* NB: hack, 11g matches both 11b+11a rates */
1558		/* fall thru... */
1559	case IEEE80211_MODE_11G:
1560	case IEEE80211_MODE_11NG:
1561	case IEEE80211_MODE_TURBO_G:
1562		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1563	}
1564	return IFM_AUTO;
1565#undef N
1566}
1567
1568int
1569ieee80211_media2rate(int mword)
1570{
1571#define	N(a)	(sizeof(a) / sizeof(a[0]))
1572	static const int ieeerates[] = {
1573		-1,		/* IFM_AUTO */
1574		0,		/* IFM_MANUAL */
1575		0,		/* IFM_NONE */
1576		2,		/* IFM_IEEE80211_FH1 */
1577		4,		/* IFM_IEEE80211_FH2 */
1578		2,		/* IFM_IEEE80211_DS1 */
1579		4,		/* IFM_IEEE80211_DS2 */
1580		11,		/* IFM_IEEE80211_DS5 */
1581		22,		/* IFM_IEEE80211_DS11 */
1582		44,		/* IFM_IEEE80211_DS22 */
1583		12,		/* IFM_IEEE80211_OFDM6 */
1584		18,		/* IFM_IEEE80211_OFDM9 */
1585		24,		/* IFM_IEEE80211_OFDM12 */
1586		36,		/* IFM_IEEE80211_OFDM18 */
1587		48,		/* IFM_IEEE80211_OFDM24 */
1588		72,		/* IFM_IEEE80211_OFDM36 */
1589		96,		/* IFM_IEEE80211_OFDM48 */
1590		108,		/* IFM_IEEE80211_OFDM54 */
1591		144,		/* IFM_IEEE80211_OFDM72 */
1592		0,		/* IFM_IEEE80211_DS354k */
1593		0,		/* IFM_IEEE80211_DS512k */
1594		6,		/* IFM_IEEE80211_OFDM3 */
1595		9,		/* IFM_IEEE80211_OFDM4 */
1596		54,		/* IFM_IEEE80211_OFDM27 */
1597		-1,		/* IFM_IEEE80211_MCS */
1598	};
1599	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1600		ieeerates[IFM_SUBTYPE(mword)] : 0;
1601#undef N
1602}
1603
1604/*
1605 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1606 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1607 */
1608#define	mix(a, b, c)							\
1609do {									\
1610	a -= b; a -= c; a ^= (c >> 13);					\
1611	b -= c; b -= a; b ^= (a << 8);					\
1612	c -= a; c -= b; c ^= (b >> 13);					\
1613	a -= b; a -= c; a ^= (c >> 12);					\
1614	b -= c; b -= a; b ^= (a << 16);					\
1615	c -= a; c -= b; c ^= (b >> 5);					\
1616	a -= b; a -= c; a ^= (c >> 3);					\
1617	b -= c; b -= a; b ^= (a << 10);					\
1618	c -= a; c -= b; c ^= (b >> 15);					\
1619} while (/*CONSTCOND*/0)
1620
1621uint32_t
1622ieee80211_mac_hash(const struct ieee80211com *ic,
1623	const uint8_t addr[IEEE80211_ADDR_LEN])
1624{
1625	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1626
1627	b += addr[5] << 8;
1628	b += addr[4];
1629	a += addr[3] << 24;
1630	a += addr[2] << 16;
1631	a += addr[1] << 8;
1632	a += addr[0];
1633
1634	mix(a, b, c);
1635
1636	return c;
1637}
1638#undef mix
1639