1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/net80211/ieee80211.c 343976 2019-02-10 21:00:02Z avos $");
29
30/*
31 * IEEE 802.11 generic handler
32 */
33#include "opt_wlan.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/socket.h>
40#include <sys/sbuf.h>
41
42#include <machine/stdarg.h>
43
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48#include <net/if_types.h>
49#include <net/ethernet.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#include <net80211/ieee80211_ratectl.h>
57
58#include <net/bpf.h>
59
60const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61	[IEEE80211_MODE_AUTO]	  = "auto",
62	[IEEE80211_MODE_11A]	  = "11a",
63	[IEEE80211_MODE_11B]	  = "11b",
64	[IEEE80211_MODE_11G]	  = "11g",
65	[IEEE80211_MODE_FH]	  = "FH",
66	[IEEE80211_MODE_TURBO_A]  = "turboA",
67	[IEEE80211_MODE_TURBO_G]  = "turboG",
68	[IEEE80211_MODE_STURBO_A] = "sturboA",
69	[IEEE80211_MODE_HALF]	  = "half",
70	[IEEE80211_MODE_QUARTER]  = "quarter",
71	[IEEE80211_MODE_11NA]	  = "11na",
72	[IEEE80211_MODE_11NG]	  = "11ng",
73};
74/* map ieee80211_opmode to the corresponding capability bit */
75const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
76	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
77	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
78	[IEEE80211_M_STA]	= IEEE80211_C_STA,
79	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
80	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
81	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
82#ifdef IEEE80211_SUPPORT_MESH
83	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
84#endif
85};
86
87const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
88	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
89
90static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
91static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
92static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
93static	int ieee80211_media_setup(struct ieee80211com *ic,
94		struct ifmedia *media, int caps, int addsta,
95		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
96static	int media_status(enum ieee80211_opmode,
97		const struct ieee80211_channel *);
98static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
99
100MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101
102/*
103 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104 */
105#define	B(r)	((r) | IEEE80211_RATE_BASIC)
106static const struct ieee80211_rateset ieee80211_rateset_11a =
107	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108static const struct ieee80211_rateset ieee80211_rateset_half =
109	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110static const struct ieee80211_rateset ieee80211_rateset_quarter =
111	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112static const struct ieee80211_rateset ieee80211_rateset_11b =
113	{ 4, { B(2), B(4), B(11), B(22) } };
114/* NB: OFDM rates are handled specially based on mode */
115static const struct ieee80211_rateset ieee80211_rateset_11g =
116	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117#undef B
118
119/*
120 * Fill in 802.11 available channel set, mark
121 * all available channels as active, and pick
122 * a default channel if not already specified.
123 */
124void
125ieee80211_chan_init(struct ieee80211com *ic)
126{
127#define	DEFAULTRATES(m, def) do { \
128	if (ic->ic_sup_rates[m].rs_nrates == 0) \
129		ic->ic_sup_rates[m] = def; \
130} while (0)
131	struct ieee80211_channel *c;
132	int i;
133
134	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
135		("invalid number of channels specified: %u", ic->ic_nchans));
136	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
137	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
138	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
139	for (i = 0; i < ic->ic_nchans; i++) {
140		c = &ic->ic_channels[i];
141		KASSERT(c->ic_flags != 0, ("channel with no flags"));
142		/*
143		 * Help drivers that work only with frequencies by filling
144		 * in IEEE channel #'s if not already calculated.  Note this
145		 * mimics similar work done in ieee80211_setregdomain when
146		 * changing regulatory state.
147		 */
148		if (c->ic_ieee == 0)
149			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
150		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
151			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
152			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
153			    c->ic_flags);
154		/* default max tx power to max regulatory */
155		if (c->ic_maxpower == 0)
156			c->ic_maxpower = 2*c->ic_maxregpower;
157		setbit(ic->ic_chan_avail, c->ic_ieee);
158		/*
159		 * Identify mode capabilities.
160		 */
161		if (IEEE80211_IS_CHAN_A(c))
162			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
163		if (IEEE80211_IS_CHAN_B(c))
164			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
165		if (IEEE80211_IS_CHAN_ANYG(c))
166			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
167		if (IEEE80211_IS_CHAN_FHSS(c))
168			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
169		if (IEEE80211_IS_CHAN_108A(c))
170			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
171		if (IEEE80211_IS_CHAN_108G(c))
172			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
173		if (IEEE80211_IS_CHAN_ST(c))
174			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
175		if (IEEE80211_IS_CHAN_HALF(c))
176			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
177		if (IEEE80211_IS_CHAN_QUARTER(c))
178			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
179		if (IEEE80211_IS_CHAN_HTA(c))
180			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
181		if (IEEE80211_IS_CHAN_HTG(c))
182			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
183	}
184	/* initialize candidate channels to all available */
185	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
186		sizeof(ic->ic_chan_avail));
187
188	/* sort channel table to allow lookup optimizations */
189	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
190
191	/* invalidate any previous state */
192	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
193	ic->ic_prevchan = NULL;
194	ic->ic_csa_newchan = NULL;
195	/* arbitrarily pick the first channel */
196	ic->ic_curchan = &ic->ic_channels[0];
197	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
198
199	/* fillin well-known rate sets if driver has not specified */
200	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
201	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
202	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
203	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
204	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
205	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
206	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
207	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
208	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
209	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
210
211	/*
212	 * Setup required information to fill the mcsset field, if driver did
213	 * not. Assume a 2T2R setup for historic reasons.
214	 */
215	if (ic->ic_rxstream == 0)
216		ic->ic_rxstream = 2;
217	if (ic->ic_txstream == 0)
218		ic->ic_txstream = 2;
219
220	/*
221	 * Set auto mode to reset active channel state and any desired channel.
222	 */
223	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
224#undef DEFAULTRATES
225}
226
227static void
228null_update_mcast(struct ieee80211com *ic)
229{
230
231	ic_printf(ic, "need multicast update callback\n");
232}
233
234static void
235null_update_promisc(struct ieee80211com *ic)
236{
237
238	ic_printf(ic, "need promiscuous mode update callback\n");
239}
240
241static void
242null_update_chw(struct ieee80211com *ic)
243{
244
245	ic_printf(ic, "%s: need callback\n", __func__);
246}
247
248int
249ic_printf(struct ieee80211com *ic, const char * fmt, ...)
250{
251	va_list ap;
252	int retval;
253
254	retval = printf("%s: ", ic->ic_name);
255	va_start(ap, fmt);
256	retval += vprintf(fmt, ap);
257	va_end(ap);
258	return (retval);
259}
260
261static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
262static struct mtx ic_list_mtx;
263MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
264
265static int
266sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
267{
268	struct ieee80211com *ic;
269	struct sbuf sb;
270	char *sp;
271	int error;
272
273	error = sysctl_wire_old_buffer(req, 0);
274	if (error)
275		return (error);
276	sbuf_new_for_sysctl(&sb, NULL, 8, req);
277	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
278	sp = "";
279	mtx_lock(&ic_list_mtx);
280	LIST_FOREACH(ic, &ic_head, ic_next) {
281		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
282		sp = " ";
283	}
284	mtx_unlock(&ic_list_mtx);
285	error = sbuf_finish(&sb);
286	sbuf_delete(&sb);
287	return (error);
288}
289
290SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
291    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
292    sysctl_ieee80211coms, "A", "names of available 802.11 devices");
293
294/*
295 * Attach/setup the common net80211 state.  Called by
296 * the driver on attach to prior to creating any vap's.
297 */
298void
299ieee80211_ifattach(struct ieee80211com *ic)
300{
301
302	IEEE80211_LOCK_INIT(ic, ic->ic_name);
303	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
304	TAILQ_INIT(&ic->ic_vaps);
305
306	/* Create a taskqueue for all state changes */
307	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
308	    taskqueue_thread_enqueue, &ic->ic_tq);
309	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
310	    ic->ic_name);
311	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
312	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
313	/*
314	 * Fill in 802.11 available channel set, mark all
315	 * available channels as active, and pick a default
316	 * channel if not already specified.
317	 */
318	ieee80211_chan_init(ic);
319
320	ic->ic_update_mcast = null_update_mcast;
321	ic->ic_update_promisc = null_update_promisc;
322	ic->ic_update_chw = null_update_chw;
323
324	ic->ic_hash_key = arc4random();
325	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
326	ic->ic_lintval = ic->ic_bintval;
327	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
328
329	ieee80211_crypto_attach(ic);
330	ieee80211_node_attach(ic);
331	ieee80211_power_attach(ic);
332	ieee80211_proto_attach(ic);
333#ifdef IEEE80211_SUPPORT_SUPERG
334	ieee80211_superg_attach(ic);
335#endif
336	ieee80211_ht_attach(ic);
337	ieee80211_scan_attach(ic);
338	ieee80211_regdomain_attach(ic);
339	ieee80211_dfs_attach(ic);
340
341	ieee80211_sysctl_attach(ic);
342
343	mtx_lock(&ic_list_mtx);
344	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
345	mtx_unlock(&ic_list_mtx);
346}
347
348/*
349 * Detach net80211 state on device detach.  Tear down
350 * all vap's and reclaim all common state prior to the
351 * device state going away.  Note we may call back into
352 * driver; it must be prepared for this.
353 */
354void
355ieee80211_ifdetach(struct ieee80211com *ic)
356{
357	struct ieee80211vap *vap;
358
359	/*
360	 * We use this as an indicator that ifattach never had a chance to be
361	 * called, e.g. early driver attach failed and ifdetach was called
362	 * during subsequent detach.  Never fear, for we have nothing to do
363	 * here.
364	 */
365	if (ic->ic_tq == NULL)
366		return;
367
368	mtx_lock(&ic_list_mtx);
369	LIST_REMOVE(ic, ic_next);
370	mtx_unlock(&ic_list_mtx);
371
372	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
373
374	/*
375	 * The VAP is responsible for setting and clearing
376	 * the VIMAGE context.
377	 */
378	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
379		ieee80211_com_vdetach(vap);
380		ieee80211_vap_destroy(vap);
381	}
382	ieee80211_waitfor_parent(ic);
383
384	ieee80211_sysctl_detach(ic);
385	ieee80211_dfs_detach(ic);
386	ieee80211_regdomain_detach(ic);
387	ieee80211_scan_detach(ic);
388#ifdef IEEE80211_SUPPORT_SUPERG
389	ieee80211_superg_detach(ic);
390#endif
391	ieee80211_ht_detach(ic);
392	/* NB: must be called before ieee80211_node_detach */
393	ieee80211_proto_detach(ic);
394	ieee80211_crypto_detach(ic);
395	ieee80211_power_detach(ic);
396	ieee80211_node_detach(ic);
397
398	counter_u64_free(ic->ic_ierrors);
399	counter_u64_free(ic->ic_oerrors);
400
401	taskqueue_free(ic->ic_tq);
402	IEEE80211_TX_LOCK_DESTROY(ic);
403	IEEE80211_LOCK_DESTROY(ic);
404}
405
406struct ieee80211com *
407ieee80211_find_com(const char *name)
408{
409	struct ieee80211com *ic;
410
411	mtx_lock(&ic_list_mtx);
412	LIST_FOREACH(ic, &ic_head, ic_next)
413		if (strcmp(ic->ic_name, name) == 0)
414			break;
415	mtx_unlock(&ic_list_mtx);
416
417	return (ic);
418}
419
420void
421ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
422{
423	struct ieee80211com *ic;
424
425	mtx_lock(&ic_list_mtx);
426	LIST_FOREACH(ic, &ic_head, ic_next)
427		(*f)(arg, ic);
428	mtx_unlock(&ic_list_mtx);
429}
430
431/*
432 * Default reset method for use with the ioctl support.  This
433 * method is invoked after any state change in the 802.11
434 * layer that should be propagated to the hardware but not
435 * require re-initialization of the 802.11 state machine (e.g
436 * rescanning for an ap).  We always return ENETRESET which
437 * should cause the driver to re-initialize the device. Drivers
438 * can override this method to implement more optimized support.
439 */
440static int
441default_reset(struct ieee80211vap *vap, u_long cmd)
442{
443	return ENETRESET;
444}
445
446/*
447 * Add underlying device errors to vap errors.
448 */
449static uint64_t
450ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
451{
452	struct ieee80211vap *vap = ifp->if_softc;
453	struct ieee80211com *ic = vap->iv_ic;
454	uint64_t rv;
455
456	rv = if_get_counter_default(ifp, cnt);
457	switch (cnt) {
458	case IFCOUNTER_OERRORS:
459		rv += counter_u64_fetch(ic->ic_oerrors);
460		break;
461	case IFCOUNTER_IERRORS:
462		rv += counter_u64_fetch(ic->ic_ierrors);
463		break;
464	default:
465		break;
466	}
467
468	return (rv);
469}
470
471/*
472 * Prepare a vap for use.  Drivers use this call to
473 * setup net80211 state in new vap's prior attaching
474 * them with ieee80211_vap_attach (below).
475 */
476int
477ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
478    const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
479    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
480{
481	struct ifnet *ifp;
482
483	ifp = if_alloc(IFT_ETHER);
484	if (ifp == NULL) {
485		ic_printf(ic, "%s: unable to allocate ifnet\n",
486		    __func__);
487		return ENOMEM;
488	}
489	if_initname(ifp, name, unit);
490	ifp->if_softc = vap;			/* back pointer */
491	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
492	ifp->if_transmit = ieee80211_vap_transmit;
493	ifp->if_qflush = ieee80211_vap_qflush;
494	ifp->if_ioctl = ieee80211_ioctl;
495	ifp->if_init = ieee80211_init;
496	ifp->if_get_counter = ieee80211_get_counter;
497
498	vap->iv_ifp = ifp;
499	vap->iv_ic = ic;
500	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
501	vap->iv_flags_ext = ic->ic_flags_ext;
502	vap->iv_flags_ven = ic->ic_flags_ven;
503	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
504	vap->iv_htcaps = ic->ic_htcaps;
505	vap->iv_htextcaps = ic->ic_htextcaps;
506	vap->iv_opmode = opmode;
507	vap->iv_caps |= ieee80211_opcap[opmode];
508	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
509	switch (opmode) {
510	case IEEE80211_M_WDS:
511		/*
512		 * WDS links must specify the bssid of the far end.
513		 * For legacy operation this is a static relationship.
514		 * For non-legacy operation the station must associate
515		 * and be authorized to pass traffic.  Plumbing the
516		 * vap to the proper node happens when the vap
517		 * transitions to RUN state.
518		 */
519		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
520		vap->iv_flags |= IEEE80211_F_DESBSSID;
521		if (flags & IEEE80211_CLONE_WDSLEGACY)
522			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
523		break;
524#ifdef IEEE80211_SUPPORT_TDMA
525	case IEEE80211_M_AHDEMO:
526		if (flags & IEEE80211_CLONE_TDMA) {
527			/* NB: checked before clone operation allowed */
528			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
529			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
530			/*
531			 * Propagate TDMA capability to mark vap; this
532			 * cannot be removed and is used to distinguish
533			 * regular ahdemo operation from ahdemo+tdma.
534			 */
535			vap->iv_caps |= IEEE80211_C_TDMA;
536		}
537		break;
538#endif
539	default:
540		break;
541	}
542	/* auto-enable s/w beacon miss support */
543	if (flags & IEEE80211_CLONE_NOBEACONS)
544		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
545	/* auto-generated or user supplied MAC address */
546	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
547		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
548	/*
549	 * Enable various functionality by default if we're
550	 * capable; the driver can override us if it knows better.
551	 */
552	if (vap->iv_caps & IEEE80211_C_WME)
553		vap->iv_flags |= IEEE80211_F_WME;
554	if (vap->iv_caps & IEEE80211_C_BURST)
555		vap->iv_flags |= IEEE80211_F_BURST;
556	/* NB: bg scanning only makes sense for station mode right now */
557	if (vap->iv_opmode == IEEE80211_M_STA &&
558	    (vap->iv_caps & IEEE80211_C_BGSCAN))
559		vap->iv_flags |= IEEE80211_F_BGSCAN;
560	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
561	/* NB: DFS support only makes sense for ap mode right now */
562	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
563	    (vap->iv_caps & IEEE80211_C_DFS))
564		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
565
566	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
567	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
568	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
569	/*
570	 * Install a default reset method for the ioctl support;
571	 * the driver can override this.
572	 */
573	vap->iv_reset = default_reset;
574
575	ieee80211_sysctl_vattach(vap);
576	ieee80211_crypto_vattach(vap);
577	ieee80211_node_vattach(vap);
578	ieee80211_power_vattach(vap);
579	ieee80211_proto_vattach(vap);
580#ifdef IEEE80211_SUPPORT_SUPERG
581	ieee80211_superg_vattach(vap);
582#endif
583	ieee80211_ht_vattach(vap);
584	ieee80211_scan_vattach(vap);
585	ieee80211_regdomain_vattach(vap);
586	ieee80211_radiotap_vattach(vap);
587	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
588
589	return 0;
590}
591
592/*
593 * Activate a vap.  State should have been prepared with a
594 * call to ieee80211_vap_setup and by the driver.  On return
595 * from this call the vap is ready for use.
596 */
597int
598ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
599    ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
600{
601	struct ifnet *ifp = vap->iv_ifp;
602	struct ieee80211com *ic = vap->iv_ic;
603	struct ifmediareq imr;
604	int maxrate;
605
606	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
607	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
608	    __func__, ieee80211_opmode_name[vap->iv_opmode],
609	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
610
611	/*
612	 * Do late attach work that cannot happen until after
613	 * the driver has had a chance to override defaults.
614	 */
615	ieee80211_node_latevattach(vap);
616	ieee80211_power_latevattach(vap);
617
618	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
619	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
620	ieee80211_media_status(ifp, &imr);
621	/* NB: strip explicit mode; we're actually in autoselect */
622	ifmedia_set(&vap->iv_media,
623	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
624	if (maxrate)
625		ifp->if_baudrate = IF_Mbps(maxrate);
626
627	ether_ifattach(ifp, macaddr);
628	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
629	/* hook output method setup by ether_ifattach */
630	vap->iv_output = ifp->if_output;
631	ifp->if_output = ieee80211_output;
632	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
633
634	IEEE80211_LOCK(ic);
635	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
636	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
637#ifdef IEEE80211_SUPPORT_SUPERG
638	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
639#endif
640	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
641	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
642	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
643	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
644	IEEE80211_UNLOCK(ic);
645
646	return 1;
647}
648
649/*
650 * Tear down vap state and reclaim the ifnet.
651 * The driver is assumed to have prepared for
652 * this; e.g. by turning off interrupts for the
653 * underlying device.
654 */
655void
656ieee80211_vap_detach(struct ieee80211vap *vap)
657{
658	struct ieee80211com *ic = vap->iv_ic;
659	struct ifnet *ifp = vap->iv_ifp;
660
661	CURVNET_SET(ifp->if_vnet);
662
663	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
664	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
665
666	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
667	ether_ifdetach(ifp);
668
669	ieee80211_stop(vap);
670
671	/*
672	 * Flush any deferred vap tasks.
673	 */
674	ieee80211_draintask(ic, &vap->iv_nstate_task);
675	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
676
677	/* XXX band-aid until ifnet handles this for us */
678	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
679
680	IEEE80211_LOCK(ic);
681	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
682	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
683	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
684#ifdef IEEE80211_SUPPORT_SUPERG
685	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
686#endif
687	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
688	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
689	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
690	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
691	/* NB: this handles the bpfdetach done below */
692	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
693	if (vap->iv_ifflags & IFF_PROMISC)
694		ieee80211_promisc(vap, false);
695	if (vap->iv_ifflags & IFF_ALLMULTI)
696		ieee80211_allmulti(vap, false);
697	IEEE80211_UNLOCK(ic);
698
699	ifmedia_removeall(&vap->iv_media);
700
701	ieee80211_radiotap_vdetach(vap);
702	ieee80211_regdomain_vdetach(vap);
703	ieee80211_scan_vdetach(vap);
704#ifdef IEEE80211_SUPPORT_SUPERG
705	ieee80211_superg_vdetach(vap);
706#endif
707	ieee80211_ht_vdetach(vap);
708	/* NB: must be before ieee80211_node_vdetach */
709	ieee80211_proto_vdetach(vap);
710	ieee80211_crypto_vdetach(vap);
711	ieee80211_power_vdetach(vap);
712	ieee80211_node_vdetach(vap);
713	ieee80211_sysctl_vdetach(vap);
714
715	if_free(ifp);
716
717	CURVNET_RESTORE();
718}
719
720/*
721 * Count number of vaps in promisc, and issue promisc on
722 * parent respectively.
723 */
724void
725ieee80211_promisc(struct ieee80211vap *vap, bool on)
726{
727	struct ieee80211com *ic = vap->iv_ic;
728
729	IEEE80211_LOCK_ASSERT(ic);
730
731	if (on) {
732		if (++ic->ic_promisc == 1)
733			ieee80211_runtask(ic, &ic->ic_promisc_task);
734	} else {
735		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
736		    __func__, ic));
737		if (--ic->ic_promisc == 0)
738			ieee80211_runtask(ic, &ic->ic_promisc_task);
739	}
740}
741
742/*
743 * Count number of vaps in allmulti, and issue allmulti on
744 * parent respectively.
745 */
746void
747ieee80211_allmulti(struct ieee80211vap *vap, bool on)
748{
749	struct ieee80211com *ic = vap->iv_ic;
750
751	IEEE80211_LOCK_ASSERT(ic);
752
753	if (on) {
754		if (++ic->ic_allmulti == 1)
755			ieee80211_runtask(ic, &ic->ic_mcast_task);
756	} else {
757		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
758		    __func__, ic));
759		if (--ic->ic_allmulti == 0)
760			ieee80211_runtask(ic, &ic->ic_mcast_task);
761	}
762}
763
764/*
765 * Synchronize flag bit state in the com structure
766 * according to the state of all vap's.  This is used,
767 * for example, to handle state changes via ioctls.
768 */
769static void
770ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
771{
772	struct ieee80211vap *vap;
773	int bit;
774
775	IEEE80211_LOCK_ASSERT(ic);
776
777	bit = 0;
778	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
779		if (vap->iv_flags & flag) {
780			bit = 1;
781			break;
782		}
783	if (bit)
784		ic->ic_flags |= flag;
785	else
786		ic->ic_flags &= ~flag;
787}
788
789void
790ieee80211_syncflag(struct ieee80211vap *vap, int flag)
791{
792	struct ieee80211com *ic = vap->iv_ic;
793
794	IEEE80211_LOCK(ic);
795	if (flag < 0) {
796		flag = -flag;
797		vap->iv_flags &= ~flag;
798	} else
799		vap->iv_flags |= flag;
800	ieee80211_syncflag_locked(ic, flag);
801	IEEE80211_UNLOCK(ic);
802}
803
804/*
805 * Synchronize flags_ht bit state in the com structure
806 * according to the state of all vap's.  This is used,
807 * for example, to handle state changes via ioctls.
808 */
809static void
810ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
811{
812	struct ieee80211vap *vap;
813	int bit;
814
815	IEEE80211_LOCK_ASSERT(ic);
816
817	bit = 0;
818	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
819		if (vap->iv_flags_ht & flag) {
820			bit = 1;
821			break;
822		}
823	if (bit)
824		ic->ic_flags_ht |= flag;
825	else
826		ic->ic_flags_ht &= ~flag;
827}
828
829void
830ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
831{
832	struct ieee80211com *ic = vap->iv_ic;
833
834	IEEE80211_LOCK(ic);
835	if (flag < 0) {
836		flag = -flag;
837		vap->iv_flags_ht &= ~flag;
838	} else
839		vap->iv_flags_ht |= flag;
840	ieee80211_syncflag_ht_locked(ic, flag);
841	IEEE80211_UNLOCK(ic);
842}
843
844/*
845 * Synchronize flags_ext bit state in the com structure
846 * according to the state of all vap's.  This is used,
847 * for example, to handle state changes via ioctls.
848 */
849static void
850ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
851{
852	struct ieee80211vap *vap;
853	int bit;
854
855	IEEE80211_LOCK_ASSERT(ic);
856
857	bit = 0;
858	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
859		if (vap->iv_flags_ext & flag) {
860			bit = 1;
861			break;
862		}
863	if (bit)
864		ic->ic_flags_ext |= flag;
865	else
866		ic->ic_flags_ext &= ~flag;
867}
868
869void
870ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
871{
872	struct ieee80211com *ic = vap->iv_ic;
873
874	IEEE80211_LOCK(ic);
875	if (flag < 0) {
876		flag = -flag;
877		vap->iv_flags_ext &= ~flag;
878	} else
879		vap->iv_flags_ext |= flag;
880	ieee80211_syncflag_ext_locked(ic, flag);
881	IEEE80211_UNLOCK(ic);
882}
883
884static __inline int
885mapgsm(u_int freq, u_int flags)
886{
887	freq *= 10;
888	if (flags & IEEE80211_CHAN_QUARTER)
889		freq += 5;
890	else if (flags & IEEE80211_CHAN_HALF)
891		freq += 10;
892	else
893		freq += 20;
894	/* NB: there is no 907/20 wide but leave room */
895	return (freq - 906*10) / 5;
896}
897
898static __inline int
899mappsb(u_int freq, u_int flags)
900{
901	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
902}
903
904/*
905 * Convert MHz frequency to IEEE channel number.
906 */
907int
908ieee80211_mhz2ieee(u_int freq, u_int flags)
909{
910#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
911	if (flags & IEEE80211_CHAN_GSM)
912		return mapgsm(freq, flags);
913	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
914		if (freq == 2484)
915			return 14;
916		if (freq < 2484)
917			return ((int) freq - 2407) / 5;
918		else
919			return 15 + ((freq - 2512) / 20);
920	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
921		if (freq <= 5000) {
922			/* XXX check regdomain? */
923			if (IS_FREQ_IN_PSB(freq))
924				return mappsb(freq, flags);
925			return (freq - 4000) / 5;
926		} else
927			return (freq - 5000) / 5;
928	} else {				/* either, guess */
929		if (freq == 2484)
930			return 14;
931		if (freq < 2484) {
932			if (907 <= freq && freq <= 922)
933				return mapgsm(freq, flags);
934			return ((int) freq - 2407) / 5;
935		}
936		if (freq < 5000) {
937			if (IS_FREQ_IN_PSB(freq))
938				return mappsb(freq, flags);
939			else if (freq > 4900)
940				return (freq - 4000) / 5;
941			else
942				return 15 + ((freq - 2512) / 20);
943		}
944		return (freq - 5000) / 5;
945	}
946#undef IS_FREQ_IN_PSB
947}
948
949/*
950 * Convert channel to IEEE channel number.
951 */
952int
953ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
954{
955	if (c == NULL) {
956		ic_printf(ic, "invalid channel (NULL)\n");
957		return 0;		/* XXX */
958	}
959	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
960}
961
962/*
963 * Convert IEEE channel number to MHz frequency.
964 */
965u_int
966ieee80211_ieee2mhz(u_int chan, u_int flags)
967{
968	if (flags & IEEE80211_CHAN_GSM)
969		return 907 + 5 * (chan / 10);
970	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
971		if (chan == 14)
972			return 2484;
973		if (chan < 14)
974			return 2407 + chan*5;
975		else
976			return 2512 + ((chan-15)*20);
977	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
978		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
979			chan -= 37;
980			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
981		}
982		return 5000 + (chan*5);
983	} else {				/* either, guess */
984		/* XXX can't distinguish PSB+GSM channels */
985		if (chan == 14)
986			return 2484;
987		if (chan < 14)			/* 0-13 */
988			return 2407 + chan*5;
989		if (chan < 27)			/* 15-26 */
990			return 2512 + ((chan-15)*20);
991		return 5000 + (chan*5);
992	}
993}
994
995static __inline void
996set_extchan(struct ieee80211_channel *c)
997{
998
999	/*
1000	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1001	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1002	 */
1003	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1004		c->ic_extieee = c->ic_ieee + 4;
1005	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1006		c->ic_extieee = c->ic_ieee - 4;
1007	else
1008		c->ic_extieee = 0;
1009}
1010
1011static int
1012addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1013    uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1014{
1015	struct ieee80211_channel *c;
1016
1017	if (*nchans >= maxchans)
1018		return (ENOBUFS);
1019
1020	c = &chans[(*nchans)++];
1021	c->ic_ieee = ieee;
1022	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1023	c->ic_maxregpower = maxregpower;
1024	c->ic_maxpower = 2 * maxregpower;
1025	c->ic_flags = flags;
1026	set_extchan(c);
1027
1028	return (0);
1029}
1030
1031static int
1032copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1033    uint32_t flags)
1034{
1035	struct ieee80211_channel *c;
1036
1037	KASSERT(*nchans > 0, ("channel list is empty\n"));
1038
1039	if (*nchans >= maxchans)
1040		return (ENOBUFS);
1041
1042	c = &chans[(*nchans)++];
1043	c[0] = c[-1];
1044	c->ic_flags = flags;
1045	set_extchan(c);
1046
1047	return (0);
1048}
1049
1050static void
1051getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1052{
1053	int nmodes;
1054
1055	nmodes = 0;
1056	if (isset(bands, IEEE80211_MODE_11B))
1057		flags[nmodes++] = IEEE80211_CHAN_B;
1058	if (isset(bands, IEEE80211_MODE_11G))
1059		flags[nmodes++] = IEEE80211_CHAN_G;
1060	if (isset(bands, IEEE80211_MODE_11NG))
1061		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1062	if (ht40) {
1063		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1064		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1065	}
1066	flags[nmodes] = 0;
1067}
1068
1069static void
1070getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1071{
1072	int nmodes;
1073
1074	nmodes = 0;
1075	if (isset(bands, IEEE80211_MODE_11A))
1076		flags[nmodes++] = IEEE80211_CHAN_A;
1077	if (isset(bands, IEEE80211_MODE_11NA))
1078		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1079	if (ht40) {
1080		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1081		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1082	}
1083	flags[nmodes] = 0;
1084}
1085
1086static void
1087getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1088{
1089
1090	flags[0] = 0;
1091	if (isset(bands, IEEE80211_MODE_11A) ||
1092	    isset(bands, IEEE80211_MODE_11NA)) {
1093		if (isset(bands, IEEE80211_MODE_11B) ||
1094		    isset(bands, IEEE80211_MODE_11G) ||
1095		    isset(bands, IEEE80211_MODE_11NG))
1096			return;
1097
1098		getflags_5ghz(bands, flags, ht40);
1099	} else
1100		getflags_2ghz(bands, flags, ht40);
1101}
1102
1103/*
1104 * Add one 20 MHz channel into specified channel list.
1105 */
1106int
1107ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1108    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1109    uint32_t chan_flags, const uint8_t bands[])
1110{
1111	uint32_t flags[IEEE80211_MODE_MAX];
1112	int i, error;
1113
1114	getflags(bands, flags, 0);
1115	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1116
1117	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1118	    flags[0] | chan_flags);
1119	for (i = 1; flags[i] != 0 && error == 0; i++) {
1120		error = copychan_prev(chans, maxchans, nchans,
1121		    flags[i] | chan_flags);
1122	}
1123
1124	return (error);
1125}
1126
1127static struct ieee80211_channel *
1128findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1129    uint32_t flags)
1130{
1131	struct ieee80211_channel *c;
1132	int i;
1133
1134	flags &= IEEE80211_CHAN_ALLTURBO;
1135	/* brute force search */
1136	for (i = 0; i < nchans; i++) {
1137		c = &chans[i];
1138		if (c->ic_freq == freq &&
1139		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1140			return c;
1141	}
1142	return NULL;
1143}
1144
1145/*
1146 * Add 40 MHz channel pair into specified channel list.
1147 */
1148int
1149ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1150    int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1151{
1152	struct ieee80211_channel *cent, *extc;
1153	uint16_t freq;
1154	int error;
1155
1156	freq = ieee80211_ieee2mhz(ieee, flags);
1157
1158	/*
1159	 * Each entry defines an HT40 channel pair; find the
1160	 * center channel, then the extension channel above.
1161	 */
1162	flags |= IEEE80211_CHAN_HT20;
1163	cent = findchannel(chans, *nchans, freq, flags);
1164	if (cent == NULL)
1165		return (EINVAL);
1166
1167	extc = findchannel(chans, *nchans, freq + 20, flags);
1168	if (extc == NULL)
1169		return (ENOENT);
1170
1171	flags &= ~IEEE80211_CHAN_HT;
1172	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1173	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1174	if (error != 0)
1175		return (error);
1176
1177	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1178	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1179
1180	return (error);
1181}
1182
1183/*
1184 * Adds channels into specified channel list (ieee[] array must be sorted).
1185 * Channels are already sorted.
1186 */
1187static int
1188add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1189    const uint8_t ieee[], int nieee, uint32_t flags[])
1190{
1191	uint16_t freq;
1192	int i, j, error;
1193
1194	for (i = 0; i < nieee; i++) {
1195		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1196		for (j = 0; flags[j] != 0; j++) {
1197			if (flags[j] & IEEE80211_CHAN_HT40D)
1198				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1199				    freq - 20 !=
1200				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1201					continue;
1202			if (flags[j] & IEEE80211_CHAN_HT40U)
1203				if (i == nieee - 1 ||
1204				    ieee[i] + 4 > ieee[nieee - 1] ||
1205				    freq + 20 !=
1206				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1207					continue;
1208
1209			if (j == 0) {
1210				error = addchan(chans, maxchans, nchans,
1211				    ieee[i], freq, 0, flags[j]);
1212			} else {
1213				error = copychan_prev(chans, maxchans, nchans,
1214				    flags[j]);
1215			}
1216			if (error != 0)
1217				return (error);
1218		}
1219	}
1220
1221	return (0);
1222}
1223
1224int
1225ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1226    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1227    int ht40)
1228{
1229	uint32_t flags[IEEE80211_MODE_MAX];
1230
1231	getflags_2ghz(bands, flags, ht40);
1232	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1233
1234	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1235}
1236
1237int
1238ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1239    int maxchans, int *nchans, const uint8_t bands[], int ht40)
1240{
1241	const uint8_t default_chan_list[] =
1242	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1243
1244	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1245	    default_chan_list, nitems(default_chan_list), bands, ht40));
1246}
1247
1248int
1249ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1250    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1251    int ht40)
1252{
1253	uint32_t flags[IEEE80211_MODE_MAX];
1254
1255	getflags_5ghz(bands, flags, ht40);
1256	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1257
1258	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1259}
1260
1261/*
1262 * Locate a channel given a frequency+flags.  We cache
1263 * the previous lookup to optimize switching between two
1264 * channels--as happens with dynamic turbo.
1265 */
1266struct ieee80211_channel *
1267ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1268{
1269	struct ieee80211_channel *c;
1270
1271	flags &= IEEE80211_CHAN_ALLTURBO;
1272	c = ic->ic_prevchan;
1273	if (c != NULL && c->ic_freq == freq &&
1274	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1275		return c;
1276	/* brute force search */
1277	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1278}
1279
1280/*
1281 * Locate a channel given a channel number+flags.  We cache
1282 * the previous lookup to optimize switching between two
1283 * channels--as happens with dynamic turbo.
1284 */
1285struct ieee80211_channel *
1286ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1287{
1288	struct ieee80211_channel *c;
1289	int i;
1290
1291	flags &= IEEE80211_CHAN_ALLTURBO;
1292	c = ic->ic_prevchan;
1293	if (c != NULL && c->ic_ieee == ieee &&
1294	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1295		return c;
1296	/* brute force search */
1297	for (i = 0; i < ic->ic_nchans; i++) {
1298		c = &ic->ic_channels[i];
1299		if (c->ic_ieee == ieee &&
1300		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1301			return c;
1302	}
1303	return NULL;
1304}
1305
1306/*
1307 * Lookup a channel suitable for the given rx status.
1308 *
1309 * This is used to find a channel for a frame (eg beacon, probe
1310 * response) based purely on the received PHY information.
1311 *
1312 * For now it tries to do it based on R_FREQ / R_IEEE.
1313 * This is enough for 11bg and 11a (and thus 11ng/11na)
1314 * but it will not be enough for GSM, PSB channels and the
1315 * like.  It also doesn't know about legacy-turbog and
1316 * legacy-turbo modes, which some offload NICs actually
1317 * support in weird ways.
1318 *
1319 * Takes the ic and rxstatus; returns the channel or NULL
1320 * if not found.
1321 *
1322 * XXX TODO: Add support for that when the need arises.
1323 */
1324struct ieee80211_channel *
1325ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1326    const struct ieee80211_rx_stats *rxs)
1327{
1328	struct ieee80211com *ic = vap->iv_ic;
1329	uint32_t flags;
1330	struct ieee80211_channel *c;
1331
1332	if (rxs == NULL)
1333		return (NULL);
1334
1335	/*
1336	 * Strictly speaking we only use freq for now,
1337	 * however later on we may wish to just store
1338	 * the ieee for verification.
1339	 */
1340	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1341		return (NULL);
1342	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1343		return (NULL);
1344
1345	/*
1346	 * If the rx status contains a valid ieee/freq, then
1347	 * ensure we populate the correct channel information
1348	 * in rxchan before passing it up to the scan infrastructure.
1349	 * Offload NICs will pass up beacons from all channels
1350	 * during background scans.
1351	 */
1352
1353	/* Determine a band */
1354	/* XXX should be done by the driver? */
1355	if (rxs->c_freq < 3000) {
1356		flags = IEEE80211_CHAN_G;
1357	} else {
1358		flags = IEEE80211_CHAN_A;
1359	}
1360
1361	/* Channel lookup */
1362	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1363
1364	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1365	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1366	    __func__,
1367	    (int) rxs->c_freq,
1368	    (int) rxs->c_ieee,
1369	    flags,
1370	    c);
1371
1372	return (c);
1373}
1374
1375static void
1376addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1377{
1378#define	ADD(_ic, _s, _o) \
1379	ifmedia_add(media, \
1380		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1381	static const u_int mopts[IEEE80211_MODE_MAX] = {
1382	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1383	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1384	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1385	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1386	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1387	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1388	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1389	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1390	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1391	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1392	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1393	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1394	};
1395	u_int mopt;
1396
1397	mopt = mopts[mode];
1398	if (addsta)
1399		ADD(ic, mword, mopt);	/* STA mode has no cap */
1400	if (caps & IEEE80211_C_IBSS)
1401		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1402	if (caps & IEEE80211_C_HOSTAP)
1403		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1404	if (caps & IEEE80211_C_AHDEMO)
1405		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1406	if (caps & IEEE80211_C_MONITOR)
1407		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1408	if (caps & IEEE80211_C_WDS)
1409		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1410	if (caps & IEEE80211_C_MBSS)
1411		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1412#undef ADD
1413}
1414
1415/*
1416 * Setup the media data structures according to the channel and
1417 * rate tables.
1418 */
1419static int
1420ieee80211_media_setup(struct ieee80211com *ic,
1421	struct ifmedia *media, int caps, int addsta,
1422	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1423{
1424	int i, j, rate, maxrate, mword, r;
1425	enum ieee80211_phymode mode;
1426	const struct ieee80211_rateset *rs;
1427	struct ieee80211_rateset allrates;
1428
1429	/*
1430	 * Fill in media characteristics.
1431	 */
1432	ifmedia_init(media, 0, media_change, media_stat);
1433	maxrate = 0;
1434	/*
1435	 * Add media for legacy operating modes.
1436	 */
1437	memset(&allrates, 0, sizeof(allrates));
1438	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1439		if (isclr(ic->ic_modecaps, mode))
1440			continue;
1441		addmedia(media, caps, addsta, mode, IFM_AUTO);
1442		if (mode == IEEE80211_MODE_AUTO)
1443			continue;
1444		rs = &ic->ic_sup_rates[mode];
1445		for (i = 0; i < rs->rs_nrates; i++) {
1446			rate = rs->rs_rates[i];
1447			mword = ieee80211_rate2media(ic, rate, mode);
1448			if (mword == 0)
1449				continue;
1450			addmedia(media, caps, addsta, mode, mword);
1451			/*
1452			 * Add legacy rate to the collection of all rates.
1453			 */
1454			r = rate & IEEE80211_RATE_VAL;
1455			for (j = 0; j < allrates.rs_nrates; j++)
1456				if (allrates.rs_rates[j] == r)
1457					break;
1458			if (j == allrates.rs_nrates) {
1459				/* unique, add to the set */
1460				allrates.rs_rates[j] = r;
1461				allrates.rs_nrates++;
1462			}
1463			rate = (rate & IEEE80211_RATE_VAL) / 2;
1464			if (rate > maxrate)
1465				maxrate = rate;
1466		}
1467	}
1468	for (i = 0; i < allrates.rs_nrates; i++) {
1469		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1470				IEEE80211_MODE_AUTO);
1471		if (mword == 0)
1472			continue;
1473		/* NB: remove media options from mword */
1474		addmedia(media, caps, addsta,
1475		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1476	}
1477	/*
1478	 * Add HT/11n media.  Note that we do not have enough
1479	 * bits in the media subtype to express the MCS so we
1480	 * use a "placeholder" media subtype and any fixed MCS
1481	 * must be specified with a different mechanism.
1482	 */
1483	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1484		if (isclr(ic->ic_modecaps, mode))
1485			continue;
1486		addmedia(media, caps, addsta, mode, IFM_AUTO);
1487		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1488	}
1489	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1490	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1491		addmedia(media, caps, addsta,
1492		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1493		i = ic->ic_txstream * 8 - 1;
1494		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1495		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1496			rate = ieee80211_htrates[i].ht40_rate_400ns;
1497		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1498			rate = ieee80211_htrates[i].ht40_rate_800ns;
1499		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1500			rate = ieee80211_htrates[i].ht20_rate_400ns;
1501		else
1502			rate = ieee80211_htrates[i].ht20_rate_800ns;
1503		if (rate > maxrate)
1504			maxrate = rate;
1505	}
1506	return maxrate;
1507}
1508
1509/* XXX inline or eliminate? */
1510const struct ieee80211_rateset *
1511ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1512{
1513	/* XXX does this work for 11ng basic rates? */
1514	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1515}
1516
1517void
1518ieee80211_announce(struct ieee80211com *ic)
1519{
1520	int i, rate, mword;
1521	enum ieee80211_phymode mode;
1522	const struct ieee80211_rateset *rs;
1523
1524	/* NB: skip AUTO since it has no rates */
1525	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1526		if (isclr(ic->ic_modecaps, mode))
1527			continue;
1528		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1529		rs = &ic->ic_sup_rates[mode];
1530		for (i = 0; i < rs->rs_nrates; i++) {
1531			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1532			if (mword == 0)
1533				continue;
1534			rate = ieee80211_media2rate(mword);
1535			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1536			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1537		}
1538		printf("\n");
1539	}
1540	ieee80211_ht_announce(ic);
1541}
1542
1543void
1544ieee80211_announce_channels(struct ieee80211com *ic)
1545{
1546	const struct ieee80211_channel *c;
1547	char type;
1548	int i, cw;
1549
1550	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1551	for (i = 0; i < ic->ic_nchans; i++) {
1552		c = &ic->ic_channels[i];
1553		if (IEEE80211_IS_CHAN_ST(c))
1554			type = 'S';
1555		else if (IEEE80211_IS_CHAN_108A(c))
1556			type = 'T';
1557		else if (IEEE80211_IS_CHAN_108G(c))
1558			type = 'G';
1559		else if (IEEE80211_IS_CHAN_HT(c))
1560			type = 'n';
1561		else if (IEEE80211_IS_CHAN_A(c))
1562			type = 'a';
1563		else if (IEEE80211_IS_CHAN_ANYG(c))
1564			type = 'g';
1565		else if (IEEE80211_IS_CHAN_B(c))
1566			type = 'b';
1567		else
1568			type = 'f';
1569		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1570			cw = 40;
1571		else if (IEEE80211_IS_CHAN_HALF(c))
1572			cw = 10;
1573		else if (IEEE80211_IS_CHAN_QUARTER(c))
1574			cw = 5;
1575		else
1576			cw = 20;
1577		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1578			, c->ic_ieee, c->ic_freq, type
1579			, cw
1580			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1581			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1582			, c->ic_maxregpower
1583			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1584			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1585		);
1586	}
1587}
1588
1589static int
1590media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1591{
1592	switch (IFM_MODE(ime->ifm_media)) {
1593	case IFM_IEEE80211_11A:
1594		*mode = IEEE80211_MODE_11A;
1595		break;
1596	case IFM_IEEE80211_11B:
1597		*mode = IEEE80211_MODE_11B;
1598		break;
1599	case IFM_IEEE80211_11G:
1600		*mode = IEEE80211_MODE_11G;
1601		break;
1602	case IFM_IEEE80211_FH:
1603		*mode = IEEE80211_MODE_FH;
1604		break;
1605	case IFM_IEEE80211_11NA:
1606		*mode = IEEE80211_MODE_11NA;
1607		break;
1608	case IFM_IEEE80211_11NG:
1609		*mode = IEEE80211_MODE_11NG;
1610		break;
1611	case IFM_AUTO:
1612		*mode = IEEE80211_MODE_AUTO;
1613		break;
1614	default:
1615		return 0;
1616	}
1617	/*
1618	 * Turbo mode is an ``option''.
1619	 * XXX does not apply to AUTO
1620	 */
1621	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1622		if (*mode == IEEE80211_MODE_11A) {
1623			if (flags & IEEE80211_F_TURBOP)
1624				*mode = IEEE80211_MODE_TURBO_A;
1625			else
1626				*mode = IEEE80211_MODE_STURBO_A;
1627		} else if (*mode == IEEE80211_MODE_11G)
1628			*mode = IEEE80211_MODE_TURBO_G;
1629		else
1630			return 0;
1631	}
1632	/* XXX HT40 +/- */
1633	return 1;
1634}
1635
1636/*
1637 * Handle a media change request on the vap interface.
1638 */
1639int
1640ieee80211_media_change(struct ifnet *ifp)
1641{
1642	struct ieee80211vap *vap = ifp->if_softc;
1643	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1644	uint16_t newmode;
1645
1646	if (!media2mode(ime, vap->iv_flags, &newmode))
1647		return EINVAL;
1648	if (vap->iv_des_mode != newmode) {
1649		vap->iv_des_mode = newmode;
1650		/* XXX kick state machine if up+running */
1651	}
1652	return 0;
1653}
1654
1655/*
1656 * Common code to calculate the media status word
1657 * from the operating mode and channel state.
1658 */
1659static int
1660media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1661{
1662	int status;
1663
1664	status = IFM_IEEE80211;
1665	switch (opmode) {
1666	case IEEE80211_M_STA:
1667		break;
1668	case IEEE80211_M_IBSS:
1669		status |= IFM_IEEE80211_ADHOC;
1670		break;
1671	case IEEE80211_M_HOSTAP:
1672		status |= IFM_IEEE80211_HOSTAP;
1673		break;
1674	case IEEE80211_M_MONITOR:
1675		status |= IFM_IEEE80211_MONITOR;
1676		break;
1677	case IEEE80211_M_AHDEMO:
1678		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1679		break;
1680	case IEEE80211_M_WDS:
1681		status |= IFM_IEEE80211_WDS;
1682		break;
1683	case IEEE80211_M_MBSS:
1684		status |= IFM_IEEE80211_MBSS;
1685		break;
1686	}
1687	if (IEEE80211_IS_CHAN_HTA(chan)) {
1688		status |= IFM_IEEE80211_11NA;
1689	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1690		status |= IFM_IEEE80211_11NG;
1691	} else if (IEEE80211_IS_CHAN_A(chan)) {
1692		status |= IFM_IEEE80211_11A;
1693	} else if (IEEE80211_IS_CHAN_B(chan)) {
1694		status |= IFM_IEEE80211_11B;
1695	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1696		status |= IFM_IEEE80211_11G;
1697	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1698		status |= IFM_IEEE80211_FH;
1699	}
1700	/* XXX else complain? */
1701
1702	if (IEEE80211_IS_CHAN_TURBO(chan))
1703		status |= IFM_IEEE80211_TURBO;
1704#if 0
1705	if (IEEE80211_IS_CHAN_HT20(chan))
1706		status |= IFM_IEEE80211_HT20;
1707	if (IEEE80211_IS_CHAN_HT40(chan))
1708		status |= IFM_IEEE80211_HT40;
1709#endif
1710	return status;
1711}
1712
1713void
1714ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1715{
1716	struct ieee80211vap *vap = ifp->if_softc;
1717	struct ieee80211com *ic = vap->iv_ic;
1718	enum ieee80211_phymode mode;
1719
1720	imr->ifm_status = IFM_AVALID;
1721	/*
1722	 * NB: use the current channel's mode to lock down a xmit
1723	 * rate only when running; otherwise we may have a mismatch
1724	 * in which case the rate will not be convertible.
1725	 */
1726	if (vap->iv_state == IEEE80211_S_RUN ||
1727	    vap->iv_state == IEEE80211_S_SLEEP) {
1728		imr->ifm_status |= IFM_ACTIVE;
1729		mode = ieee80211_chan2mode(ic->ic_curchan);
1730	} else
1731		mode = IEEE80211_MODE_AUTO;
1732	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1733	/*
1734	 * Calculate a current rate if possible.
1735	 */
1736	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1737		/*
1738		 * A fixed rate is set, report that.
1739		 */
1740		imr->ifm_active |= ieee80211_rate2media(ic,
1741			vap->iv_txparms[mode].ucastrate, mode);
1742	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1743		/*
1744		 * In station mode report the current transmit rate.
1745		 */
1746		imr->ifm_active |= ieee80211_rate2media(ic,
1747			vap->iv_bss->ni_txrate, mode);
1748	} else
1749		imr->ifm_active |= IFM_AUTO;
1750	if (imr->ifm_status & IFM_ACTIVE)
1751		imr->ifm_current = imr->ifm_active;
1752}
1753
1754/*
1755 * Set the current phy mode and recalculate the active channel
1756 * set based on the available channels for this mode.  Also
1757 * select a new default/current channel if the current one is
1758 * inappropriate for this mode.
1759 */
1760int
1761ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1762{
1763	/*
1764	 * Adjust basic rates in 11b/11g supported rate set.
1765	 * Note that if operating on a hal/quarter rate channel
1766	 * this is a noop as those rates sets are different
1767	 * and used instead.
1768	 */
1769	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1770		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1771
1772	ic->ic_curmode = mode;
1773	ieee80211_reset_erp(ic);	/* reset ERP state */
1774
1775	return 0;
1776}
1777
1778/*
1779 * Return the phy mode for with the specified channel.
1780 */
1781enum ieee80211_phymode
1782ieee80211_chan2mode(const struct ieee80211_channel *chan)
1783{
1784
1785	if (IEEE80211_IS_CHAN_HTA(chan))
1786		return IEEE80211_MODE_11NA;
1787	else if (IEEE80211_IS_CHAN_HTG(chan))
1788		return IEEE80211_MODE_11NG;
1789	else if (IEEE80211_IS_CHAN_108G(chan))
1790		return IEEE80211_MODE_TURBO_G;
1791	else if (IEEE80211_IS_CHAN_ST(chan))
1792		return IEEE80211_MODE_STURBO_A;
1793	else if (IEEE80211_IS_CHAN_TURBO(chan))
1794		return IEEE80211_MODE_TURBO_A;
1795	else if (IEEE80211_IS_CHAN_HALF(chan))
1796		return IEEE80211_MODE_HALF;
1797	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1798		return IEEE80211_MODE_QUARTER;
1799	else if (IEEE80211_IS_CHAN_A(chan))
1800		return IEEE80211_MODE_11A;
1801	else if (IEEE80211_IS_CHAN_ANYG(chan))
1802		return IEEE80211_MODE_11G;
1803	else if (IEEE80211_IS_CHAN_B(chan))
1804		return IEEE80211_MODE_11B;
1805	else if (IEEE80211_IS_CHAN_FHSS(chan))
1806		return IEEE80211_MODE_FH;
1807
1808	/* NB: should not get here */
1809	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1810		__func__, chan->ic_freq, chan->ic_flags);
1811	return IEEE80211_MODE_11B;
1812}
1813
1814struct ratemedia {
1815	u_int	match;	/* rate + mode */
1816	u_int	media;	/* if_media rate */
1817};
1818
1819static int
1820findmedia(const struct ratemedia rates[], int n, u_int match)
1821{
1822	int i;
1823
1824	for (i = 0; i < n; i++)
1825		if (rates[i].match == match)
1826			return rates[i].media;
1827	return IFM_AUTO;
1828}
1829
1830/*
1831 * Convert IEEE80211 rate value to ifmedia subtype.
1832 * Rate is either a legacy rate in units of 0.5Mbps
1833 * or an MCS index.
1834 */
1835int
1836ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1837{
1838	static const struct ratemedia rates[] = {
1839		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1840		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1841		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1842		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1843		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1844		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1845		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1846		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1847		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1848		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1849		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1850		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1851		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1852		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1853		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1854		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1855		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1856		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1857		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1858		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1859		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1860		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1861		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1862		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1863		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1864		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1865		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1866		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1867		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1868		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1869		/* NB: OFDM72 doesn't really exist so we don't handle it */
1870	};
1871	static const struct ratemedia htrates[] = {
1872		{   0, IFM_IEEE80211_MCS },
1873		{   1, IFM_IEEE80211_MCS },
1874		{   2, IFM_IEEE80211_MCS },
1875		{   3, IFM_IEEE80211_MCS },
1876		{   4, IFM_IEEE80211_MCS },
1877		{   5, IFM_IEEE80211_MCS },
1878		{   6, IFM_IEEE80211_MCS },
1879		{   7, IFM_IEEE80211_MCS },
1880		{   8, IFM_IEEE80211_MCS },
1881		{   9, IFM_IEEE80211_MCS },
1882		{  10, IFM_IEEE80211_MCS },
1883		{  11, IFM_IEEE80211_MCS },
1884		{  12, IFM_IEEE80211_MCS },
1885		{  13, IFM_IEEE80211_MCS },
1886		{  14, IFM_IEEE80211_MCS },
1887		{  15, IFM_IEEE80211_MCS },
1888		{  16, IFM_IEEE80211_MCS },
1889		{  17, IFM_IEEE80211_MCS },
1890		{  18, IFM_IEEE80211_MCS },
1891		{  19, IFM_IEEE80211_MCS },
1892		{  20, IFM_IEEE80211_MCS },
1893		{  21, IFM_IEEE80211_MCS },
1894		{  22, IFM_IEEE80211_MCS },
1895		{  23, IFM_IEEE80211_MCS },
1896		{  24, IFM_IEEE80211_MCS },
1897		{  25, IFM_IEEE80211_MCS },
1898		{  26, IFM_IEEE80211_MCS },
1899		{  27, IFM_IEEE80211_MCS },
1900		{  28, IFM_IEEE80211_MCS },
1901		{  29, IFM_IEEE80211_MCS },
1902		{  30, IFM_IEEE80211_MCS },
1903		{  31, IFM_IEEE80211_MCS },
1904		{  32, IFM_IEEE80211_MCS },
1905		{  33, IFM_IEEE80211_MCS },
1906		{  34, IFM_IEEE80211_MCS },
1907		{  35, IFM_IEEE80211_MCS },
1908		{  36, IFM_IEEE80211_MCS },
1909		{  37, IFM_IEEE80211_MCS },
1910		{  38, IFM_IEEE80211_MCS },
1911		{  39, IFM_IEEE80211_MCS },
1912		{  40, IFM_IEEE80211_MCS },
1913		{  41, IFM_IEEE80211_MCS },
1914		{  42, IFM_IEEE80211_MCS },
1915		{  43, IFM_IEEE80211_MCS },
1916		{  44, IFM_IEEE80211_MCS },
1917		{  45, IFM_IEEE80211_MCS },
1918		{  46, IFM_IEEE80211_MCS },
1919		{  47, IFM_IEEE80211_MCS },
1920		{  48, IFM_IEEE80211_MCS },
1921		{  49, IFM_IEEE80211_MCS },
1922		{  50, IFM_IEEE80211_MCS },
1923		{  51, IFM_IEEE80211_MCS },
1924		{  52, IFM_IEEE80211_MCS },
1925		{  53, IFM_IEEE80211_MCS },
1926		{  54, IFM_IEEE80211_MCS },
1927		{  55, IFM_IEEE80211_MCS },
1928		{  56, IFM_IEEE80211_MCS },
1929		{  57, IFM_IEEE80211_MCS },
1930		{  58, IFM_IEEE80211_MCS },
1931		{  59, IFM_IEEE80211_MCS },
1932		{  60, IFM_IEEE80211_MCS },
1933		{  61, IFM_IEEE80211_MCS },
1934		{  62, IFM_IEEE80211_MCS },
1935		{  63, IFM_IEEE80211_MCS },
1936		{  64, IFM_IEEE80211_MCS },
1937		{  65, IFM_IEEE80211_MCS },
1938		{  66, IFM_IEEE80211_MCS },
1939		{  67, IFM_IEEE80211_MCS },
1940		{  68, IFM_IEEE80211_MCS },
1941		{  69, IFM_IEEE80211_MCS },
1942		{  70, IFM_IEEE80211_MCS },
1943		{  71, IFM_IEEE80211_MCS },
1944		{  72, IFM_IEEE80211_MCS },
1945		{  73, IFM_IEEE80211_MCS },
1946		{  74, IFM_IEEE80211_MCS },
1947		{  75, IFM_IEEE80211_MCS },
1948		{  76, IFM_IEEE80211_MCS },
1949	};
1950	int m;
1951
1952	/*
1953	 * Check 11n rates first for match as an MCS.
1954	 */
1955	if (mode == IEEE80211_MODE_11NA) {
1956		if (rate & IEEE80211_RATE_MCS) {
1957			rate &= ~IEEE80211_RATE_MCS;
1958			m = findmedia(htrates, nitems(htrates), rate);
1959			if (m != IFM_AUTO)
1960				return m | IFM_IEEE80211_11NA;
1961		}
1962	} else if (mode == IEEE80211_MODE_11NG) {
1963		/* NB: 12 is ambiguous, it will be treated as an MCS */
1964		if (rate & IEEE80211_RATE_MCS) {
1965			rate &= ~IEEE80211_RATE_MCS;
1966			m = findmedia(htrates, nitems(htrates), rate);
1967			if (m != IFM_AUTO)
1968				return m | IFM_IEEE80211_11NG;
1969		}
1970	}
1971	rate &= IEEE80211_RATE_VAL;
1972	switch (mode) {
1973	case IEEE80211_MODE_11A:
1974	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1975	case IEEE80211_MODE_QUARTER:
1976	case IEEE80211_MODE_11NA:
1977	case IEEE80211_MODE_TURBO_A:
1978	case IEEE80211_MODE_STURBO_A:
1979		return findmedia(rates, nitems(rates),
1980		    rate | IFM_IEEE80211_11A);
1981	case IEEE80211_MODE_11B:
1982		return findmedia(rates, nitems(rates),
1983		    rate | IFM_IEEE80211_11B);
1984	case IEEE80211_MODE_FH:
1985		return findmedia(rates, nitems(rates),
1986		    rate | IFM_IEEE80211_FH);
1987	case IEEE80211_MODE_AUTO:
1988		/* NB: ic may be NULL for some drivers */
1989		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1990			return findmedia(rates, nitems(rates),
1991			    rate | IFM_IEEE80211_FH);
1992		/* NB: hack, 11g matches both 11b+11a rates */
1993		/* fall thru... */
1994	case IEEE80211_MODE_11G:
1995	case IEEE80211_MODE_11NG:
1996	case IEEE80211_MODE_TURBO_G:
1997		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1998	}
1999	return IFM_AUTO;
2000}
2001
2002int
2003ieee80211_media2rate(int mword)
2004{
2005	static const int ieeerates[] = {
2006		-1,		/* IFM_AUTO */
2007		0,		/* IFM_MANUAL */
2008		0,		/* IFM_NONE */
2009		2,		/* IFM_IEEE80211_FH1 */
2010		4,		/* IFM_IEEE80211_FH2 */
2011		2,		/* IFM_IEEE80211_DS1 */
2012		4,		/* IFM_IEEE80211_DS2 */
2013		11,		/* IFM_IEEE80211_DS5 */
2014		22,		/* IFM_IEEE80211_DS11 */
2015		44,		/* IFM_IEEE80211_DS22 */
2016		12,		/* IFM_IEEE80211_OFDM6 */
2017		18,		/* IFM_IEEE80211_OFDM9 */
2018		24,		/* IFM_IEEE80211_OFDM12 */
2019		36,		/* IFM_IEEE80211_OFDM18 */
2020		48,		/* IFM_IEEE80211_OFDM24 */
2021		72,		/* IFM_IEEE80211_OFDM36 */
2022		96,		/* IFM_IEEE80211_OFDM48 */
2023		108,		/* IFM_IEEE80211_OFDM54 */
2024		144,		/* IFM_IEEE80211_OFDM72 */
2025		0,		/* IFM_IEEE80211_DS354k */
2026		0,		/* IFM_IEEE80211_DS512k */
2027		6,		/* IFM_IEEE80211_OFDM3 */
2028		9,		/* IFM_IEEE80211_OFDM4 */
2029		54,		/* IFM_IEEE80211_OFDM27 */
2030		-1,		/* IFM_IEEE80211_MCS */
2031	};
2032	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2033		ieeerates[IFM_SUBTYPE(mword)] : 0;
2034}
2035
2036/*
2037 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2038 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2039 */
2040#define	mix(a, b, c)							\
2041do {									\
2042	a -= b; a -= c; a ^= (c >> 13);					\
2043	b -= c; b -= a; b ^= (a << 8);					\
2044	c -= a; c -= b; c ^= (b >> 13);					\
2045	a -= b; a -= c; a ^= (c >> 12);					\
2046	b -= c; b -= a; b ^= (a << 16);					\
2047	c -= a; c -= b; c ^= (b >> 5);					\
2048	a -= b; a -= c; a ^= (c >> 3);					\
2049	b -= c; b -= a; b ^= (a << 10);					\
2050	c -= a; c -= b; c ^= (b >> 15);					\
2051} while (/*CONSTCOND*/0)
2052
2053uint32_t
2054ieee80211_mac_hash(const struct ieee80211com *ic,
2055	const uint8_t addr[IEEE80211_ADDR_LEN])
2056{
2057	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2058
2059	b += addr[5] << 8;
2060	b += addr[4];
2061	a += addr[3] << 24;
2062	a += addr[2] << 16;
2063	a += addr[1] << 8;
2064	a += addr[0];
2065
2066	mix(a, b, c);
2067
2068	return c;
2069}
2070#undef mix
2071
2072char
2073ieee80211_channel_type_char(const struct ieee80211_channel *c)
2074{
2075	if (IEEE80211_IS_CHAN_ST(c))
2076		return 'S';
2077	if (IEEE80211_IS_CHAN_108A(c))
2078		return 'T';
2079	if (IEEE80211_IS_CHAN_108G(c))
2080		return 'G';
2081	if (IEEE80211_IS_CHAN_HT(c))
2082		return 'n';
2083	if (IEEE80211_IS_CHAN_A(c))
2084		return 'a';
2085	if (IEEE80211_IS_CHAN_ANYG(c))
2086		return 'g';
2087	if (IEEE80211_IS_CHAN_B(c))
2088		return 'b';
2089	return 'f';
2090}
2091