ieee80211.c revision 191148
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 191148 2009-04-16 20:30:28Z kmacy $");
29
30/*
31 * IEEE 802.11 generic handler
32 */
33#include "opt_wlan.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38
39#include <sys/socket.h>
40
41#include <net/if.h>
42#include <net/if_dl.h>
43#include <net/if_media.h>
44#include <net/if_types.h>
45#include <net/ethernet.h>
46
47#include <net80211/ieee80211_var.h>
48#include <net80211/ieee80211_regdomain.h>
49#ifdef IEEE80211_SUPPORT_SUPERG
50#include <net80211/ieee80211_superg.h>
51#endif
52
53#include <net/bpf.h>
54
55const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
56	[IEEE80211_MODE_AUTO]	  = "auto",
57	[IEEE80211_MODE_11A]	  = "11a",
58	[IEEE80211_MODE_11B]	  = "11b",
59	[IEEE80211_MODE_11G]	  = "11g",
60	[IEEE80211_MODE_FH]	  = "FH",
61	[IEEE80211_MODE_TURBO_A]  = "turboA",
62	[IEEE80211_MODE_TURBO_G]  = "turboG",
63	[IEEE80211_MODE_STURBO_A] = "sturboA",
64	[IEEE80211_MODE_HALF]	  = "half",
65	[IEEE80211_MODE_QUARTER]  = "quarter",
66	[IEEE80211_MODE_11NA]	  = "11na",
67	[IEEE80211_MODE_11NG]	  = "11ng",
68};
69/* map ieee80211_opmode to the corresponding capability bit */
70const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
71	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
72	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
73	[IEEE80211_M_STA]	= IEEE80211_C_STA,
74	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
75	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
76	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
77};
78
79static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
80	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
81
82static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
83static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
84static	int ieee80211_media_setup(struct ieee80211com *ic,
85		struct ifmedia *media, int caps, int addsta,
86		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
87static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
88static	int ieee80211com_media_change(struct ifnet *);
89static	int media_status(enum ieee80211_opmode,
90		const struct ieee80211_channel *);
91
92MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
93
94/*
95 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
96 */
97#define	B(r)	((r) | IEEE80211_RATE_BASIC)
98static const struct ieee80211_rateset ieee80211_rateset_11a =
99	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
100static const struct ieee80211_rateset ieee80211_rateset_half =
101	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
102static const struct ieee80211_rateset ieee80211_rateset_quarter =
103	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
104static const struct ieee80211_rateset ieee80211_rateset_11b =
105	{ 4, { B(2), B(4), B(11), B(22) } };
106/* NB: OFDM rates are handled specially based on mode */
107static const struct ieee80211_rateset ieee80211_rateset_11g =
108	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
109#undef B
110
111/*
112 * Fill in 802.11 available channel set, mark
113 * all available channels as active, and pick
114 * a default channel if not already specified.
115 */
116static void
117ieee80211_chan_init(struct ieee80211com *ic)
118{
119#define	DEFAULTRATES(m, def) do { \
120	if (ic->ic_sup_rates[m].rs_nrates == 0) \
121		ic->ic_sup_rates[m] = def; \
122} while (0)
123	struct ieee80211_channel *c;
124	int i;
125
126	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
127		("invalid number of channels specified: %u", ic->ic_nchans));
128	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
129	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
130	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
131	for (i = 0; i < ic->ic_nchans; i++) {
132		c = &ic->ic_channels[i];
133		KASSERT(c->ic_flags != 0, ("channel with no flags"));
134		/*
135		 * Help drivers that work only with frequencies by filling
136		 * in IEEE channel #'s if not already calculated.  Note this
137		 * mimics similar work done in ieee80211_setregdomain when
138		 * changing regulatory state.
139		 */
140		if (c->ic_ieee == 0)
141			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
142		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
143			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
144			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
145			    c->ic_flags);
146		/* default max tx power to max regulatory */
147		if (c->ic_maxpower == 0)
148			c->ic_maxpower = 2*c->ic_maxregpower;
149		setbit(ic->ic_chan_avail, c->ic_ieee);
150		/*
151		 * Identify mode capabilities.
152		 */
153		if (IEEE80211_IS_CHAN_A(c))
154			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
155		if (IEEE80211_IS_CHAN_B(c))
156			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
157		if (IEEE80211_IS_CHAN_ANYG(c))
158			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
159		if (IEEE80211_IS_CHAN_FHSS(c))
160			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
161		if (IEEE80211_IS_CHAN_108A(c))
162			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
163		if (IEEE80211_IS_CHAN_108G(c))
164			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
165		if (IEEE80211_IS_CHAN_ST(c))
166			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
167		if (IEEE80211_IS_CHAN_HALF(c))
168			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
169		if (IEEE80211_IS_CHAN_QUARTER(c))
170			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
171		if (IEEE80211_IS_CHAN_HTA(c))
172			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
173		if (IEEE80211_IS_CHAN_HTG(c))
174			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
175	}
176	/* initialize candidate channels to all available */
177	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
178		sizeof(ic->ic_chan_avail));
179
180	/* sort channel table to allow lookup optimizations */
181	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
182
183	/* invalidate any previous state */
184	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
185	ic->ic_prevchan = NULL;
186	ic->ic_csa_newchan = NULL;
187	/* arbitrarily pick the first channel */
188	ic->ic_curchan = &ic->ic_channels[0];
189	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
190
191	/* fillin well-known rate sets if driver has not specified */
192	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
193	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
194	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
195	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
196	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
197	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
198	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
199	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
200	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
201	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
202
203	/*
204	 * Set auto mode to reset active channel state and any desired channel.
205	 */
206	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
207#undef DEFAULTRATES
208}
209
210static void
211null_update_mcast(struct ifnet *ifp)
212{
213	if_printf(ifp, "need multicast update callback\n");
214}
215
216static void
217null_update_promisc(struct ifnet *ifp)
218{
219	if_printf(ifp, "need promiscuous mode update callback\n");
220}
221
222static int
223null_output(struct ifnet *ifp, struct mbuf *m,
224	struct sockaddr *dst, struct route *ro)
225{
226	if_printf(ifp, "discard raw packet\n");
227	m_freem(m);
228	return EIO;
229}
230
231static void
232null_input(struct ifnet *ifp, struct mbuf *m)
233{
234	if_printf(ifp, "if_input should not be called\n");
235	m_freem(m);
236}
237
238/*
239 * Attach/setup the common net80211 state.  Called by
240 * the driver on attach to prior to creating any vap's.
241 */
242void
243ieee80211_ifattach(struct ieee80211com *ic,
244	const uint8_t macaddr[IEEE80211_ADDR_LEN])
245{
246	struct ifnet *ifp = ic->ic_ifp;
247	struct sockaddr_dl *sdl;
248	struct ifaddr *ifa;
249
250	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
251
252	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
253	TAILQ_INIT(&ic->ic_vaps);
254	/*
255	 * Fill in 802.11 available channel set, mark all
256	 * available channels as active, and pick a default
257	 * channel if not already specified.
258	 */
259	ieee80211_media_init(ic);
260
261	ic->ic_update_mcast = null_update_mcast;
262	ic->ic_update_promisc = null_update_promisc;
263
264	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
265	ic->ic_lintval = ic->ic_bintval;
266	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
267
268	ieee80211_crypto_attach(ic);
269	ieee80211_node_attach(ic);
270	ieee80211_power_attach(ic);
271	ieee80211_proto_attach(ic);
272#ifdef IEEE80211_SUPPORT_SUPERG
273	ieee80211_superg_attach(ic);
274#endif
275	ieee80211_ht_attach(ic);
276	ieee80211_scan_attach(ic);
277	ieee80211_regdomain_attach(ic);
278
279	ieee80211_sysctl_attach(ic);
280
281	ifp->if_addrlen = IEEE80211_ADDR_LEN;
282	ifp->if_hdrlen = 0;
283	if_attach(ifp);
284	ifp->if_mtu = IEEE80211_MTU_MAX;
285	ifp->if_broadcastaddr = ieee80211broadcastaddr;
286	ifp->if_output = null_output;
287	ifp->if_input = null_input;	/* just in case */
288	ifp->if_resolvemulti = NULL;	/* NB: callers check */
289
290	ifa = ifaddr_byindex(ifp->if_index);
291	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
292	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
293	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
294	sdl->sdl_alen = IEEE80211_ADDR_LEN;
295	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
296}
297
298/*
299 * Detach net80211 state on device detach.  Tear down
300 * all vap's and reclaim all common state prior to the
301 * device state going away.  Note we may call back into
302 * driver; it must be prepared for this.
303 */
304void
305ieee80211_ifdetach(struct ieee80211com *ic)
306{
307	struct ifnet *ifp = ic->ic_ifp;
308	struct ieee80211vap *vap;
309
310	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
311		ieee80211_vap_destroy(vap);
312	ieee80211_waitfor_parent(ic);
313
314	ieee80211_sysctl_detach(ic);
315	ieee80211_regdomain_detach(ic);
316	ieee80211_scan_detach(ic);
317#ifdef IEEE80211_SUPPORT_SUPERG
318	ieee80211_superg_detach(ic);
319#endif
320	ieee80211_ht_detach(ic);
321	/* NB: must be called before ieee80211_node_detach */
322	ieee80211_proto_detach(ic);
323	ieee80211_crypto_detach(ic);
324	ieee80211_power_detach(ic);
325	ieee80211_node_detach(ic);
326	ifmedia_removeall(&ic->ic_media);
327
328	IEEE80211_LOCK_DESTROY(ic);
329	if_detach(ifp);
330}
331
332/*
333 * Default reset method for use with the ioctl support.  This
334 * method is invoked after any state change in the 802.11
335 * layer that should be propagated to the hardware but not
336 * require re-initialization of the 802.11 state machine (e.g
337 * rescanning for an ap).  We always return ENETRESET which
338 * should cause the driver to re-initialize the device. Drivers
339 * can override this method to implement more optimized support.
340 */
341static int
342default_reset(struct ieee80211vap *vap, u_long cmd)
343{
344	return ENETRESET;
345}
346
347/*
348 * Prepare a vap for use.  Drivers use this call to
349 * setup net80211 state in new vap's prior attaching
350 * them with ieee80211_vap_attach (below).
351 */
352int
353ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
354	const char name[IFNAMSIZ], int unit, int opmode, int flags,
355	const uint8_t bssid[IEEE80211_ADDR_LEN],
356	const uint8_t macaddr[IEEE80211_ADDR_LEN])
357{
358	struct ifnet *ifp;
359
360	ifp = if_alloc(IFT_ETHER);
361	if (ifp == NULL) {
362		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
363		    __func__);
364		return ENOMEM;
365	}
366	if_initname(ifp, name, unit);
367	ifp->if_softc = vap;			/* back pointer */
368	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
369	ifp->if_start = ieee80211_start;
370	ifp->if_ioctl = ieee80211_ioctl;
371	ifp->if_watchdog = NULL;		/* NB: no watchdog routine */
372	ifp->if_init = ieee80211_init;
373	/* NB: input+output filled in by ether_ifattach */
374	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
375	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
376	IFQ_SET_READY(&ifp->if_snd);
377
378	vap->iv_ifp = ifp;
379	vap->iv_ic = ic;
380	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
381	vap->iv_flags_ext = ic->ic_flags_ext;
382	vap->iv_flags_ven = ic->ic_flags_ven;
383	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
384	vap->iv_htcaps = ic->ic_htcaps;
385	vap->iv_opmode = opmode;
386	vap->iv_caps |= ieee80211_opcap[opmode];
387	switch (opmode) {
388	case IEEE80211_M_WDS:
389		/*
390		 * WDS links must specify the bssid of the far end.
391		 * For legacy operation this is a static relationship.
392		 * For non-legacy operation the station must associate
393		 * and be authorized to pass traffic.  Plumbing the
394		 * vap to the proper node happens when the vap
395		 * transitions to RUN state.
396		 */
397		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
398		vap->iv_flags |= IEEE80211_F_DESBSSID;
399		if (flags & IEEE80211_CLONE_WDSLEGACY)
400			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
401		break;
402#ifdef IEEE80211_SUPPORT_TDMA
403	case IEEE80211_M_AHDEMO:
404		if (flags & IEEE80211_CLONE_TDMA) {
405			/* NB: checked before clone operation allowed */
406			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
407			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
408			/*
409			 * Propagate TDMA capability to mark vap; this
410			 * cannot be removed and is used to distinguish
411			 * regular ahdemo operation from ahdemo+tdma.
412			 */
413			vap->iv_caps |= IEEE80211_C_TDMA;
414		}
415		break;
416#endif
417	}
418	/* auto-enable s/w beacon miss support */
419	if (flags & IEEE80211_CLONE_NOBEACONS)
420		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
421	/*
422	 * Enable various functionality by default if we're
423	 * capable; the driver can override us if it knows better.
424	 */
425	if (vap->iv_caps & IEEE80211_C_WME)
426		vap->iv_flags |= IEEE80211_F_WME;
427	if (vap->iv_caps & IEEE80211_C_BURST)
428		vap->iv_flags |= IEEE80211_F_BURST;
429	/* NB: bg scanning only makes sense for station mode right now */
430	if (vap->iv_opmode == IEEE80211_M_STA &&
431	    (vap->iv_caps & IEEE80211_C_BGSCAN))
432		vap->iv_flags |= IEEE80211_F_BGSCAN;
433	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
434	/* NB: DFS support only makes sense for ap mode right now */
435	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
436	    (vap->iv_caps & IEEE80211_C_DFS))
437		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
438
439	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
440	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
441	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
442	/*
443	 * Install a default reset method for the ioctl support;
444	 * the driver can override this.
445	 */
446	vap->iv_reset = default_reset;
447
448	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
449
450	ieee80211_sysctl_vattach(vap);
451	ieee80211_crypto_vattach(vap);
452	ieee80211_node_vattach(vap);
453	ieee80211_power_vattach(vap);
454	ieee80211_proto_vattach(vap);
455#ifdef IEEE80211_SUPPORT_SUPERG
456	ieee80211_superg_vattach(vap);
457#endif
458	ieee80211_ht_vattach(vap);
459	ieee80211_scan_vattach(vap);
460	ieee80211_regdomain_vattach(vap);
461
462	return 0;
463}
464
465/*
466 * Activate a vap.  State should have been prepared with a
467 * call to ieee80211_vap_setup and by the driver.  On return
468 * from this call the vap is ready for use.
469 */
470int
471ieee80211_vap_attach(struct ieee80211vap *vap,
472	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
473{
474	struct ifnet *ifp = vap->iv_ifp;
475	struct ieee80211com *ic = vap->iv_ic;
476	struct ifmediareq imr;
477	int maxrate;
478
479	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
480	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
481	    __func__, ieee80211_opmode_name[vap->iv_opmode],
482	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
483
484	/*
485	 * Do late attach work that cannot happen until after
486	 * the driver has had a chance to override defaults.
487	 */
488	ieee80211_node_latevattach(vap);
489	ieee80211_power_latevattach(vap);
490
491	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
492	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
493	ieee80211_media_status(ifp, &imr);
494	/* NB: strip explicit mode; we're actually in autoselect */
495	ifmedia_set(&vap->iv_media,
496	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
497	if (maxrate)
498		ifp->if_baudrate = IF_Mbps(maxrate);
499
500	ether_ifattach(ifp, vap->iv_myaddr);
501	/* hook output method setup by ether_ifattach */
502	vap->iv_output = ifp->if_output;
503	ifp->if_output = ieee80211_output;
504	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
505	bpfattach2(ifp, DLT_IEEE802_11, ifp->if_hdrlen, &vap->iv_rawbpf);
506
507	IEEE80211_LOCK(ic);
508	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
509	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
510#ifdef IEEE80211_SUPPORT_SUPERG
511	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
512#endif
513	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
514	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
515	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
516	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
517	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
518	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
519	IEEE80211_UNLOCK(ic);
520
521	return 1;
522}
523
524/*
525 * Tear down vap state and reclaim the ifnet.
526 * The driver is assumed to have prepared for
527 * this; e.g. by turning off interrupts for the
528 * underlying device.
529 */
530void
531ieee80211_vap_detach(struct ieee80211vap *vap)
532{
533	struct ieee80211com *ic = vap->iv_ic;
534	struct ifnet *ifp = vap->iv_ifp;
535
536	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
537	    __func__, ieee80211_opmode_name[vap->iv_opmode],
538	    ic->ic_ifp->if_xname);
539
540	IEEE80211_LOCK(ic);
541	/* block traffic from above */
542	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
543	/*
544	 * Evil hack.  Clear the backpointer from the ifnet to the
545	 * vap so any requests from above will return an error or
546	 * be ignored.  In particular this short-circuits requests
547	 * by the bridge to turn off promiscuous mode as a result
548	 * of calling ether_ifdetach.
549	 */
550	ifp->if_softc = NULL;
551	/*
552	 * Stop the vap before detaching the ifnet.  Ideally we'd
553	 * do this in the other order so the ifnet is inaccessible
554	 * while we cleanup internal state but that is hard.
555	 */
556	ieee80211_stop_locked(vap);
557
558	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
559	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
560#ifdef IEEE80211_SUPPORT_SUPERG
561	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
562#endif
563	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
564	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
565	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_HT);
566	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_USEHT40);
567	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
568	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
569	IEEE80211_UNLOCK(ic);
570
571	/* XXX can't hold com lock */
572	/* NB: bpfattach is called by ether_ifdetach and claims all taps */
573	ether_ifdetach(ifp);
574
575	ifmedia_removeall(&vap->iv_media);
576
577	ieee80211_regdomain_vdetach(vap);
578	ieee80211_scan_vdetach(vap);
579#ifdef IEEE80211_SUPPORT_SUPERG
580	ieee80211_superg_vdetach(vap);
581#endif
582	ieee80211_ht_vdetach(vap);
583	/* NB: must be before ieee80211_node_vdetach */
584	ieee80211_proto_vdetach(vap);
585	ieee80211_crypto_vdetach(vap);
586	ieee80211_power_vdetach(vap);
587	ieee80211_node_vdetach(vap);
588	ieee80211_sysctl_vdetach(vap);
589
590	if_free(ifp);
591}
592
593/*
594 * Synchronize flag bit state in the parent ifnet structure
595 * according to the state of all vap ifnet's.  This is used,
596 * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
597 */
598void
599ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
600{
601	struct ifnet *ifp = ic->ic_ifp;
602	struct ieee80211vap *vap;
603	int bit, oflags;
604
605	IEEE80211_LOCK_ASSERT(ic);
606
607	bit = 0;
608	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
609		if (vap->iv_ifp->if_flags & flag) {
610			/*
611			 * XXX the bridge sets PROMISC but we don't want to
612			 * enable it on the device, discard here so all the
613			 * drivers don't need to special-case it
614			 */
615			if (flag == IFF_PROMISC &&
616			    vap->iv_opmode == IEEE80211_M_HOSTAP)
617				continue;
618			bit = 1;
619			break;
620		}
621	oflags = ifp->if_flags;
622	if (bit)
623		ifp->if_flags |= flag;
624	else
625		ifp->if_flags &= ~flag;
626	if ((ifp->if_flags ^ oflags) & flag) {
627		/* XXX should we return 1/0 and let caller do this? */
628		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
629			if (flag == IFF_PROMISC)
630				ic->ic_update_promisc(ifp);
631			else if (flag == IFF_ALLMULTI)
632				ic->ic_update_mcast(ifp);
633		}
634	}
635}
636
637/*
638 * Synchronize flag bit state in the com structure
639 * according to the state of all vap's.  This is used,
640 * for example, to handle state changes via ioctls.
641 */
642static void
643ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
644{
645	struct ieee80211vap *vap;
646	int bit;
647
648	IEEE80211_LOCK_ASSERT(ic);
649
650	bit = 0;
651	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
652		if (vap->iv_flags & flag) {
653			bit = 1;
654			break;
655		}
656	if (bit)
657		ic->ic_flags |= flag;
658	else
659		ic->ic_flags &= ~flag;
660}
661
662void
663ieee80211_syncflag(struct ieee80211vap *vap, int flag)
664{
665	struct ieee80211com *ic = vap->iv_ic;
666
667	IEEE80211_LOCK(ic);
668	if (flag < 0) {
669		flag = -flag;
670		vap->iv_flags &= ~flag;
671	} else
672		vap->iv_flags |= flag;
673	ieee80211_syncflag_locked(ic, flag);
674	IEEE80211_UNLOCK(ic);
675}
676
677/*
678 * Synchronize flag bit state in the com structure
679 * according to the state of all vap's.  This is used,
680 * for example, to handle state changes via ioctls.
681 */
682static void
683ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
684{
685	struct ieee80211vap *vap;
686	int bit;
687
688	IEEE80211_LOCK_ASSERT(ic);
689
690	bit = 0;
691	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
692		if (vap->iv_flags_ext & flag) {
693			bit = 1;
694			break;
695		}
696	if (bit)
697		ic->ic_flags_ext |= flag;
698	else
699		ic->ic_flags_ext &= ~flag;
700}
701
702void
703ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
704{
705	struct ieee80211com *ic = vap->iv_ic;
706
707	IEEE80211_LOCK(ic);
708	if (flag < 0) {
709		flag = -flag;
710		vap->iv_flags_ext &= ~flag;
711	} else
712		vap->iv_flags_ext |= flag;
713	ieee80211_syncflag_ext_locked(ic, flag);
714	IEEE80211_UNLOCK(ic);
715}
716
717static __inline int
718mapgsm(u_int freq, u_int flags)
719{
720	freq *= 10;
721	if (flags & IEEE80211_CHAN_QUARTER)
722		freq += 5;
723	else if (flags & IEEE80211_CHAN_HALF)
724		freq += 10;
725	else
726		freq += 20;
727	/* NB: there is no 907/20 wide but leave room */
728	return (freq - 906*10) / 5;
729}
730
731static __inline int
732mappsb(u_int freq, u_int flags)
733{
734	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
735}
736
737/*
738 * Convert MHz frequency to IEEE channel number.
739 */
740int
741ieee80211_mhz2ieee(u_int freq, u_int flags)
742{
743#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
744	if (flags & IEEE80211_CHAN_GSM)
745		return mapgsm(freq, flags);
746	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
747		if (freq == 2484)
748			return 14;
749		if (freq < 2484)
750			return ((int) freq - 2407) / 5;
751		else
752			return 15 + ((freq - 2512) / 20);
753	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
754		if (freq <= 5000) {
755			/* XXX check regdomain? */
756			if (IS_FREQ_IN_PSB(freq))
757				return mappsb(freq, flags);
758			return (freq - 4000) / 5;
759		} else
760			return (freq - 5000) / 5;
761	} else {				/* either, guess */
762		if (freq == 2484)
763			return 14;
764		if (freq < 2484) {
765			if (907 <= freq && freq <= 922)
766				return mapgsm(freq, flags);
767			return ((int) freq - 2407) / 5;
768		}
769		if (freq < 5000) {
770			if (IS_FREQ_IN_PSB(freq))
771				return mappsb(freq, flags);
772			else if (freq > 4900)
773				return (freq - 4000) / 5;
774			else
775				return 15 + ((freq - 2512) / 20);
776		}
777		return (freq - 5000) / 5;
778	}
779#undef IS_FREQ_IN_PSB
780}
781
782/*
783 * Convert channel to IEEE channel number.
784 */
785int
786ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
787{
788	if (c == NULL) {
789		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
790		return 0;		/* XXX */
791	}
792	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
793}
794
795/*
796 * Convert IEEE channel number to MHz frequency.
797 */
798u_int
799ieee80211_ieee2mhz(u_int chan, u_int flags)
800{
801	if (flags & IEEE80211_CHAN_GSM)
802		return 907 + 5 * (chan / 10);
803	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
804		if (chan == 14)
805			return 2484;
806		if (chan < 14)
807			return 2407 + chan*5;
808		else
809			return 2512 + ((chan-15)*20);
810	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
811		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
812			chan -= 37;
813			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
814		}
815		return 5000 + (chan*5);
816	} else {				/* either, guess */
817		/* XXX can't distinguish PSB+GSM channels */
818		if (chan == 14)
819			return 2484;
820		if (chan < 14)			/* 0-13 */
821			return 2407 + chan*5;
822		if (chan < 27)			/* 15-26 */
823			return 2512 + ((chan-15)*20);
824		return 5000 + (chan*5);
825	}
826}
827
828/*
829 * Locate a channel given a frequency+flags.  We cache
830 * the previous lookup to optimize switching between two
831 * channels--as happens with dynamic turbo.
832 */
833struct ieee80211_channel *
834ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
835{
836	struct ieee80211_channel *c;
837	int i;
838
839	flags &= IEEE80211_CHAN_ALLTURBO;
840	c = ic->ic_prevchan;
841	if (c != NULL && c->ic_freq == freq &&
842	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
843		return c;
844	/* brute force search */
845	for (i = 0; i < ic->ic_nchans; i++) {
846		c = &ic->ic_channels[i];
847		if (c->ic_freq == freq &&
848		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
849			return c;
850	}
851	return NULL;
852}
853
854/*
855 * Locate a channel given a channel number+flags.  We cache
856 * the previous lookup to optimize switching between two
857 * channels--as happens with dynamic turbo.
858 */
859struct ieee80211_channel *
860ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
861{
862	struct ieee80211_channel *c;
863	int i;
864
865	flags &= IEEE80211_CHAN_ALLTURBO;
866	c = ic->ic_prevchan;
867	if (c != NULL && c->ic_ieee == ieee &&
868	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
869		return c;
870	/* brute force search */
871	for (i = 0; i < ic->ic_nchans; i++) {
872		c = &ic->ic_channels[i];
873		if (c->ic_ieee == ieee &&
874		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
875			return c;
876	}
877	return NULL;
878}
879
880static void
881addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
882{
883#define	ADD(_ic, _s, _o) \
884	ifmedia_add(media, \
885		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
886	static const u_int mopts[IEEE80211_MODE_MAX] = {
887	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
888	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
889	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
890	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
891	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
892	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
893	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
894	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
895	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
896	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
897	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
898	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
899	};
900	u_int mopt;
901
902	mopt = mopts[mode];
903	if (addsta)
904		ADD(ic, mword, mopt);	/* STA mode has no cap */
905	if (caps & IEEE80211_C_IBSS)
906		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
907	if (caps & IEEE80211_C_HOSTAP)
908		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
909	if (caps & IEEE80211_C_AHDEMO)
910		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
911	if (caps & IEEE80211_C_MONITOR)
912		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
913	if (caps & IEEE80211_C_WDS)
914		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
915#undef ADD
916}
917
918/*
919 * Setup the media data structures according to the channel and
920 * rate tables.
921 */
922static int
923ieee80211_media_setup(struct ieee80211com *ic,
924	struct ifmedia *media, int caps, int addsta,
925	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
926{
927	int i, j, mode, rate, maxrate, mword, r;
928	const struct ieee80211_rateset *rs;
929	struct ieee80211_rateset allrates;
930
931	/*
932	 * Fill in media characteristics.
933	 */
934	ifmedia_init(media, 0, media_change, media_stat);
935	maxrate = 0;
936	/*
937	 * Add media for legacy operating modes.
938	 */
939	memset(&allrates, 0, sizeof(allrates));
940	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
941		if (isclr(ic->ic_modecaps, mode))
942			continue;
943		addmedia(media, caps, addsta, mode, IFM_AUTO);
944		if (mode == IEEE80211_MODE_AUTO)
945			continue;
946		rs = &ic->ic_sup_rates[mode];
947		for (i = 0; i < rs->rs_nrates; i++) {
948			rate = rs->rs_rates[i];
949			mword = ieee80211_rate2media(ic, rate, mode);
950			if (mword == 0)
951				continue;
952			addmedia(media, caps, addsta, mode, mword);
953			/*
954			 * Add legacy rate to the collection of all rates.
955			 */
956			r = rate & IEEE80211_RATE_VAL;
957			for (j = 0; j < allrates.rs_nrates; j++)
958				if (allrates.rs_rates[j] == r)
959					break;
960			if (j == allrates.rs_nrates) {
961				/* unique, add to the set */
962				allrates.rs_rates[j] = r;
963				allrates.rs_nrates++;
964			}
965			rate = (rate & IEEE80211_RATE_VAL) / 2;
966			if (rate > maxrate)
967				maxrate = rate;
968		}
969	}
970	for (i = 0; i < allrates.rs_nrates; i++) {
971		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
972				IEEE80211_MODE_AUTO);
973		if (mword == 0)
974			continue;
975		/* NB: remove media options from mword */
976		addmedia(media, caps, addsta,
977		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
978	}
979	/*
980	 * Add HT/11n media.  Note that we do not have enough
981	 * bits in the media subtype to express the MCS so we
982	 * use a "placeholder" media subtype and any fixed MCS
983	 * must be specified with a different mechanism.
984	 */
985	for (; mode <= IEEE80211_MODE_11NG; mode++) {
986		if (isclr(ic->ic_modecaps, mode))
987			continue;
988		addmedia(media, caps, addsta, mode, IFM_AUTO);
989		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
990	}
991	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
992	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
993		addmedia(media, caps, addsta,
994		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
995		/* XXX could walk htrates */
996		/* XXX known array size */
997		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
998			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
999	}
1000	return maxrate;
1001}
1002
1003void
1004ieee80211_media_init(struct ieee80211com *ic)
1005{
1006	struct ifnet *ifp = ic->ic_ifp;
1007	int maxrate;
1008
1009	/* NB: this works because the structure is initialized to zero */
1010	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1011		/*
1012		 * We are re-initializing the channel list; clear
1013		 * the existing media state as the media routines
1014		 * don't suppress duplicates.
1015		 */
1016		ifmedia_removeall(&ic->ic_media);
1017	}
1018	ieee80211_chan_init(ic);
1019
1020	/*
1021	 * Recalculate media settings in case new channel list changes
1022	 * the set of available modes.
1023	 */
1024	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1025		ieee80211com_media_change, ieee80211com_media_status);
1026	/* NB: strip explicit mode; we're actually in autoselect */
1027	ifmedia_set(&ic->ic_media,
1028	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1029		(IFM_MMASK | IFM_IEEE80211_TURBO));
1030	if (maxrate)
1031		ifp->if_baudrate = IF_Mbps(maxrate);
1032
1033	/* XXX need to propagate new media settings to vap's */
1034}
1035
1036/* XXX inline or eliminate? */
1037const struct ieee80211_rateset *
1038ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1039{
1040	/* XXX does this work for 11ng basic rates? */
1041	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1042}
1043
1044void
1045ieee80211_announce(struct ieee80211com *ic)
1046{
1047	struct ifnet *ifp = ic->ic_ifp;
1048	int i, mode, rate, mword;
1049	const struct ieee80211_rateset *rs;
1050
1051	/* NB: skip AUTO since it has no rates */
1052	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1053		if (isclr(ic->ic_modecaps, mode))
1054			continue;
1055		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1056		rs = &ic->ic_sup_rates[mode];
1057		for (i = 0; i < rs->rs_nrates; i++) {
1058			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1059			if (mword == 0)
1060				continue;
1061			rate = ieee80211_media2rate(mword);
1062			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1063			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1064		}
1065		printf("\n");
1066	}
1067	ieee80211_ht_announce(ic);
1068}
1069
1070void
1071ieee80211_announce_channels(struct ieee80211com *ic)
1072{
1073	const struct ieee80211_channel *c;
1074	char type;
1075	int i, cw;
1076
1077	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1078	for (i = 0; i < ic->ic_nchans; i++) {
1079		c = &ic->ic_channels[i];
1080		if (IEEE80211_IS_CHAN_ST(c))
1081			type = 'S';
1082		else if (IEEE80211_IS_CHAN_108A(c))
1083			type = 'T';
1084		else if (IEEE80211_IS_CHAN_108G(c))
1085			type = 'G';
1086		else if (IEEE80211_IS_CHAN_HT(c))
1087			type = 'n';
1088		else if (IEEE80211_IS_CHAN_A(c))
1089			type = 'a';
1090		else if (IEEE80211_IS_CHAN_ANYG(c))
1091			type = 'g';
1092		else if (IEEE80211_IS_CHAN_B(c))
1093			type = 'b';
1094		else
1095			type = 'f';
1096		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1097			cw = 40;
1098		else if (IEEE80211_IS_CHAN_HALF(c))
1099			cw = 10;
1100		else if (IEEE80211_IS_CHAN_QUARTER(c))
1101			cw = 5;
1102		else
1103			cw = 20;
1104		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1105			, c->ic_ieee, c->ic_freq, type
1106			, cw
1107			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1108			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1109			, c->ic_maxregpower
1110			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1111			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1112		);
1113	}
1114}
1115
1116static int
1117media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1118{
1119	switch (IFM_MODE(ime->ifm_media)) {
1120	case IFM_IEEE80211_11A:
1121		*mode = IEEE80211_MODE_11A;
1122		break;
1123	case IFM_IEEE80211_11B:
1124		*mode = IEEE80211_MODE_11B;
1125		break;
1126	case IFM_IEEE80211_11G:
1127		*mode = IEEE80211_MODE_11G;
1128		break;
1129	case IFM_IEEE80211_FH:
1130		*mode = IEEE80211_MODE_FH;
1131		break;
1132	case IFM_IEEE80211_11NA:
1133		*mode = IEEE80211_MODE_11NA;
1134		break;
1135	case IFM_IEEE80211_11NG:
1136		*mode = IEEE80211_MODE_11NG;
1137		break;
1138	case IFM_AUTO:
1139		*mode = IEEE80211_MODE_AUTO;
1140		break;
1141	default:
1142		return 0;
1143	}
1144	/*
1145	 * Turbo mode is an ``option''.
1146	 * XXX does not apply to AUTO
1147	 */
1148	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1149		if (*mode == IEEE80211_MODE_11A) {
1150			if (flags & IEEE80211_F_TURBOP)
1151				*mode = IEEE80211_MODE_TURBO_A;
1152			else
1153				*mode = IEEE80211_MODE_STURBO_A;
1154		} else if (*mode == IEEE80211_MODE_11G)
1155			*mode = IEEE80211_MODE_TURBO_G;
1156		else
1157			return 0;
1158	}
1159	/* XXX HT40 +/- */
1160	return 1;
1161}
1162
1163/*
1164 * Handle a media change request on the underlying interface.
1165 */
1166int
1167ieee80211com_media_change(struct ifnet *ifp)
1168{
1169	return EINVAL;
1170}
1171
1172/*
1173 * Handle a media change request on the vap interface.
1174 */
1175int
1176ieee80211_media_change(struct ifnet *ifp)
1177{
1178	struct ieee80211vap *vap = ifp->if_softc;
1179	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1180	uint16_t newmode;
1181
1182	if (!media2mode(ime, vap->iv_flags, &newmode))
1183		return EINVAL;
1184	if (vap->iv_des_mode != newmode) {
1185		vap->iv_des_mode = newmode;
1186		return ENETRESET;
1187	}
1188	return 0;
1189}
1190
1191/*
1192 * Common code to calculate the media status word
1193 * from the operating mode and channel state.
1194 */
1195static int
1196media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1197{
1198	int status;
1199
1200	status = IFM_IEEE80211;
1201	switch (opmode) {
1202	case IEEE80211_M_STA:
1203		break;
1204	case IEEE80211_M_IBSS:
1205		status |= IFM_IEEE80211_ADHOC;
1206		break;
1207	case IEEE80211_M_HOSTAP:
1208		status |= IFM_IEEE80211_HOSTAP;
1209		break;
1210	case IEEE80211_M_MONITOR:
1211		status |= IFM_IEEE80211_MONITOR;
1212		break;
1213	case IEEE80211_M_AHDEMO:
1214		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1215		break;
1216	case IEEE80211_M_WDS:
1217		status |= IFM_IEEE80211_WDS;
1218		break;
1219	}
1220	if (IEEE80211_IS_CHAN_HTA(chan)) {
1221		status |= IFM_IEEE80211_11NA;
1222	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1223		status |= IFM_IEEE80211_11NG;
1224	} else if (IEEE80211_IS_CHAN_A(chan)) {
1225		status |= IFM_IEEE80211_11A;
1226	} else if (IEEE80211_IS_CHAN_B(chan)) {
1227		status |= IFM_IEEE80211_11B;
1228	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1229		status |= IFM_IEEE80211_11G;
1230	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1231		status |= IFM_IEEE80211_FH;
1232	}
1233	/* XXX else complain? */
1234
1235	if (IEEE80211_IS_CHAN_TURBO(chan))
1236		status |= IFM_IEEE80211_TURBO;
1237#if 0
1238	if (IEEE80211_IS_CHAN_HT20(chan))
1239		status |= IFM_IEEE80211_HT20;
1240	if (IEEE80211_IS_CHAN_HT40(chan))
1241		status |= IFM_IEEE80211_HT40;
1242#endif
1243	return status;
1244}
1245
1246static void
1247ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1248{
1249	struct ieee80211com *ic = ifp->if_l2com;
1250	struct ieee80211vap *vap;
1251
1252	imr->ifm_status = IFM_AVALID;
1253	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1254		if (vap->iv_ifp->if_flags & IFF_UP) {
1255			imr->ifm_status |= IFM_ACTIVE;
1256			break;
1257		}
1258	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1259	if (imr->ifm_status & IFM_ACTIVE)
1260		imr->ifm_current = imr->ifm_active;
1261}
1262
1263void
1264ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1265{
1266	struct ieee80211vap *vap = ifp->if_softc;
1267	struct ieee80211com *ic = vap->iv_ic;
1268	enum ieee80211_phymode mode;
1269
1270	imr->ifm_status = IFM_AVALID;
1271	/*
1272	 * NB: use the current channel's mode to lock down a xmit
1273	 * rate only when running; otherwise we may have a mismatch
1274	 * in which case the rate will not be convertible.
1275	 */
1276	if (vap->iv_state == IEEE80211_S_RUN) {
1277		imr->ifm_status |= IFM_ACTIVE;
1278		mode = ieee80211_chan2mode(ic->ic_curchan);
1279	} else
1280		mode = IEEE80211_MODE_AUTO;
1281	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1282	/*
1283	 * Calculate a current rate if possible.
1284	 */
1285	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1286		/*
1287		 * A fixed rate is set, report that.
1288		 */
1289		imr->ifm_active |= ieee80211_rate2media(ic,
1290			vap->iv_txparms[mode].ucastrate, mode);
1291	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1292		/*
1293		 * In station mode report the current transmit rate.
1294		 */
1295		imr->ifm_active |= ieee80211_rate2media(ic,
1296			vap->iv_bss->ni_txrate, mode);
1297	} else
1298		imr->ifm_active |= IFM_AUTO;
1299	if (imr->ifm_status & IFM_ACTIVE)
1300		imr->ifm_current = imr->ifm_active;
1301}
1302
1303/*
1304 * Set the current phy mode and recalculate the active channel
1305 * set based on the available channels for this mode.  Also
1306 * select a new default/current channel if the current one is
1307 * inappropriate for this mode.
1308 */
1309int
1310ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1311{
1312	/*
1313	 * Adjust basic rates in 11b/11g supported rate set.
1314	 * Note that if operating on a hal/quarter rate channel
1315	 * this is a noop as those rates sets are different
1316	 * and used instead.
1317	 */
1318	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1319		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1320
1321	ic->ic_curmode = mode;
1322	ieee80211_reset_erp(ic);	/* reset ERP state */
1323
1324	return 0;
1325}
1326
1327/*
1328 * Return the phy mode for with the specified channel.
1329 */
1330enum ieee80211_phymode
1331ieee80211_chan2mode(const struct ieee80211_channel *chan)
1332{
1333
1334	if (IEEE80211_IS_CHAN_HTA(chan))
1335		return IEEE80211_MODE_11NA;
1336	else if (IEEE80211_IS_CHAN_HTG(chan))
1337		return IEEE80211_MODE_11NG;
1338	else if (IEEE80211_IS_CHAN_108G(chan))
1339		return IEEE80211_MODE_TURBO_G;
1340	else if (IEEE80211_IS_CHAN_ST(chan))
1341		return IEEE80211_MODE_STURBO_A;
1342	else if (IEEE80211_IS_CHAN_TURBO(chan))
1343		return IEEE80211_MODE_TURBO_A;
1344	else if (IEEE80211_IS_CHAN_HALF(chan))
1345		return IEEE80211_MODE_HALF;
1346	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1347		return IEEE80211_MODE_QUARTER;
1348	else if (IEEE80211_IS_CHAN_A(chan))
1349		return IEEE80211_MODE_11A;
1350	else if (IEEE80211_IS_CHAN_ANYG(chan))
1351		return IEEE80211_MODE_11G;
1352	else if (IEEE80211_IS_CHAN_B(chan))
1353		return IEEE80211_MODE_11B;
1354	else if (IEEE80211_IS_CHAN_FHSS(chan))
1355		return IEEE80211_MODE_FH;
1356
1357	/* NB: should not get here */
1358	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1359		__func__, chan->ic_freq, chan->ic_flags);
1360	return IEEE80211_MODE_11B;
1361}
1362
1363struct ratemedia {
1364	u_int	match;	/* rate + mode */
1365	u_int	media;	/* if_media rate */
1366};
1367
1368static int
1369findmedia(const struct ratemedia rates[], int n, u_int match)
1370{
1371	int i;
1372
1373	for (i = 0; i < n; i++)
1374		if (rates[i].match == match)
1375			return rates[i].media;
1376	return IFM_AUTO;
1377}
1378
1379/*
1380 * Convert IEEE80211 rate value to ifmedia subtype.
1381 * Rate is either a legacy rate in units of 0.5Mbps
1382 * or an MCS index.
1383 */
1384int
1385ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1386{
1387#define	N(a)	(sizeof(a) / sizeof(a[0]))
1388	static const struct ratemedia rates[] = {
1389		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1390		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1391		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1392		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1393		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1394		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1395		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1396		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1397		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1398		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1399		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1400		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1401		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1402		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1403		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1404		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1405		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1406		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1407		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1408		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1409		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1410		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1411		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1412		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1413		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1414		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1415		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1416		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1417		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1418		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1419		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1420	};
1421	static const struct ratemedia htrates[] = {
1422		{   0, IFM_IEEE80211_MCS },
1423		{   1, IFM_IEEE80211_MCS },
1424		{   2, IFM_IEEE80211_MCS },
1425		{   3, IFM_IEEE80211_MCS },
1426		{   4, IFM_IEEE80211_MCS },
1427		{   5, IFM_IEEE80211_MCS },
1428		{   6, IFM_IEEE80211_MCS },
1429		{   7, IFM_IEEE80211_MCS },
1430		{   8, IFM_IEEE80211_MCS },
1431		{   9, IFM_IEEE80211_MCS },
1432		{  10, IFM_IEEE80211_MCS },
1433		{  11, IFM_IEEE80211_MCS },
1434		{  12, IFM_IEEE80211_MCS },
1435		{  13, IFM_IEEE80211_MCS },
1436		{  14, IFM_IEEE80211_MCS },
1437		{  15, IFM_IEEE80211_MCS },
1438	};
1439	int m;
1440
1441	/*
1442	 * Check 11n rates first for match as an MCS.
1443	 */
1444	if (mode == IEEE80211_MODE_11NA) {
1445		if (rate & IEEE80211_RATE_MCS) {
1446			rate &= ~IEEE80211_RATE_MCS;
1447			m = findmedia(htrates, N(htrates), rate);
1448			if (m != IFM_AUTO)
1449				return m | IFM_IEEE80211_11NA;
1450		}
1451	} else if (mode == IEEE80211_MODE_11NG) {
1452		/* NB: 12 is ambiguous, it will be treated as an MCS */
1453		if (rate & IEEE80211_RATE_MCS) {
1454			rate &= ~IEEE80211_RATE_MCS;
1455			m = findmedia(htrates, N(htrates), rate);
1456			if (m != IFM_AUTO)
1457				return m | IFM_IEEE80211_11NG;
1458		}
1459	}
1460	rate &= IEEE80211_RATE_VAL;
1461	switch (mode) {
1462	case IEEE80211_MODE_11A:
1463	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1464	case IEEE80211_MODE_QUARTER:
1465	case IEEE80211_MODE_11NA:
1466	case IEEE80211_MODE_TURBO_A:
1467	case IEEE80211_MODE_STURBO_A:
1468		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1469	case IEEE80211_MODE_11B:
1470		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1471	case IEEE80211_MODE_FH:
1472		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1473	case IEEE80211_MODE_AUTO:
1474		/* NB: ic may be NULL for some drivers */
1475		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1476			return findmedia(rates, N(rates),
1477			    rate | IFM_IEEE80211_FH);
1478		/* NB: hack, 11g matches both 11b+11a rates */
1479		/* fall thru... */
1480	case IEEE80211_MODE_11G:
1481	case IEEE80211_MODE_11NG:
1482	case IEEE80211_MODE_TURBO_G:
1483		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1484	}
1485	return IFM_AUTO;
1486#undef N
1487}
1488
1489int
1490ieee80211_media2rate(int mword)
1491{
1492#define	N(a)	(sizeof(a) / sizeof(a[0]))
1493	static const int ieeerates[] = {
1494		-1,		/* IFM_AUTO */
1495		0,		/* IFM_MANUAL */
1496		0,		/* IFM_NONE */
1497		2,		/* IFM_IEEE80211_FH1 */
1498		4,		/* IFM_IEEE80211_FH2 */
1499		2,		/* IFM_IEEE80211_DS1 */
1500		4,		/* IFM_IEEE80211_DS2 */
1501		11,		/* IFM_IEEE80211_DS5 */
1502		22,		/* IFM_IEEE80211_DS11 */
1503		44,		/* IFM_IEEE80211_DS22 */
1504		12,		/* IFM_IEEE80211_OFDM6 */
1505		18,		/* IFM_IEEE80211_OFDM9 */
1506		24,		/* IFM_IEEE80211_OFDM12 */
1507		36,		/* IFM_IEEE80211_OFDM18 */
1508		48,		/* IFM_IEEE80211_OFDM24 */
1509		72,		/* IFM_IEEE80211_OFDM36 */
1510		96,		/* IFM_IEEE80211_OFDM48 */
1511		108,		/* IFM_IEEE80211_OFDM54 */
1512		144,		/* IFM_IEEE80211_OFDM72 */
1513		0,		/* IFM_IEEE80211_DS354k */
1514		0,		/* IFM_IEEE80211_DS512k */
1515		6,		/* IFM_IEEE80211_OFDM3 */
1516		9,		/* IFM_IEEE80211_OFDM4 */
1517		54,		/* IFM_IEEE80211_OFDM27 */
1518		-1,		/* IFM_IEEE80211_MCS */
1519	};
1520	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1521		ieeerates[IFM_SUBTYPE(mword)] : 0;
1522#undef N
1523}
1524