ieee80211.c revision 300063
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 300063 2016-05-17 16:38:18Z avos $");
29
30/*
31 * IEEE 802.11 generic handler
32 */
33#include "opt_wlan.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/socket.h>
40#include <sys/sbuf.h>
41
42#include <machine/stdarg.h>
43
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_dl.h>
47#include <net/if_media.h>
48#include <net/if_types.h>
49#include <net/ethernet.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#include <net80211/ieee80211_ratectl.h>
57
58#include <net/bpf.h>
59
60const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61	[IEEE80211_MODE_AUTO]	  = "auto",
62	[IEEE80211_MODE_11A]	  = "11a",
63	[IEEE80211_MODE_11B]	  = "11b",
64	[IEEE80211_MODE_11G]	  = "11g",
65	[IEEE80211_MODE_FH]	  = "FH",
66	[IEEE80211_MODE_TURBO_A]  = "turboA",
67	[IEEE80211_MODE_TURBO_G]  = "turboG",
68	[IEEE80211_MODE_STURBO_A] = "sturboA",
69	[IEEE80211_MODE_HALF]	  = "half",
70	[IEEE80211_MODE_QUARTER]  = "quarter",
71	[IEEE80211_MODE_11NA]	  = "11na",
72	[IEEE80211_MODE_11NG]	  = "11ng",
73};
74/* map ieee80211_opmode to the corresponding capability bit */
75const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
76	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
77	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
78	[IEEE80211_M_STA]	= IEEE80211_C_STA,
79	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
80	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
81	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
82#ifdef IEEE80211_SUPPORT_MESH
83	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
84#endif
85};
86
87const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
88	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
89
90static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
91static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
92static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
93static	int ieee80211_media_setup(struct ieee80211com *ic,
94		struct ifmedia *media, int caps, int addsta,
95		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
96static	int media_status(enum ieee80211_opmode,
97		const struct ieee80211_channel *);
98static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
99
100MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101
102/*
103 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104 */
105#define	B(r)	((r) | IEEE80211_RATE_BASIC)
106static const struct ieee80211_rateset ieee80211_rateset_11a =
107	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108static const struct ieee80211_rateset ieee80211_rateset_half =
109	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110static const struct ieee80211_rateset ieee80211_rateset_quarter =
111	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112static const struct ieee80211_rateset ieee80211_rateset_11b =
113	{ 4, { B(2), B(4), B(11), B(22) } };
114/* NB: OFDM rates are handled specially based on mode */
115static const struct ieee80211_rateset ieee80211_rateset_11g =
116	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117#undef B
118
119/*
120 * Fill in 802.11 available channel set, mark
121 * all available channels as active, and pick
122 * a default channel if not already specified.
123 */
124void
125ieee80211_chan_init(struct ieee80211com *ic)
126{
127#define	DEFAULTRATES(m, def) do { \
128	if (ic->ic_sup_rates[m].rs_nrates == 0) \
129		ic->ic_sup_rates[m] = def; \
130} while (0)
131	struct ieee80211_channel *c;
132	int i;
133
134	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
135		("invalid number of channels specified: %u", ic->ic_nchans));
136	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
137	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
138	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
139	for (i = 0; i < ic->ic_nchans; i++) {
140		c = &ic->ic_channels[i];
141		KASSERT(c->ic_flags != 0, ("channel with no flags"));
142		/*
143		 * Help drivers that work only with frequencies by filling
144		 * in IEEE channel #'s if not already calculated.  Note this
145		 * mimics similar work done in ieee80211_setregdomain when
146		 * changing regulatory state.
147		 */
148		if (c->ic_ieee == 0)
149			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
150		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
151			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
152			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
153			    c->ic_flags);
154		/* default max tx power to max regulatory */
155		if (c->ic_maxpower == 0)
156			c->ic_maxpower = 2*c->ic_maxregpower;
157		setbit(ic->ic_chan_avail, c->ic_ieee);
158		/*
159		 * Identify mode capabilities.
160		 */
161		if (IEEE80211_IS_CHAN_A(c))
162			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
163		if (IEEE80211_IS_CHAN_B(c))
164			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
165		if (IEEE80211_IS_CHAN_ANYG(c))
166			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
167		if (IEEE80211_IS_CHAN_FHSS(c))
168			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
169		if (IEEE80211_IS_CHAN_108A(c))
170			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
171		if (IEEE80211_IS_CHAN_108G(c))
172			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
173		if (IEEE80211_IS_CHAN_ST(c))
174			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
175		if (IEEE80211_IS_CHAN_HALF(c))
176			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
177		if (IEEE80211_IS_CHAN_QUARTER(c))
178			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
179		if (IEEE80211_IS_CHAN_HTA(c))
180			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
181		if (IEEE80211_IS_CHAN_HTG(c))
182			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
183	}
184	/* initialize candidate channels to all available */
185	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
186		sizeof(ic->ic_chan_avail));
187
188	/* sort channel table to allow lookup optimizations */
189	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
190
191	/* invalidate any previous state */
192	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
193	ic->ic_prevchan = NULL;
194	ic->ic_csa_newchan = NULL;
195	/* arbitrarily pick the first channel */
196	ic->ic_curchan = &ic->ic_channels[0];
197	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
198
199	/* fillin well-known rate sets if driver has not specified */
200	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
201	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
202	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
203	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
204	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
205	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
206	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
207	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
208	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
209	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
210
211	/*
212	 * Setup required information to fill the mcsset field, if driver did
213	 * not. Assume a 2T2R setup for historic reasons.
214	 */
215	if (ic->ic_rxstream == 0)
216		ic->ic_rxstream = 2;
217	if (ic->ic_txstream == 0)
218		ic->ic_txstream = 2;
219
220	/*
221	 * Set auto mode to reset active channel state and any desired channel.
222	 */
223	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
224#undef DEFAULTRATES
225}
226
227static void
228null_update_mcast(struct ieee80211com *ic)
229{
230
231	ic_printf(ic, "need multicast update callback\n");
232}
233
234static void
235null_update_promisc(struct ieee80211com *ic)
236{
237
238	ic_printf(ic, "need promiscuous mode update callback\n");
239}
240
241static void
242null_update_chw(struct ieee80211com *ic)
243{
244
245	ic_printf(ic, "%s: need callback\n", __func__);
246}
247
248int
249ic_printf(struct ieee80211com *ic, const char * fmt, ...)
250{
251	va_list ap;
252	int retval;
253
254	retval = printf("%s: ", ic->ic_name);
255	va_start(ap, fmt);
256	retval += vprintf(fmt, ap);
257	va_end(ap);
258	return (retval);
259}
260
261static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
262static struct mtx ic_list_mtx;
263MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
264
265static int
266sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
267{
268	struct ieee80211com *ic;
269	struct sbuf sb;
270	char *sp;
271	int error;
272
273	error = sysctl_wire_old_buffer(req, 0);
274	if (error)
275		return (error);
276	sbuf_new_for_sysctl(&sb, NULL, 8, req);
277	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
278	sp = "";
279	mtx_lock(&ic_list_mtx);
280	LIST_FOREACH(ic, &ic_head, ic_next) {
281		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
282		sp = " ";
283	}
284	mtx_unlock(&ic_list_mtx);
285	error = sbuf_finish(&sb);
286	sbuf_delete(&sb);
287	return (error);
288}
289
290SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
291    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
292    sysctl_ieee80211coms, "A", "names of available 802.11 devices");
293
294/*
295 * Attach/setup the common net80211 state.  Called by
296 * the driver on attach to prior to creating any vap's.
297 */
298void
299ieee80211_ifattach(struct ieee80211com *ic)
300{
301
302	IEEE80211_LOCK_INIT(ic, ic->ic_name);
303	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
304	TAILQ_INIT(&ic->ic_vaps);
305
306	/* Create a taskqueue for all state changes */
307	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
308	    taskqueue_thread_enqueue, &ic->ic_tq);
309	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
310	    ic->ic_name);
311	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
312	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
313	/*
314	 * Fill in 802.11 available channel set, mark all
315	 * available channels as active, and pick a default
316	 * channel if not already specified.
317	 */
318	ieee80211_chan_init(ic);
319
320	ic->ic_update_mcast = null_update_mcast;
321	ic->ic_update_promisc = null_update_promisc;
322	ic->ic_update_chw = null_update_chw;
323
324	ic->ic_hash_key = arc4random();
325	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
326	ic->ic_lintval = ic->ic_bintval;
327	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
328
329	ieee80211_crypto_attach(ic);
330	ieee80211_node_attach(ic);
331	ieee80211_power_attach(ic);
332	ieee80211_proto_attach(ic);
333#ifdef IEEE80211_SUPPORT_SUPERG
334	ieee80211_superg_attach(ic);
335#endif
336	ieee80211_ht_attach(ic);
337	ieee80211_scan_attach(ic);
338	ieee80211_regdomain_attach(ic);
339	ieee80211_dfs_attach(ic);
340
341	ieee80211_sysctl_attach(ic);
342
343	mtx_lock(&ic_list_mtx);
344	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
345	mtx_unlock(&ic_list_mtx);
346}
347
348/*
349 * Detach net80211 state on device detach.  Tear down
350 * all vap's and reclaim all common state prior to the
351 * device state going away.  Note we may call back into
352 * driver; it must be prepared for this.
353 */
354void
355ieee80211_ifdetach(struct ieee80211com *ic)
356{
357	struct ieee80211vap *vap;
358
359	mtx_lock(&ic_list_mtx);
360	LIST_REMOVE(ic, ic_next);
361	mtx_unlock(&ic_list_mtx);
362
363	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
364
365	/*
366	 * The VAP is responsible for setting and clearing
367	 * the VIMAGE context.
368	 */
369	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
370		ieee80211_vap_destroy(vap);
371	ieee80211_waitfor_parent(ic);
372
373	ieee80211_sysctl_detach(ic);
374	ieee80211_dfs_detach(ic);
375	ieee80211_regdomain_detach(ic);
376	ieee80211_scan_detach(ic);
377#ifdef IEEE80211_SUPPORT_SUPERG
378	ieee80211_superg_detach(ic);
379#endif
380	ieee80211_ht_detach(ic);
381	/* NB: must be called before ieee80211_node_detach */
382	ieee80211_proto_detach(ic);
383	ieee80211_crypto_detach(ic);
384	ieee80211_power_detach(ic);
385	ieee80211_node_detach(ic);
386
387	counter_u64_free(ic->ic_ierrors);
388	counter_u64_free(ic->ic_oerrors);
389
390	taskqueue_free(ic->ic_tq);
391	IEEE80211_TX_LOCK_DESTROY(ic);
392	IEEE80211_LOCK_DESTROY(ic);
393}
394
395struct ieee80211com *
396ieee80211_find_com(const char *name)
397{
398	struct ieee80211com *ic;
399
400	mtx_lock(&ic_list_mtx);
401	LIST_FOREACH(ic, &ic_head, ic_next)
402		if (strcmp(ic->ic_name, name) == 0)
403			break;
404	mtx_unlock(&ic_list_mtx);
405
406	return (ic);
407}
408
409void
410ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
411{
412	struct ieee80211com *ic;
413
414	mtx_lock(&ic_list_mtx);
415	LIST_FOREACH(ic, &ic_head, ic_next)
416		(*f)(arg, ic);
417	mtx_unlock(&ic_list_mtx);
418}
419
420/*
421 * Default reset method for use with the ioctl support.  This
422 * method is invoked after any state change in the 802.11
423 * layer that should be propagated to the hardware but not
424 * require re-initialization of the 802.11 state machine (e.g
425 * rescanning for an ap).  We always return ENETRESET which
426 * should cause the driver to re-initialize the device. Drivers
427 * can override this method to implement more optimized support.
428 */
429static int
430default_reset(struct ieee80211vap *vap, u_long cmd)
431{
432	return ENETRESET;
433}
434
435/*
436 * Add underlying device errors to vap errors.
437 */
438static uint64_t
439ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
440{
441	struct ieee80211vap *vap = ifp->if_softc;
442	struct ieee80211com *ic = vap->iv_ic;
443	uint64_t rv;
444
445	rv = if_get_counter_default(ifp, cnt);
446	switch (cnt) {
447	case IFCOUNTER_OERRORS:
448		rv += counter_u64_fetch(ic->ic_oerrors);
449		break;
450	case IFCOUNTER_IERRORS:
451		rv += counter_u64_fetch(ic->ic_ierrors);
452		break;
453	default:
454		break;
455	}
456
457	return (rv);
458}
459
460/*
461 * Prepare a vap for use.  Drivers use this call to
462 * setup net80211 state in new vap's prior attaching
463 * them with ieee80211_vap_attach (below).
464 */
465int
466ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
467    const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
468    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
469{
470	struct ifnet *ifp;
471
472	ifp = if_alloc(IFT_ETHER);
473	if (ifp == NULL) {
474		ic_printf(ic, "%s: unable to allocate ifnet\n",
475		    __func__);
476		return ENOMEM;
477	}
478	if_initname(ifp, name, unit);
479	ifp->if_softc = vap;			/* back pointer */
480	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
481	ifp->if_transmit = ieee80211_vap_transmit;
482	ifp->if_qflush = ieee80211_vap_qflush;
483	ifp->if_ioctl = ieee80211_ioctl;
484	ifp->if_init = ieee80211_init;
485	ifp->if_get_counter = ieee80211_get_counter;
486
487	vap->iv_ifp = ifp;
488	vap->iv_ic = ic;
489	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
490	vap->iv_flags_ext = ic->ic_flags_ext;
491	vap->iv_flags_ven = ic->ic_flags_ven;
492	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
493	vap->iv_htcaps = ic->ic_htcaps;
494	vap->iv_htextcaps = ic->ic_htextcaps;
495	vap->iv_opmode = opmode;
496	vap->iv_caps |= ieee80211_opcap[opmode];
497	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
498	switch (opmode) {
499	case IEEE80211_M_WDS:
500		/*
501		 * WDS links must specify the bssid of the far end.
502		 * For legacy operation this is a static relationship.
503		 * For non-legacy operation the station must associate
504		 * and be authorized to pass traffic.  Plumbing the
505		 * vap to the proper node happens when the vap
506		 * transitions to RUN state.
507		 */
508		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
509		vap->iv_flags |= IEEE80211_F_DESBSSID;
510		if (flags & IEEE80211_CLONE_WDSLEGACY)
511			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
512		break;
513#ifdef IEEE80211_SUPPORT_TDMA
514	case IEEE80211_M_AHDEMO:
515		if (flags & IEEE80211_CLONE_TDMA) {
516			/* NB: checked before clone operation allowed */
517			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
518			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
519			/*
520			 * Propagate TDMA capability to mark vap; this
521			 * cannot be removed and is used to distinguish
522			 * regular ahdemo operation from ahdemo+tdma.
523			 */
524			vap->iv_caps |= IEEE80211_C_TDMA;
525		}
526		break;
527#endif
528	default:
529		break;
530	}
531	/* auto-enable s/w beacon miss support */
532	if (flags & IEEE80211_CLONE_NOBEACONS)
533		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
534	/* auto-generated or user supplied MAC address */
535	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
536		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
537	/*
538	 * Enable various functionality by default if we're
539	 * capable; the driver can override us if it knows better.
540	 */
541	if (vap->iv_caps & IEEE80211_C_WME)
542		vap->iv_flags |= IEEE80211_F_WME;
543	if (vap->iv_caps & IEEE80211_C_BURST)
544		vap->iv_flags |= IEEE80211_F_BURST;
545	/* NB: bg scanning only makes sense for station mode right now */
546	if (vap->iv_opmode == IEEE80211_M_STA &&
547	    (vap->iv_caps & IEEE80211_C_BGSCAN))
548		vap->iv_flags |= IEEE80211_F_BGSCAN;
549	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
550	/* NB: DFS support only makes sense for ap mode right now */
551	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
552	    (vap->iv_caps & IEEE80211_C_DFS))
553		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
554
555	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
556	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
557	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
558	/*
559	 * Install a default reset method for the ioctl support;
560	 * the driver can override this.
561	 */
562	vap->iv_reset = default_reset;
563
564	ieee80211_sysctl_vattach(vap);
565	ieee80211_crypto_vattach(vap);
566	ieee80211_node_vattach(vap);
567	ieee80211_power_vattach(vap);
568	ieee80211_proto_vattach(vap);
569#ifdef IEEE80211_SUPPORT_SUPERG
570	ieee80211_superg_vattach(vap);
571#endif
572	ieee80211_ht_vattach(vap);
573	ieee80211_scan_vattach(vap);
574	ieee80211_regdomain_vattach(vap);
575	ieee80211_radiotap_vattach(vap);
576	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
577
578	return 0;
579}
580
581/*
582 * Activate a vap.  State should have been prepared with a
583 * call to ieee80211_vap_setup and by the driver.  On return
584 * from this call the vap is ready for use.
585 */
586int
587ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
588    ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
589{
590	struct ifnet *ifp = vap->iv_ifp;
591	struct ieee80211com *ic = vap->iv_ic;
592	struct ifmediareq imr;
593	int maxrate;
594
595	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
596	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
597	    __func__, ieee80211_opmode_name[vap->iv_opmode],
598	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
599
600	/*
601	 * Do late attach work that cannot happen until after
602	 * the driver has had a chance to override defaults.
603	 */
604	ieee80211_node_latevattach(vap);
605	ieee80211_power_latevattach(vap);
606
607	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
608	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
609	ieee80211_media_status(ifp, &imr);
610	/* NB: strip explicit mode; we're actually in autoselect */
611	ifmedia_set(&vap->iv_media,
612	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
613	if (maxrate)
614		ifp->if_baudrate = IF_Mbps(maxrate);
615
616	ether_ifattach(ifp, macaddr);
617	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
618	/* hook output method setup by ether_ifattach */
619	vap->iv_output = ifp->if_output;
620	ifp->if_output = ieee80211_output;
621	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
622
623	IEEE80211_LOCK(ic);
624	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
625	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
626#ifdef IEEE80211_SUPPORT_SUPERG
627	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
628#endif
629	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
630	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
631	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
632	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
633	IEEE80211_UNLOCK(ic);
634
635	return 1;
636}
637
638/*
639 * Tear down vap state and reclaim the ifnet.
640 * The driver is assumed to have prepared for
641 * this; e.g. by turning off interrupts for the
642 * underlying device.
643 */
644void
645ieee80211_vap_detach(struct ieee80211vap *vap)
646{
647	struct ieee80211com *ic = vap->iv_ic;
648	struct ifnet *ifp = vap->iv_ifp;
649
650	CURVNET_SET(ifp->if_vnet);
651
652	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
653	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
654
655	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
656	ether_ifdetach(ifp);
657
658	ieee80211_stop(vap);
659
660	/*
661	 * Flush any deferred vap tasks.
662	 */
663	ieee80211_draintask(ic, &vap->iv_nstate_task);
664	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
665
666	/* XXX band-aid until ifnet handles this for us */
667	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
668
669	IEEE80211_LOCK(ic);
670	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
671	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
672	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
673#ifdef IEEE80211_SUPPORT_SUPERG
674	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
675#endif
676	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
677	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
678	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
679	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
680	/* NB: this handles the bpfdetach done below */
681	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
682	if (vap->iv_ifflags & IFF_PROMISC)
683		ieee80211_promisc(vap, false);
684	if (vap->iv_ifflags & IFF_ALLMULTI)
685		ieee80211_allmulti(vap, false);
686	IEEE80211_UNLOCK(ic);
687
688	ifmedia_removeall(&vap->iv_media);
689
690	ieee80211_radiotap_vdetach(vap);
691	ieee80211_regdomain_vdetach(vap);
692	ieee80211_scan_vdetach(vap);
693#ifdef IEEE80211_SUPPORT_SUPERG
694	ieee80211_superg_vdetach(vap);
695#endif
696	ieee80211_ht_vdetach(vap);
697	/* NB: must be before ieee80211_node_vdetach */
698	ieee80211_proto_vdetach(vap);
699	ieee80211_crypto_vdetach(vap);
700	ieee80211_power_vdetach(vap);
701	ieee80211_node_vdetach(vap);
702	ieee80211_sysctl_vdetach(vap);
703
704	if_free(ifp);
705
706	CURVNET_RESTORE();
707}
708
709/*
710 * Count number of vaps in promisc, and issue promisc on
711 * parent respectively.
712 */
713void
714ieee80211_promisc(struct ieee80211vap *vap, bool on)
715{
716	struct ieee80211com *ic = vap->iv_ic;
717
718	IEEE80211_LOCK_ASSERT(ic);
719
720	if (on) {
721		if (++ic->ic_promisc == 1)
722			ieee80211_runtask(ic, &ic->ic_promisc_task);
723	} else {
724		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
725		    __func__, ic));
726		if (--ic->ic_promisc == 0)
727			ieee80211_runtask(ic, &ic->ic_promisc_task);
728	}
729}
730
731/*
732 * Count number of vaps in allmulti, and issue allmulti on
733 * parent respectively.
734 */
735void
736ieee80211_allmulti(struct ieee80211vap *vap, bool on)
737{
738	struct ieee80211com *ic = vap->iv_ic;
739
740	IEEE80211_LOCK_ASSERT(ic);
741
742	if (on) {
743		if (++ic->ic_allmulti == 1)
744			ieee80211_runtask(ic, &ic->ic_mcast_task);
745	} else {
746		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
747		    __func__, ic));
748		if (--ic->ic_allmulti == 0)
749			ieee80211_runtask(ic, &ic->ic_mcast_task);
750	}
751}
752
753/*
754 * Synchronize flag bit state in the com structure
755 * according to the state of all vap's.  This is used,
756 * for example, to handle state changes via ioctls.
757 */
758static void
759ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
760{
761	struct ieee80211vap *vap;
762	int bit;
763
764	IEEE80211_LOCK_ASSERT(ic);
765
766	bit = 0;
767	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
768		if (vap->iv_flags & flag) {
769			bit = 1;
770			break;
771		}
772	if (bit)
773		ic->ic_flags |= flag;
774	else
775		ic->ic_flags &= ~flag;
776}
777
778void
779ieee80211_syncflag(struct ieee80211vap *vap, int flag)
780{
781	struct ieee80211com *ic = vap->iv_ic;
782
783	IEEE80211_LOCK(ic);
784	if (flag < 0) {
785		flag = -flag;
786		vap->iv_flags &= ~flag;
787	} else
788		vap->iv_flags |= flag;
789	ieee80211_syncflag_locked(ic, flag);
790	IEEE80211_UNLOCK(ic);
791}
792
793/*
794 * Synchronize flags_ht bit state in the com structure
795 * according to the state of all vap's.  This is used,
796 * for example, to handle state changes via ioctls.
797 */
798static void
799ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
800{
801	struct ieee80211vap *vap;
802	int bit;
803
804	IEEE80211_LOCK_ASSERT(ic);
805
806	bit = 0;
807	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
808		if (vap->iv_flags_ht & flag) {
809			bit = 1;
810			break;
811		}
812	if (bit)
813		ic->ic_flags_ht |= flag;
814	else
815		ic->ic_flags_ht &= ~flag;
816}
817
818void
819ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
820{
821	struct ieee80211com *ic = vap->iv_ic;
822
823	IEEE80211_LOCK(ic);
824	if (flag < 0) {
825		flag = -flag;
826		vap->iv_flags_ht &= ~flag;
827	} else
828		vap->iv_flags_ht |= flag;
829	ieee80211_syncflag_ht_locked(ic, flag);
830	IEEE80211_UNLOCK(ic);
831}
832
833/*
834 * Synchronize flags_ext bit state in the com structure
835 * according to the state of all vap's.  This is used,
836 * for example, to handle state changes via ioctls.
837 */
838static void
839ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
840{
841	struct ieee80211vap *vap;
842	int bit;
843
844	IEEE80211_LOCK_ASSERT(ic);
845
846	bit = 0;
847	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
848		if (vap->iv_flags_ext & flag) {
849			bit = 1;
850			break;
851		}
852	if (bit)
853		ic->ic_flags_ext |= flag;
854	else
855		ic->ic_flags_ext &= ~flag;
856}
857
858void
859ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
860{
861	struct ieee80211com *ic = vap->iv_ic;
862
863	IEEE80211_LOCK(ic);
864	if (flag < 0) {
865		flag = -flag;
866		vap->iv_flags_ext &= ~flag;
867	} else
868		vap->iv_flags_ext |= flag;
869	ieee80211_syncflag_ext_locked(ic, flag);
870	IEEE80211_UNLOCK(ic);
871}
872
873static __inline int
874mapgsm(u_int freq, u_int flags)
875{
876	freq *= 10;
877	if (flags & IEEE80211_CHAN_QUARTER)
878		freq += 5;
879	else if (flags & IEEE80211_CHAN_HALF)
880		freq += 10;
881	else
882		freq += 20;
883	/* NB: there is no 907/20 wide but leave room */
884	return (freq - 906*10) / 5;
885}
886
887static __inline int
888mappsb(u_int freq, u_int flags)
889{
890	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
891}
892
893/*
894 * Convert MHz frequency to IEEE channel number.
895 */
896int
897ieee80211_mhz2ieee(u_int freq, u_int flags)
898{
899#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
900	if (flags & IEEE80211_CHAN_GSM)
901		return mapgsm(freq, flags);
902	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
903		if (freq == 2484)
904			return 14;
905		if (freq < 2484)
906			return ((int) freq - 2407) / 5;
907		else
908			return 15 + ((freq - 2512) / 20);
909	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
910		if (freq <= 5000) {
911			/* XXX check regdomain? */
912			if (IS_FREQ_IN_PSB(freq))
913				return mappsb(freq, flags);
914			return (freq - 4000) / 5;
915		} else
916			return (freq - 5000) / 5;
917	} else {				/* either, guess */
918		if (freq == 2484)
919			return 14;
920		if (freq < 2484) {
921			if (907 <= freq && freq <= 922)
922				return mapgsm(freq, flags);
923			return ((int) freq - 2407) / 5;
924		}
925		if (freq < 5000) {
926			if (IS_FREQ_IN_PSB(freq))
927				return mappsb(freq, flags);
928			else if (freq > 4900)
929				return (freq - 4000) / 5;
930			else
931				return 15 + ((freq - 2512) / 20);
932		}
933		return (freq - 5000) / 5;
934	}
935#undef IS_FREQ_IN_PSB
936}
937
938/*
939 * Convert channel to IEEE channel number.
940 */
941int
942ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
943{
944	if (c == NULL) {
945		ic_printf(ic, "invalid channel (NULL)\n");
946		return 0;		/* XXX */
947	}
948	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
949}
950
951/*
952 * Convert IEEE channel number to MHz frequency.
953 */
954u_int
955ieee80211_ieee2mhz(u_int chan, u_int flags)
956{
957	if (flags & IEEE80211_CHAN_GSM)
958		return 907 + 5 * (chan / 10);
959	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
960		if (chan == 14)
961			return 2484;
962		if (chan < 14)
963			return 2407 + chan*5;
964		else
965			return 2512 + ((chan-15)*20);
966	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
967		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
968			chan -= 37;
969			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
970		}
971		return 5000 + (chan*5);
972	} else {				/* either, guess */
973		/* XXX can't distinguish PSB+GSM channels */
974		if (chan == 14)
975			return 2484;
976		if (chan < 14)			/* 0-13 */
977			return 2407 + chan*5;
978		if (chan < 27)			/* 15-26 */
979			return 2512 + ((chan-15)*20);
980		return 5000 + (chan*5);
981	}
982}
983
984static __inline void
985set_extchan(struct ieee80211_channel *c)
986{
987
988	/*
989	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
990	 * "the secondary channel number shall be 'N + [1,-1] * 4'
991	 */
992	if (c->ic_flags & IEEE80211_CHAN_HT40U)
993		c->ic_extieee = c->ic_ieee + 4;
994	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
995		c->ic_extieee = c->ic_ieee - 4;
996	else
997		c->ic_extieee = 0;
998}
999
1000static int
1001addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1002    uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1003{
1004	struct ieee80211_channel *c;
1005
1006	if (*nchans >= maxchans)
1007		return (ENOBUFS);
1008
1009	c = &chans[(*nchans)++];
1010	c->ic_ieee = ieee;
1011	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1012	c->ic_maxregpower = maxregpower;
1013	c->ic_maxpower = 2 * maxregpower;
1014	c->ic_flags = flags;
1015	set_extchan(c);
1016
1017	return (0);
1018}
1019
1020static int
1021copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1022    uint32_t flags)
1023{
1024	struct ieee80211_channel *c;
1025
1026	KASSERT(*nchans > 0, ("channel list is empty\n"));
1027
1028	if (*nchans >= maxchans)
1029		return (ENOBUFS);
1030
1031	c = &chans[(*nchans)++];
1032	c[0] = c[-1];
1033	c->ic_flags = flags;
1034	set_extchan(c);
1035
1036	return (0);
1037}
1038
1039static void
1040getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1041{
1042	int nmodes;
1043
1044	nmodes = 0;
1045	if (isset(bands, IEEE80211_MODE_11B))
1046		flags[nmodes++] = IEEE80211_CHAN_B;
1047	if (isset(bands, IEEE80211_MODE_11G))
1048		flags[nmodes++] = IEEE80211_CHAN_G;
1049	if (isset(bands, IEEE80211_MODE_11NG))
1050		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1051	if (ht40) {
1052		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1053		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1054	}
1055	flags[nmodes] = 0;
1056}
1057
1058static void
1059getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1060{
1061	int nmodes;
1062
1063	nmodes = 0;
1064	if (isset(bands, IEEE80211_MODE_11A))
1065		flags[nmodes++] = IEEE80211_CHAN_A;
1066	if (isset(bands, IEEE80211_MODE_11NA))
1067		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1068	if (ht40) {
1069		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1070		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1071	}
1072	flags[nmodes] = 0;
1073}
1074
1075static void
1076getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1077{
1078
1079	flags[0] = 0;
1080	if (isset(bands, IEEE80211_MODE_11A) ||
1081	    isset(bands, IEEE80211_MODE_11NA)) {
1082		if (isset(bands, IEEE80211_MODE_11B) ||
1083		    isset(bands, IEEE80211_MODE_11G) ||
1084		    isset(bands, IEEE80211_MODE_11NG))
1085			return;
1086
1087		getflags_5ghz(bands, flags, ht40);
1088	} else
1089		getflags_2ghz(bands, flags, ht40);
1090}
1091
1092/*
1093 * Add one 20 MHz channel into specified channel list.
1094 */
1095int
1096ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1097    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1098    uint32_t chan_flags, const uint8_t bands[])
1099{
1100	uint32_t flags[IEEE80211_MODE_MAX];
1101	int i, error;
1102
1103	getflags(bands, flags, 0);
1104	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1105
1106	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1107	    flags[0] | chan_flags);
1108	for (i = 1; flags[i] != 0 && error == 0; i++) {
1109		error = copychan_prev(chans, maxchans, nchans,
1110		    flags[i] | chan_flags);
1111	}
1112
1113	return (error);
1114}
1115
1116static struct ieee80211_channel *
1117findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1118    uint32_t flags)
1119{
1120	struct ieee80211_channel *c;
1121	int i;
1122
1123	flags &= IEEE80211_CHAN_ALLTURBO;
1124	/* brute force search */
1125	for (i = 0; i < nchans; i++) {
1126		c = &chans[i];
1127		if (c->ic_freq == freq &&
1128		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1129			return c;
1130	}
1131	return NULL;
1132}
1133
1134/*
1135 * Add 40 MHz channel pair into specified channel list.
1136 */
1137int
1138ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1139    int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1140{
1141	struct ieee80211_channel *cent, *extc;
1142	uint16_t freq;
1143	int error;
1144
1145	freq = ieee80211_ieee2mhz(ieee, flags);
1146
1147	/*
1148	 * Each entry defines an HT40 channel pair; find the
1149	 * center channel, then the extension channel above.
1150	 */
1151	flags |= IEEE80211_CHAN_HT20;
1152	cent = findchannel(chans, *nchans, freq, flags);
1153	if (cent == NULL)
1154		return (EINVAL);
1155
1156	extc = findchannel(chans, *nchans, freq + 20, flags);
1157	if (extc == NULL)
1158		return (ENOENT);
1159
1160	flags &= ~IEEE80211_CHAN_HT;
1161	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1162	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1163	if (error != 0)
1164		return (error);
1165
1166	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1167	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1168
1169	return (error);
1170}
1171
1172/*
1173 * Adds channels into specified channel list (ieee[] array must be sorted).
1174 * Channels are already sorted.
1175 */
1176static int
1177add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1178    const uint8_t ieee[], int nieee, uint32_t flags[])
1179{
1180	uint16_t freq;
1181	int i, j, error;
1182
1183	for (i = 0; i < nieee; i++) {
1184		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1185		for (j = 0; flags[j] != 0; j++) {
1186			if (flags[j] & IEEE80211_CHAN_HT40D)
1187				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1188				    freq - 20 !=
1189				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1190					continue;
1191			if (flags[j] & IEEE80211_CHAN_HT40U)
1192				if (i == nieee - 1 ||
1193				    ieee[i] + 4 > ieee[nieee - 1] ||
1194				    freq + 20 !=
1195				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1196					continue;
1197
1198			if (j == 0) {
1199				error = addchan(chans, maxchans, nchans,
1200				    ieee[i], freq, 0, flags[j]);
1201			} else {
1202				error = copychan_prev(chans, maxchans, nchans,
1203				    flags[j]);
1204			}
1205			if (error != 0)
1206				return (error);
1207		}
1208	}
1209
1210	return (error);
1211}
1212
1213int
1214ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1215    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1216    int ht40)
1217{
1218	uint32_t flags[IEEE80211_MODE_MAX];
1219
1220	getflags_2ghz(bands, flags, ht40);
1221	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1222
1223	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1224}
1225
1226int
1227ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1228    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1229    int ht40)
1230{
1231	uint32_t flags[IEEE80211_MODE_MAX];
1232
1233	getflags_5ghz(bands, flags, ht40);
1234	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1235
1236	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1237}
1238
1239/*
1240 * Locate a channel given a frequency+flags.  We cache
1241 * the previous lookup to optimize switching between two
1242 * channels--as happens with dynamic turbo.
1243 */
1244struct ieee80211_channel *
1245ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1246{
1247	struct ieee80211_channel *c;
1248
1249	flags &= IEEE80211_CHAN_ALLTURBO;
1250	c = ic->ic_prevchan;
1251	if (c != NULL && c->ic_freq == freq &&
1252	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1253		return c;
1254	/* brute force search */
1255	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1256}
1257
1258/*
1259 * Locate a channel given a channel number+flags.  We cache
1260 * the previous lookup to optimize switching between two
1261 * channels--as happens with dynamic turbo.
1262 */
1263struct ieee80211_channel *
1264ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1265{
1266	struct ieee80211_channel *c;
1267	int i;
1268
1269	flags &= IEEE80211_CHAN_ALLTURBO;
1270	c = ic->ic_prevchan;
1271	if (c != NULL && c->ic_ieee == ieee &&
1272	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1273		return c;
1274	/* brute force search */
1275	for (i = 0; i < ic->ic_nchans; i++) {
1276		c = &ic->ic_channels[i];
1277		if (c->ic_ieee == ieee &&
1278		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1279			return c;
1280	}
1281	return NULL;
1282}
1283
1284/*
1285 * Lookup a channel suitable for the given rx status.
1286 *
1287 * This is used to find a channel for a frame (eg beacon, probe
1288 * response) based purely on the received PHY information.
1289 *
1290 * For now it tries to do it based on R_FREQ / R_IEEE.
1291 * This is enough for 11bg and 11a (and thus 11ng/11na)
1292 * but it will not be enough for GSM, PSB channels and the
1293 * like.  It also doesn't know about legacy-turbog and
1294 * legacy-turbo modes, which some offload NICs actually
1295 * support in weird ways.
1296 *
1297 * Takes the ic and rxstatus; returns the channel or NULL
1298 * if not found.
1299 *
1300 * XXX TODO: Add support for that when the need arises.
1301 */
1302struct ieee80211_channel *
1303ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1304    const struct ieee80211_rx_stats *rxs)
1305{
1306	struct ieee80211com *ic = vap->iv_ic;
1307	uint32_t flags;
1308	struct ieee80211_channel *c;
1309
1310	if (rxs == NULL)
1311		return (NULL);
1312
1313	/*
1314	 * Strictly speaking we only use freq for now,
1315	 * however later on we may wish to just store
1316	 * the ieee for verification.
1317	 */
1318	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1319		return (NULL);
1320	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1321		return (NULL);
1322
1323	/*
1324	 * If the rx status contains a valid ieee/freq, then
1325	 * ensure we populate the correct channel information
1326	 * in rxchan before passing it up to the scan infrastructure.
1327	 * Offload NICs will pass up beacons from all channels
1328	 * during background scans.
1329	 */
1330
1331	/* Determine a band */
1332	/* XXX should be done by the driver? */
1333	if (rxs->c_freq < 3000) {
1334		flags = IEEE80211_CHAN_G;
1335	} else {
1336		flags = IEEE80211_CHAN_A;
1337	}
1338
1339	/* Channel lookup */
1340	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1341
1342	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1343	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1344	    __func__,
1345	    (int) rxs->c_freq,
1346	    (int) rxs->c_ieee,
1347	    flags,
1348	    c);
1349
1350	return (c);
1351}
1352
1353static void
1354addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1355{
1356#define	ADD(_ic, _s, _o) \
1357	ifmedia_add(media, \
1358		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1359	static const u_int mopts[IEEE80211_MODE_MAX] = {
1360	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1361	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1362	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1363	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1364	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1365	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1366	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1367	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1368	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1369	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1370	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1371	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1372	};
1373	u_int mopt;
1374
1375	mopt = mopts[mode];
1376	if (addsta)
1377		ADD(ic, mword, mopt);	/* STA mode has no cap */
1378	if (caps & IEEE80211_C_IBSS)
1379		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1380	if (caps & IEEE80211_C_HOSTAP)
1381		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1382	if (caps & IEEE80211_C_AHDEMO)
1383		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1384	if (caps & IEEE80211_C_MONITOR)
1385		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1386	if (caps & IEEE80211_C_WDS)
1387		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1388	if (caps & IEEE80211_C_MBSS)
1389		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1390#undef ADD
1391}
1392
1393/*
1394 * Setup the media data structures according to the channel and
1395 * rate tables.
1396 */
1397static int
1398ieee80211_media_setup(struct ieee80211com *ic,
1399	struct ifmedia *media, int caps, int addsta,
1400	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1401{
1402	int i, j, rate, maxrate, mword, r;
1403	enum ieee80211_phymode mode;
1404	const struct ieee80211_rateset *rs;
1405	struct ieee80211_rateset allrates;
1406
1407	/*
1408	 * Fill in media characteristics.
1409	 */
1410	ifmedia_init(media, 0, media_change, media_stat);
1411	maxrate = 0;
1412	/*
1413	 * Add media for legacy operating modes.
1414	 */
1415	memset(&allrates, 0, sizeof(allrates));
1416	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1417		if (isclr(ic->ic_modecaps, mode))
1418			continue;
1419		addmedia(media, caps, addsta, mode, IFM_AUTO);
1420		if (mode == IEEE80211_MODE_AUTO)
1421			continue;
1422		rs = &ic->ic_sup_rates[mode];
1423		for (i = 0; i < rs->rs_nrates; i++) {
1424			rate = rs->rs_rates[i];
1425			mword = ieee80211_rate2media(ic, rate, mode);
1426			if (mword == 0)
1427				continue;
1428			addmedia(media, caps, addsta, mode, mword);
1429			/*
1430			 * Add legacy rate to the collection of all rates.
1431			 */
1432			r = rate & IEEE80211_RATE_VAL;
1433			for (j = 0; j < allrates.rs_nrates; j++)
1434				if (allrates.rs_rates[j] == r)
1435					break;
1436			if (j == allrates.rs_nrates) {
1437				/* unique, add to the set */
1438				allrates.rs_rates[j] = r;
1439				allrates.rs_nrates++;
1440			}
1441			rate = (rate & IEEE80211_RATE_VAL) / 2;
1442			if (rate > maxrate)
1443				maxrate = rate;
1444		}
1445	}
1446	for (i = 0; i < allrates.rs_nrates; i++) {
1447		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1448				IEEE80211_MODE_AUTO);
1449		if (mword == 0)
1450			continue;
1451		/* NB: remove media options from mword */
1452		addmedia(media, caps, addsta,
1453		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1454	}
1455	/*
1456	 * Add HT/11n media.  Note that we do not have enough
1457	 * bits in the media subtype to express the MCS so we
1458	 * use a "placeholder" media subtype and any fixed MCS
1459	 * must be specified with a different mechanism.
1460	 */
1461	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1462		if (isclr(ic->ic_modecaps, mode))
1463			continue;
1464		addmedia(media, caps, addsta, mode, IFM_AUTO);
1465		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1466	}
1467	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1468	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1469		addmedia(media, caps, addsta,
1470		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1471		i = ic->ic_txstream * 8 - 1;
1472		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1473		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1474			rate = ieee80211_htrates[i].ht40_rate_400ns;
1475		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1476			rate = ieee80211_htrates[i].ht40_rate_800ns;
1477		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1478			rate = ieee80211_htrates[i].ht20_rate_400ns;
1479		else
1480			rate = ieee80211_htrates[i].ht20_rate_800ns;
1481		if (rate > maxrate)
1482			maxrate = rate;
1483	}
1484	return maxrate;
1485}
1486
1487/* XXX inline or eliminate? */
1488const struct ieee80211_rateset *
1489ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1490{
1491	/* XXX does this work for 11ng basic rates? */
1492	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1493}
1494
1495void
1496ieee80211_announce(struct ieee80211com *ic)
1497{
1498	int i, rate, mword;
1499	enum ieee80211_phymode mode;
1500	const struct ieee80211_rateset *rs;
1501
1502	/* NB: skip AUTO since it has no rates */
1503	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1504		if (isclr(ic->ic_modecaps, mode))
1505			continue;
1506		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1507		rs = &ic->ic_sup_rates[mode];
1508		for (i = 0; i < rs->rs_nrates; i++) {
1509			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1510			if (mword == 0)
1511				continue;
1512			rate = ieee80211_media2rate(mword);
1513			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1514			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1515		}
1516		printf("\n");
1517	}
1518	ieee80211_ht_announce(ic);
1519}
1520
1521void
1522ieee80211_announce_channels(struct ieee80211com *ic)
1523{
1524	const struct ieee80211_channel *c;
1525	char type;
1526	int i, cw;
1527
1528	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1529	for (i = 0; i < ic->ic_nchans; i++) {
1530		c = &ic->ic_channels[i];
1531		if (IEEE80211_IS_CHAN_ST(c))
1532			type = 'S';
1533		else if (IEEE80211_IS_CHAN_108A(c))
1534			type = 'T';
1535		else if (IEEE80211_IS_CHAN_108G(c))
1536			type = 'G';
1537		else if (IEEE80211_IS_CHAN_HT(c))
1538			type = 'n';
1539		else if (IEEE80211_IS_CHAN_A(c))
1540			type = 'a';
1541		else if (IEEE80211_IS_CHAN_ANYG(c))
1542			type = 'g';
1543		else if (IEEE80211_IS_CHAN_B(c))
1544			type = 'b';
1545		else
1546			type = 'f';
1547		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1548			cw = 40;
1549		else if (IEEE80211_IS_CHAN_HALF(c))
1550			cw = 10;
1551		else if (IEEE80211_IS_CHAN_QUARTER(c))
1552			cw = 5;
1553		else
1554			cw = 20;
1555		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1556			, c->ic_ieee, c->ic_freq, type
1557			, cw
1558			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1559			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1560			, c->ic_maxregpower
1561			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1562			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1563		);
1564	}
1565}
1566
1567static int
1568media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1569{
1570	switch (IFM_MODE(ime->ifm_media)) {
1571	case IFM_IEEE80211_11A:
1572		*mode = IEEE80211_MODE_11A;
1573		break;
1574	case IFM_IEEE80211_11B:
1575		*mode = IEEE80211_MODE_11B;
1576		break;
1577	case IFM_IEEE80211_11G:
1578		*mode = IEEE80211_MODE_11G;
1579		break;
1580	case IFM_IEEE80211_FH:
1581		*mode = IEEE80211_MODE_FH;
1582		break;
1583	case IFM_IEEE80211_11NA:
1584		*mode = IEEE80211_MODE_11NA;
1585		break;
1586	case IFM_IEEE80211_11NG:
1587		*mode = IEEE80211_MODE_11NG;
1588		break;
1589	case IFM_AUTO:
1590		*mode = IEEE80211_MODE_AUTO;
1591		break;
1592	default:
1593		return 0;
1594	}
1595	/*
1596	 * Turbo mode is an ``option''.
1597	 * XXX does not apply to AUTO
1598	 */
1599	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1600		if (*mode == IEEE80211_MODE_11A) {
1601			if (flags & IEEE80211_F_TURBOP)
1602				*mode = IEEE80211_MODE_TURBO_A;
1603			else
1604				*mode = IEEE80211_MODE_STURBO_A;
1605		} else if (*mode == IEEE80211_MODE_11G)
1606			*mode = IEEE80211_MODE_TURBO_G;
1607		else
1608			return 0;
1609	}
1610	/* XXX HT40 +/- */
1611	return 1;
1612}
1613
1614/*
1615 * Handle a media change request on the vap interface.
1616 */
1617int
1618ieee80211_media_change(struct ifnet *ifp)
1619{
1620	struct ieee80211vap *vap = ifp->if_softc;
1621	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1622	uint16_t newmode;
1623
1624	if (!media2mode(ime, vap->iv_flags, &newmode))
1625		return EINVAL;
1626	if (vap->iv_des_mode != newmode) {
1627		vap->iv_des_mode = newmode;
1628		/* XXX kick state machine if up+running */
1629	}
1630	return 0;
1631}
1632
1633/*
1634 * Common code to calculate the media status word
1635 * from the operating mode and channel state.
1636 */
1637static int
1638media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1639{
1640	int status;
1641
1642	status = IFM_IEEE80211;
1643	switch (opmode) {
1644	case IEEE80211_M_STA:
1645		break;
1646	case IEEE80211_M_IBSS:
1647		status |= IFM_IEEE80211_ADHOC;
1648		break;
1649	case IEEE80211_M_HOSTAP:
1650		status |= IFM_IEEE80211_HOSTAP;
1651		break;
1652	case IEEE80211_M_MONITOR:
1653		status |= IFM_IEEE80211_MONITOR;
1654		break;
1655	case IEEE80211_M_AHDEMO:
1656		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1657		break;
1658	case IEEE80211_M_WDS:
1659		status |= IFM_IEEE80211_WDS;
1660		break;
1661	case IEEE80211_M_MBSS:
1662		status |= IFM_IEEE80211_MBSS;
1663		break;
1664	}
1665	if (IEEE80211_IS_CHAN_HTA(chan)) {
1666		status |= IFM_IEEE80211_11NA;
1667	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1668		status |= IFM_IEEE80211_11NG;
1669	} else if (IEEE80211_IS_CHAN_A(chan)) {
1670		status |= IFM_IEEE80211_11A;
1671	} else if (IEEE80211_IS_CHAN_B(chan)) {
1672		status |= IFM_IEEE80211_11B;
1673	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1674		status |= IFM_IEEE80211_11G;
1675	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1676		status |= IFM_IEEE80211_FH;
1677	}
1678	/* XXX else complain? */
1679
1680	if (IEEE80211_IS_CHAN_TURBO(chan))
1681		status |= IFM_IEEE80211_TURBO;
1682#if 0
1683	if (IEEE80211_IS_CHAN_HT20(chan))
1684		status |= IFM_IEEE80211_HT20;
1685	if (IEEE80211_IS_CHAN_HT40(chan))
1686		status |= IFM_IEEE80211_HT40;
1687#endif
1688	return status;
1689}
1690
1691void
1692ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1693{
1694	struct ieee80211vap *vap = ifp->if_softc;
1695	struct ieee80211com *ic = vap->iv_ic;
1696	enum ieee80211_phymode mode;
1697
1698	imr->ifm_status = IFM_AVALID;
1699	/*
1700	 * NB: use the current channel's mode to lock down a xmit
1701	 * rate only when running; otherwise we may have a mismatch
1702	 * in which case the rate will not be convertible.
1703	 */
1704	if (vap->iv_state == IEEE80211_S_RUN ||
1705	    vap->iv_state == IEEE80211_S_SLEEP) {
1706		imr->ifm_status |= IFM_ACTIVE;
1707		mode = ieee80211_chan2mode(ic->ic_curchan);
1708	} else
1709		mode = IEEE80211_MODE_AUTO;
1710	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1711	/*
1712	 * Calculate a current rate if possible.
1713	 */
1714	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1715		/*
1716		 * A fixed rate is set, report that.
1717		 */
1718		imr->ifm_active |= ieee80211_rate2media(ic,
1719			vap->iv_txparms[mode].ucastrate, mode);
1720	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1721		/*
1722		 * In station mode report the current transmit rate.
1723		 */
1724		imr->ifm_active |= ieee80211_rate2media(ic,
1725			vap->iv_bss->ni_txrate, mode);
1726	} else
1727		imr->ifm_active |= IFM_AUTO;
1728	if (imr->ifm_status & IFM_ACTIVE)
1729		imr->ifm_current = imr->ifm_active;
1730}
1731
1732/*
1733 * Set the current phy mode and recalculate the active channel
1734 * set based on the available channels for this mode.  Also
1735 * select a new default/current channel if the current one is
1736 * inappropriate for this mode.
1737 */
1738int
1739ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1740{
1741	/*
1742	 * Adjust basic rates in 11b/11g supported rate set.
1743	 * Note that if operating on a hal/quarter rate channel
1744	 * this is a noop as those rates sets are different
1745	 * and used instead.
1746	 */
1747	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1748		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1749
1750	ic->ic_curmode = mode;
1751	ieee80211_reset_erp(ic);	/* reset ERP state */
1752
1753	return 0;
1754}
1755
1756/*
1757 * Return the phy mode for with the specified channel.
1758 */
1759enum ieee80211_phymode
1760ieee80211_chan2mode(const struct ieee80211_channel *chan)
1761{
1762
1763	if (IEEE80211_IS_CHAN_HTA(chan))
1764		return IEEE80211_MODE_11NA;
1765	else if (IEEE80211_IS_CHAN_HTG(chan))
1766		return IEEE80211_MODE_11NG;
1767	else if (IEEE80211_IS_CHAN_108G(chan))
1768		return IEEE80211_MODE_TURBO_G;
1769	else if (IEEE80211_IS_CHAN_ST(chan))
1770		return IEEE80211_MODE_STURBO_A;
1771	else if (IEEE80211_IS_CHAN_TURBO(chan))
1772		return IEEE80211_MODE_TURBO_A;
1773	else if (IEEE80211_IS_CHAN_HALF(chan))
1774		return IEEE80211_MODE_HALF;
1775	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1776		return IEEE80211_MODE_QUARTER;
1777	else if (IEEE80211_IS_CHAN_A(chan))
1778		return IEEE80211_MODE_11A;
1779	else if (IEEE80211_IS_CHAN_ANYG(chan))
1780		return IEEE80211_MODE_11G;
1781	else if (IEEE80211_IS_CHAN_B(chan))
1782		return IEEE80211_MODE_11B;
1783	else if (IEEE80211_IS_CHAN_FHSS(chan))
1784		return IEEE80211_MODE_FH;
1785
1786	/* NB: should not get here */
1787	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1788		__func__, chan->ic_freq, chan->ic_flags);
1789	return IEEE80211_MODE_11B;
1790}
1791
1792struct ratemedia {
1793	u_int	match;	/* rate + mode */
1794	u_int	media;	/* if_media rate */
1795};
1796
1797static int
1798findmedia(const struct ratemedia rates[], int n, u_int match)
1799{
1800	int i;
1801
1802	for (i = 0; i < n; i++)
1803		if (rates[i].match == match)
1804			return rates[i].media;
1805	return IFM_AUTO;
1806}
1807
1808/*
1809 * Convert IEEE80211 rate value to ifmedia subtype.
1810 * Rate is either a legacy rate in units of 0.5Mbps
1811 * or an MCS index.
1812 */
1813int
1814ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1815{
1816	static const struct ratemedia rates[] = {
1817		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1818		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1819		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1820		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1821		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1822		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1823		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1824		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1825		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1826		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1827		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1828		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1829		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1830		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1831		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1832		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1833		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1834		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1835		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1836		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1837		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1838		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1839		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1840		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1841		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1842		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1843		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1844		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1845		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1846		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1847		/* NB: OFDM72 doesn't really exist so we don't handle it */
1848	};
1849	static const struct ratemedia htrates[] = {
1850		{   0, IFM_IEEE80211_MCS },
1851		{   1, IFM_IEEE80211_MCS },
1852		{   2, IFM_IEEE80211_MCS },
1853		{   3, IFM_IEEE80211_MCS },
1854		{   4, IFM_IEEE80211_MCS },
1855		{   5, IFM_IEEE80211_MCS },
1856		{   6, IFM_IEEE80211_MCS },
1857		{   7, IFM_IEEE80211_MCS },
1858		{   8, IFM_IEEE80211_MCS },
1859		{   9, IFM_IEEE80211_MCS },
1860		{  10, IFM_IEEE80211_MCS },
1861		{  11, IFM_IEEE80211_MCS },
1862		{  12, IFM_IEEE80211_MCS },
1863		{  13, IFM_IEEE80211_MCS },
1864		{  14, IFM_IEEE80211_MCS },
1865		{  15, IFM_IEEE80211_MCS },
1866		{  16, IFM_IEEE80211_MCS },
1867		{  17, IFM_IEEE80211_MCS },
1868		{  18, IFM_IEEE80211_MCS },
1869		{  19, IFM_IEEE80211_MCS },
1870		{  20, IFM_IEEE80211_MCS },
1871		{  21, IFM_IEEE80211_MCS },
1872		{  22, IFM_IEEE80211_MCS },
1873		{  23, IFM_IEEE80211_MCS },
1874		{  24, IFM_IEEE80211_MCS },
1875		{  25, IFM_IEEE80211_MCS },
1876		{  26, IFM_IEEE80211_MCS },
1877		{  27, IFM_IEEE80211_MCS },
1878		{  28, IFM_IEEE80211_MCS },
1879		{  29, IFM_IEEE80211_MCS },
1880		{  30, IFM_IEEE80211_MCS },
1881		{  31, IFM_IEEE80211_MCS },
1882		{  32, IFM_IEEE80211_MCS },
1883		{  33, IFM_IEEE80211_MCS },
1884		{  34, IFM_IEEE80211_MCS },
1885		{  35, IFM_IEEE80211_MCS },
1886		{  36, IFM_IEEE80211_MCS },
1887		{  37, IFM_IEEE80211_MCS },
1888		{  38, IFM_IEEE80211_MCS },
1889		{  39, IFM_IEEE80211_MCS },
1890		{  40, IFM_IEEE80211_MCS },
1891		{  41, IFM_IEEE80211_MCS },
1892		{  42, IFM_IEEE80211_MCS },
1893		{  43, IFM_IEEE80211_MCS },
1894		{  44, IFM_IEEE80211_MCS },
1895		{  45, IFM_IEEE80211_MCS },
1896		{  46, IFM_IEEE80211_MCS },
1897		{  47, IFM_IEEE80211_MCS },
1898		{  48, IFM_IEEE80211_MCS },
1899		{  49, IFM_IEEE80211_MCS },
1900		{  50, IFM_IEEE80211_MCS },
1901		{  51, IFM_IEEE80211_MCS },
1902		{  52, IFM_IEEE80211_MCS },
1903		{  53, IFM_IEEE80211_MCS },
1904		{  54, IFM_IEEE80211_MCS },
1905		{  55, IFM_IEEE80211_MCS },
1906		{  56, IFM_IEEE80211_MCS },
1907		{  57, IFM_IEEE80211_MCS },
1908		{  58, IFM_IEEE80211_MCS },
1909		{  59, IFM_IEEE80211_MCS },
1910		{  60, IFM_IEEE80211_MCS },
1911		{  61, IFM_IEEE80211_MCS },
1912		{  62, IFM_IEEE80211_MCS },
1913		{  63, IFM_IEEE80211_MCS },
1914		{  64, IFM_IEEE80211_MCS },
1915		{  65, IFM_IEEE80211_MCS },
1916		{  66, IFM_IEEE80211_MCS },
1917		{  67, IFM_IEEE80211_MCS },
1918		{  68, IFM_IEEE80211_MCS },
1919		{  69, IFM_IEEE80211_MCS },
1920		{  70, IFM_IEEE80211_MCS },
1921		{  71, IFM_IEEE80211_MCS },
1922		{  72, IFM_IEEE80211_MCS },
1923		{  73, IFM_IEEE80211_MCS },
1924		{  74, IFM_IEEE80211_MCS },
1925		{  75, IFM_IEEE80211_MCS },
1926		{  76, IFM_IEEE80211_MCS },
1927	};
1928	int m;
1929
1930	/*
1931	 * Check 11n rates first for match as an MCS.
1932	 */
1933	if (mode == IEEE80211_MODE_11NA) {
1934		if (rate & IEEE80211_RATE_MCS) {
1935			rate &= ~IEEE80211_RATE_MCS;
1936			m = findmedia(htrates, nitems(htrates), rate);
1937			if (m != IFM_AUTO)
1938				return m | IFM_IEEE80211_11NA;
1939		}
1940	} else if (mode == IEEE80211_MODE_11NG) {
1941		/* NB: 12 is ambiguous, it will be treated as an MCS */
1942		if (rate & IEEE80211_RATE_MCS) {
1943			rate &= ~IEEE80211_RATE_MCS;
1944			m = findmedia(htrates, nitems(htrates), rate);
1945			if (m != IFM_AUTO)
1946				return m | IFM_IEEE80211_11NG;
1947		}
1948	}
1949	rate &= IEEE80211_RATE_VAL;
1950	switch (mode) {
1951	case IEEE80211_MODE_11A:
1952	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1953	case IEEE80211_MODE_QUARTER:
1954	case IEEE80211_MODE_11NA:
1955	case IEEE80211_MODE_TURBO_A:
1956	case IEEE80211_MODE_STURBO_A:
1957		return findmedia(rates, nitems(rates),
1958		    rate | IFM_IEEE80211_11A);
1959	case IEEE80211_MODE_11B:
1960		return findmedia(rates, nitems(rates),
1961		    rate | IFM_IEEE80211_11B);
1962	case IEEE80211_MODE_FH:
1963		return findmedia(rates, nitems(rates),
1964		    rate | IFM_IEEE80211_FH);
1965	case IEEE80211_MODE_AUTO:
1966		/* NB: ic may be NULL for some drivers */
1967		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1968			return findmedia(rates, nitems(rates),
1969			    rate | IFM_IEEE80211_FH);
1970		/* NB: hack, 11g matches both 11b+11a rates */
1971		/* fall thru... */
1972	case IEEE80211_MODE_11G:
1973	case IEEE80211_MODE_11NG:
1974	case IEEE80211_MODE_TURBO_G:
1975		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1976	}
1977	return IFM_AUTO;
1978}
1979
1980int
1981ieee80211_media2rate(int mword)
1982{
1983	static const int ieeerates[] = {
1984		-1,		/* IFM_AUTO */
1985		0,		/* IFM_MANUAL */
1986		0,		/* IFM_NONE */
1987		2,		/* IFM_IEEE80211_FH1 */
1988		4,		/* IFM_IEEE80211_FH2 */
1989		2,		/* IFM_IEEE80211_DS1 */
1990		4,		/* IFM_IEEE80211_DS2 */
1991		11,		/* IFM_IEEE80211_DS5 */
1992		22,		/* IFM_IEEE80211_DS11 */
1993		44,		/* IFM_IEEE80211_DS22 */
1994		12,		/* IFM_IEEE80211_OFDM6 */
1995		18,		/* IFM_IEEE80211_OFDM9 */
1996		24,		/* IFM_IEEE80211_OFDM12 */
1997		36,		/* IFM_IEEE80211_OFDM18 */
1998		48,		/* IFM_IEEE80211_OFDM24 */
1999		72,		/* IFM_IEEE80211_OFDM36 */
2000		96,		/* IFM_IEEE80211_OFDM48 */
2001		108,		/* IFM_IEEE80211_OFDM54 */
2002		144,		/* IFM_IEEE80211_OFDM72 */
2003		0,		/* IFM_IEEE80211_DS354k */
2004		0,		/* IFM_IEEE80211_DS512k */
2005		6,		/* IFM_IEEE80211_OFDM3 */
2006		9,		/* IFM_IEEE80211_OFDM4 */
2007		54,		/* IFM_IEEE80211_OFDM27 */
2008		-1,		/* IFM_IEEE80211_MCS */
2009	};
2010	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2011		ieeerates[IFM_SUBTYPE(mword)] : 0;
2012}
2013
2014/*
2015 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2016 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2017 */
2018#define	mix(a, b, c)							\
2019do {									\
2020	a -= b; a -= c; a ^= (c >> 13);					\
2021	b -= c; b -= a; b ^= (a << 8);					\
2022	c -= a; c -= b; c ^= (b >> 13);					\
2023	a -= b; a -= c; a ^= (c >> 12);					\
2024	b -= c; b -= a; b ^= (a << 16);					\
2025	c -= a; c -= b; c ^= (b >> 5);					\
2026	a -= b; a -= c; a ^= (c >> 3);					\
2027	b -= c; b -= a; b ^= (a << 10);					\
2028	c -= a; c -= b; c ^= (b >> 15);					\
2029} while (/*CONSTCOND*/0)
2030
2031uint32_t
2032ieee80211_mac_hash(const struct ieee80211com *ic,
2033	const uint8_t addr[IEEE80211_ADDR_LEN])
2034{
2035	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2036
2037	b += addr[5] << 8;
2038	b += addr[4];
2039	a += addr[3] << 24;
2040	a += addr[2] << 16;
2041	a += addr[1] << 8;
2042	a += addr[0];
2043
2044	mix(a, b, c);
2045
2046	return c;
2047}
2048#undef mix
2049
2050char
2051ieee80211_channel_type_char(const struct ieee80211_channel *c)
2052{
2053	if (IEEE80211_IS_CHAN_ST(c))
2054		return 'S';
2055	if (IEEE80211_IS_CHAN_108A(c))
2056		return 'T';
2057	if (IEEE80211_IS_CHAN_108G(c))
2058		return 'G';
2059	if (IEEE80211_IS_CHAN_HT(c))
2060		return 'n';
2061	if (IEEE80211_IS_CHAN_A(c))
2062		return 'a';
2063	if (IEEE80211_IS_CHAN_ANYG(c))
2064		return 'g';
2065	if (IEEE80211_IS_CHAN_B(c))
2066		return 'b';
2067	return 'f';
2068}
2069