ieee80211.c revision 165574
10Sduke/*-
29330Slana * Copyright (c) 2001 Atsushi Onoe
30Sduke * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
40Sduke * All rights reserved.
50Sduke *
60Sduke * Redistribution and use in source and binary forms, with or without
70Sduke * modification, are permitted provided that the following conditions
80Sduke * are met:
90Sduke * 1. Redistributions of source code must retain the above copyright
100Sduke *    notice, this list of conditions and the following disclaimer.
110Sduke * 2. Redistributions in binary form must reproduce the above copyright
120Sduke *    notice, this list of conditions and the following disclaimer in the
130Sduke *    documentation and/or other materials provided with the distribution.
140Sduke * 3. The name of the author may not be used to endorse or promote products
152362Sohair *    derived from this software without specific prior written permission.
160Sduke *
170Sduke * Alternatively, this software may be distributed under the terms of the
180Sduke * GNU General Public License ("GPL") version 2 as published by the Free
190Sduke * Software Foundation.
200Sduke *
210Sduke * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
220Sduke * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
230Sduke * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
240Sduke * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
250Sduke * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
260Sduke * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
270Sduke * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
280Sduke * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
290Sduke * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
300Sduke * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
310Sduke */
320Sduke
330Sduke#include <sys/cdefs.h>
340Sduke__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 165574 2006-12-28 01:31:26Z sam $");
350Sduke
360Sduke/*
370Sduke * IEEE 802.11 generic handler
380Sduke */
390Sduke
407372Smduigou#include <sys/param.h>
410Sduke#include <sys/systm.h>
420Sduke#include <sys/kernel.h>
430Sduke
447372Smduigou#include <sys/socket.h>
450Sduke
460Sduke#include <net/if.h>
470Sduke#include <net/if_media.h>
48#include <net/ethernet.h>
49
50#include <net80211/ieee80211_var.h>
51
52#include <net/bpf.h>
53
54const char *ieee80211_phymode_name[] = {
55	"auto",		/* IEEE80211_MODE_AUTO */
56	"11a",		/* IEEE80211_MODE_11A */
57	"11b",		/* IEEE80211_MODE_11B */
58	"11g",		/* IEEE80211_MODE_11G */
59	"FH",		/* IEEE80211_MODE_FH */
60	"turboA",	/* IEEE80211_MODE_TURBO_A */
61	"turboG",	/* IEEE80211_MODE_TURBO_G */
62};
63
64/*
65 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
66 */
67#define	B(r)	((r) | IEEE80211_RATE_BASIC)
68static const struct ieee80211_rateset ieee80211_rateset_11a =
69	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
70static const struct ieee80211_rateset ieee80211_rateset_half =
71	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
72static const struct ieee80211_rateset ieee80211_rateset_quarter =
73	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
74static const struct ieee80211_rateset ieee80211_rateset_11b =
75	{ 4, { B(2), B(4), B(11), B(22) } };
76/* NB: OFDM rates are handled specially based on mode */
77static const struct ieee80211_rateset ieee80211_rateset_11g =
78	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
79#undef B
80
81/* list of all instances */
82SLIST_HEAD(ieee80211_list, ieee80211com);
83static struct ieee80211_list ieee80211_list =
84	SLIST_HEAD_INITIALIZER(ieee80211_list);
85static u_int8_t ieee80211_vapmap[32];		/* enough for 256 */
86static struct mtx ieee80211_vap_mtx;
87MTX_SYSINIT(ieee80211, &ieee80211_vap_mtx, "net80211 instances", MTX_DEF);
88
89static void
90ieee80211_add_vap(struct ieee80211com *ic)
91{
92#define	N(a)	(sizeof(a)/sizeof(a[0]))
93	int i;
94	u_int8_t b;
95
96	mtx_lock(&ieee80211_vap_mtx);
97	ic->ic_vap = 0;
98	for (i = 0; i < N(ieee80211_vapmap) && ieee80211_vapmap[i] == 0xff; i++)
99		ic->ic_vap += NBBY;
100	if (i == N(ieee80211_vapmap))
101		panic("vap table full");
102	for (b = ieee80211_vapmap[i]; b & 1; b >>= 1)
103		ic->ic_vap++;
104	setbit(ieee80211_vapmap, ic->ic_vap);
105	SLIST_INSERT_HEAD(&ieee80211_list, ic, ic_next);
106	mtx_unlock(&ieee80211_vap_mtx);
107#undef N
108}
109
110static void
111ieee80211_remove_vap(struct ieee80211com *ic)
112{
113	mtx_lock(&ieee80211_vap_mtx);
114	SLIST_REMOVE(&ieee80211_list, ic, ieee80211com, ic_next);
115	KASSERT(ic->ic_vap < sizeof(ieee80211_vapmap)*NBBY,
116		("invalid vap id %d", ic->ic_vap));
117	KASSERT(isset(ieee80211_vapmap, ic->ic_vap),
118		("vap id %d not allocated", ic->ic_vap));
119	clrbit(ieee80211_vapmap, ic->ic_vap);
120	mtx_unlock(&ieee80211_vap_mtx);
121}
122
123/*
124 * Default reset method for use with the ioctl support.  This
125 * method is invoked after any state change in the 802.11
126 * layer that should be propagated to the hardware but not
127 * require re-initialization of the 802.11 state machine (e.g
128 * rescanning for an ap).  We always return ENETRESET which
129 * should cause the driver to re-initialize the device. Drivers
130 * can override this method to implement more optimized support.
131 */
132static int
133ieee80211_default_reset(struct ifnet *ifp)
134{
135	return ENETRESET;
136}
137
138/*
139 * Fill in 802.11 available channel set, mark
140 * all available channels as active, and pick
141 * a default channel if not already specified.
142 */
143static void
144ieee80211_chan_init(struct ieee80211com *ic)
145{
146#define	DEFAULTRATES(m, def) do { \
147	if ((ic->ic_modecaps & (1<<m)) && ic->ic_sup_rates[m].rs_nrates == 0) \
148		ic->ic_sup_rates[m] = def; \
149} while (0)
150	struct ifnet *ifp = ic->ic_ifp;
151	struct ieee80211_channel *c;
152	int i;
153
154	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
155	ic->ic_modecaps = 1<<IEEE80211_MODE_AUTO;
156	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
157		c = &ic->ic_channels[i];
158		if (c->ic_flags) {
159			/*
160			 * Verify driver passed us valid data.
161			 */
162			if (i != ieee80211_chan2ieee(ic, c)) {
163				if_printf(ifp, "bad channel ignored; "
164					"freq %u flags %x number %u\n",
165					c->ic_freq, c->ic_flags, i);
166				c->ic_flags = 0;	/* NB: remove */
167				continue;
168			}
169			setbit(ic->ic_chan_avail, i);
170			/*
171			 * Identify mode capabilities.
172			 */
173			if (IEEE80211_IS_CHAN_A(c))
174				ic->ic_modecaps |= 1<<IEEE80211_MODE_11A;
175			if (IEEE80211_IS_CHAN_B(c))
176				ic->ic_modecaps |= 1<<IEEE80211_MODE_11B;
177			if (IEEE80211_IS_CHAN_ANYG(c))
178				ic->ic_modecaps |= 1<<IEEE80211_MODE_11G;
179			if (IEEE80211_IS_CHAN_FHSS(c))
180				ic->ic_modecaps |= 1<<IEEE80211_MODE_FH;
181			if (IEEE80211_IS_CHAN_T(c))
182				ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_A;
183			if (IEEE80211_IS_CHAN_108G(c))
184				ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_G;
185			if (ic->ic_curchan == NULL) {
186				/* arbitrarily pick the first channel */
187				ic->ic_curchan = &ic->ic_channels[i];
188			}
189		}
190	}
191
192	/* fillin well-known rate sets if driver has not specified */
193	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
194	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
195	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
196	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
197	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
198
199	/*
200	 * Set auto mode to reset active channel state and any desired channel.
201	 */
202	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
203#undef DEFAULTRATES
204}
205
206void
207ieee80211_ifattach(struct ieee80211com *ic)
208{
209	struct ifnet *ifp = ic->ic_ifp;
210
211	ether_ifattach(ifp, ic->ic_myaddr);
212	ifp->if_output = ieee80211_output;
213
214	bpfattach2(ifp, DLT_IEEE802_11,
215	    sizeof(struct ieee80211_frame_addr4), &ic->ic_rawbpf);
216
217	ieee80211_crypto_attach(ic);
218
219	ic->ic_des_chan = IEEE80211_CHAN_ANYC;
220	/*
221	 * Fill in 802.11 available channel set, mark all
222	 * available channels as active, and pick a default
223	 * channel if not already specified.
224	 */
225	ieee80211_chan_init(ic);
226#if 0
227	/*
228	 * Enable WME by default if we're capable.
229	 */
230	if (ic->ic_caps & IEEE80211_C_WME)
231		ic->ic_flags |= IEEE80211_F_WME;
232#endif
233	if (ic->ic_caps & IEEE80211_C_BURST)
234		ic->ic_flags |= IEEE80211_F_BURST;
235
236	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
237	ic->ic_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
238	ic->ic_dtim_period = IEEE80211_DTIM_DEFAULT;
239	IEEE80211_BEACON_LOCK_INIT(ic, "beacon");
240
241	ic->ic_lintval = ic->ic_bintval;
242	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
243
244	ieee80211_node_attach(ic);
245	ieee80211_proto_attach(ic);
246
247	ieee80211_add_vap(ic);
248
249	ieee80211_sysctl_attach(ic);		/* NB: requires ic_vap */
250
251	/*
252	 * Install a default reset method for the ioctl support.
253	 * The driver is expected to fill this in before calling us.
254	 */
255	if (ic->ic_reset == NULL)
256		ic->ic_reset = ieee80211_default_reset;
257
258	KASSERT(ifp->if_spare2 == NULL, ("oops, hosed"));
259	ifp->if_spare2 = ic;			/* XXX temp backpointer */
260}
261
262void
263ieee80211_ifdetach(struct ieee80211com *ic)
264{
265	struct ifnet *ifp = ic->ic_ifp;
266
267	ieee80211_remove_vap(ic);
268
269	ieee80211_sysctl_detach(ic);
270	ieee80211_proto_detach(ic);
271	ieee80211_crypto_detach(ic);
272	ieee80211_node_detach(ic);
273	ifmedia_removeall(&ic->ic_media);
274
275	IEEE80211_BEACON_LOCK_DESTROY(ic);
276
277	bpfdetach(ifp);
278	ether_ifdetach(ifp);
279}
280
281/*
282 * Convert MHz frequency to IEEE channel number.
283 */
284int
285ieee80211_mhz2ieee(u_int freq, u_int flags)
286{
287	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
288		if (freq == 2484)
289			return 14;
290		if (freq < 2484)
291			return ((int) freq - 2407) / 5;
292		else
293			return 15 + ((freq - 2512) / 20);
294	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
295		if (freq <= 5000) {
296			if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
297				return 37 + ((freq * 10) +
298				    ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
299			return (freq - 4000) / 5;
300		} else
301			return (freq - 5000) / 5;
302	} else {				/* either, guess */
303		if (freq == 2484)
304			return 14;
305		if (freq < 2484)
306			return ((int) freq - 2407) / 5;
307		if (freq < 5000) {
308			if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
309				return 37 + ((freq * 10) +
310				    ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
311			else if (freq > 4900)
312				return (freq - 4000) / 5;
313			else
314				return 15 + ((freq - 2512) / 20);
315		}
316		return (freq - 5000) / 5;
317	}
318}
319
320/*
321 * Convert channel to IEEE channel number.
322 */
323int
324ieee80211_chan2ieee(struct ieee80211com *ic, struct ieee80211_channel *c)
325{
326	if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
327		return c - ic->ic_channels;
328	else if (c == IEEE80211_CHAN_ANYC)
329		return IEEE80211_CHAN_ANY;
330	else if (c != NULL) {
331		if_printf(ic->ic_ifp, "invalid channel freq %u flags %x\n",
332			c->ic_freq, c->ic_flags);
333		return 0;		/* XXX */
334	} else {
335		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
336		return 0;		/* XXX */
337	}
338}
339
340/*
341 * Convert IEEE channel number to MHz frequency.
342 */
343u_int
344ieee80211_ieee2mhz(u_int chan, u_int flags)
345{
346	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
347		if (chan == 14)
348			return 2484;
349		if (chan < 14)
350			return 2407 + chan*5;
351		else
352			return 2512 + ((chan-15)*20);
353	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
354		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
355			chan -= 37;
356			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
357		}
358		return 5000 + (chan*5);
359	} else {				/* either, guess */
360		if (chan == 14)
361			return 2484;
362		if (chan < 14)			/* 0-13 */
363			return 2407 + chan*5;
364		if (chan < 27)			/* 15-26 */
365			return 2512 + ((chan-15)*20);
366		/* XXX can't distinguish PSB channels */
367		return 5000 + (chan*5);
368	}
369}
370
371/*
372 * Setup the media data structures according to the channel and
373 * rate tables.  This must be called by the driver after
374 * ieee80211_attach and before most anything else.
375 */
376void
377ieee80211_media_init(struct ieee80211com *ic,
378	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
379{
380#define	ADD(_ic, _s, _o) \
381	ifmedia_add(&(_ic)->ic_media, \
382		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
383	struct ifnet *ifp = ic->ic_ifp;
384	struct ifmediareq imr;
385	int i, j, mode, rate, maxrate, mword, mopt, r;
386	struct ieee80211_rateset *rs;
387	struct ieee80211_rateset allrates;
388
389	/* NB: this works because the structure is initialized to zero */
390	if (LIST_EMPTY(&ic->ic_media.ifm_list)) {
391		/*
392		 * Do late attach work that must wait for any subclass
393		 * (i.e. driver) work such as overriding methods.
394		 */
395		ieee80211_node_lateattach(ic);
396	} else {
397		/*
398		 * We are re-initializing the channel list; clear
399		 * the existing media state as the media routines
400		 * don't suppress duplicates.
401		 */
402		ifmedia_removeall(&ic->ic_media);
403		ieee80211_chan_init(ic);
404	}
405
406	/*
407	 * Fill in media characteristics.
408	 */
409	ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
410	maxrate = 0;
411	memset(&allrates, 0, sizeof(allrates));
412	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) {
413		static const u_int mopts[] = {
414			IFM_AUTO,
415			IFM_IEEE80211_11A,
416			IFM_IEEE80211_11B,
417			IFM_IEEE80211_11G,
418			IFM_IEEE80211_FH,
419			IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
420			IFM_IEEE80211_11G | IFM_IEEE80211_TURBO,
421		};
422		if ((ic->ic_modecaps & (1<<mode)) == 0)
423			continue;
424		mopt = mopts[mode];
425		ADD(ic, IFM_AUTO, mopt);	/* e.g. 11a auto */
426		if (ic->ic_caps & IEEE80211_C_IBSS)
427			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
428		if (ic->ic_caps & IEEE80211_C_HOSTAP)
429			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
430		if (ic->ic_caps & IEEE80211_C_AHDEMO)
431			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
432		if (ic->ic_caps & IEEE80211_C_MONITOR)
433			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
434		if (mode == IEEE80211_MODE_AUTO)
435			continue;
436		rs = &ic->ic_sup_rates[mode];
437		for (i = 0; i < rs->rs_nrates; i++) {
438			rate = rs->rs_rates[i];
439			mword = ieee80211_rate2media(ic, rate, mode);
440			if (mword == 0)
441				continue;
442			ADD(ic, mword, mopt);
443			if (ic->ic_caps & IEEE80211_C_IBSS)
444				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
445			if (ic->ic_caps & IEEE80211_C_HOSTAP)
446				ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
447			if (ic->ic_caps & IEEE80211_C_AHDEMO)
448				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
449			if (ic->ic_caps & IEEE80211_C_MONITOR)
450				ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
451			/*
452			 * Add rate to the collection of all rates.
453			 */
454			r = rate & IEEE80211_RATE_VAL;
455			for (j = 0; j < allrates.rs_nrates; j++)
456				if (allrates.rs_rates[j] == r)
457					break;
458			if (j == allrates.rs_nrates) {
459				/* unique, add to the set */
460				allrates.rs_rates[j] = r;
461				allrates.rs_nrates++;
462			}
463			rate = (rate & IEEE80211_RATE_VAL) / 2;
464			if (rate > maxrate)
465				maxrate = rate;
466		}
467	}
468	for (i = 0; i < allrates.rs_nrates; i++) {
469		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
470				IEEE80211_MODE_AUTO);
471		if (mword == 0)
472			continue;
473		mword = IFM_SUBTYPE(mword);	/* remove media options */
474		ADD(ic, mword, 0);
475		if (ic->ic_caps & IEEE80211_C_IBSS)
476			ADD(ic, mword, IFM_IEEE80211_ADHOC);
477		if (ic->ic_caps & IEEE80211_C_HOSTAP)
478			ADD(ic, mword, IFM_IEEE80211_HOSTAP);
479		if (ic->ic_caps & IEEE80211_C_AHDEMO)
480			ADD(ic, mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
481		if (ic->ic_caps & IEEE80211_C_MONITOR)
482			ADD(ic, mword, IFM_IEEE80211_MONITOR);
483	}
484	ieee80211_media_status(ifp, &imr);
485	ifmedia_set(&ic->ic_media, imr.ifm_active);
486
487	if (maxrate)
488		ifp->if_baudrate = IF_Mbps(maxrate);
489#undef ADD
490}
491
492const struct ieee80211_rateset *
493ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
494{
495	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, c);
496
497	if (mode == IEEE80211_MODE_11A) {
498		if (IEEE80211_IS_CHAN_HALF(c))
499			return &ieee80211_rateset_half;
500		if (IEEE80211_IS_CHAN_QUARTER(c))
501			return &ieee80211_rateset_quarter;
502	}
503	return &ic->ic_sup_rates[mode];
504}
505
506void
507ieee80211_announce(struct ieee80211com *ic)
508{
509	struct ifnet *ifp = ic->ic_ifp;
510	int i, mode, rate, mword;
511	struct ieee80211_rateset *rs;
512
513	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
514		if ((ic->ic_modecaps & (1<<mode)) == 0)
515			continue;
516		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
517		rs = &ic->ic_sup_rates[mode];
518		for (i = 0; i < rs->rs_nrates; i++) {
519			rate = rs->rs_rates[i];
520			mword = ieee80211_rate2media(ic, rate, mode);
521			if (mword == 0)
522				continue;
523			printf("%s%d%sMbps", (i != 0 ? " " : ""),
524			    (rate & IEEE80211_RATE_VAL) / 2,
525			    ((rate & 0x1) != 0 ? ".5" : ""));
526		}
527		printf("\n");
528	}
529}
530
531static int
532findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate)
533{
534#define	IEEERATE(_ic,_m,_i) \
535	((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
536	int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
537	for (i = 0; i < nrates; i++)
538		if (IEEERATE(ic, mode, i) == rate)
539			return i;
540	return -1;
541#undef IEEERATE
542}
543
544/*
545 * Find an instance by it's mac address.
546 */
547struct ieee80211com *
548ieee80211_find_vap(const u_int8_t mac[IEEE80211_ADDR_LEN])
549{
550	struct ieee80211com *ic;
551
552	/* XXX lock */
553	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
554		if (IEEE80211_ADDR_EQ(mac, ic->ic_myaddr))
555			return ic;
556	return NULL;
557}
558
559static struct ieee80211com *
560ieee80211_find_instance(struct ifnet *ifp)
561{
562	struct ieee80211com *ic;
563
564	/* XXX lock */
565	/* XXX not right for multiple instances but works for now */
566	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
567		if (ic->ic_ifp == ifp)
568			return ic;
569	return NULL;
570}
571
572/*
573 * Handle a media change request.
574 */
575int
576ieee80211_media_change(struct ifnet *ifp)
577{
578	struct ieee80211com *ic;
579	struct ifmedia_entry *ime;
580	enum ieee80211_opmode newopmode;
581	enum ieee80211_phymode newphymode;
582	int i, j, newrate, error = 0;
583
584	ic = ieee80211_find_instance(ifp);
585	if (!ic) {
586		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
587		return EINVAL;
588	}
589	ime = ic->ic_media.ifm_cur;
590	/*
591	 * First, identify the phy mode.
592	 */
593	switch (IFM_MODE(ime->ifm_media)) {
594	case IFM_IEEE80211_11A:
595		newphymode = IEEE80211_MODE_11A;
596		break;
597	case IFM_IEEE80211_11B:
598		newphymode = IEEE80211_MODE_11B;
599		break;
600	case IFM_IEEE80211_11G:
601		newphymode = IEEE80211_MODE_11G;
602		break;
603	case IFM_IEEE80211_FH:
604		newphymode = IEEE80211_MODE_FH;
605		break;
606	case IFM_AUTO:
607		newphymode = IEEE80211_MODE_AUTO;
608		break;
609	default:
610		return EINVAL;
611	}
612	/*
613	 * Turbo mode is an ``option''.
614	 * XXX does not apply to AUTO
615	 */
616	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
617		if (newphymode == IEEE80211_MODE_11A)
618			newphymode = IEEE80211_MODE_TURBO_A;
619		else if (newphymode == IEEE80211_MODE_11G)
620			newphymode = IEEE80211_MODE_TURBO_G;
621		else
622			return EINVAL;
623	}
624	/*
625	 * Validate requested mode is available.
626	 */
627	if ((ic->ic_modecaps & (1<<newphymode)) == 0)
628		return EINVAL;
629
630	/*
631	 * Next, the fixed/variable rate.
632	 */
633	i = -1;
634	if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
635		/*
636		 * Convert media subtype to rate.
637		 */
638		newrate = ieee80211_media2rate(ime->ifm_media);
639		if (newrate == 0)
640			return EINVAL;
641		/*
642		 * Check the rate table for the specified/current phy.
643		 */
644		if (newphymode == IEEE80211_MODE_AUTO) {
645			/*
646			 * In autoselect mode search for the rate.
647			 */
648			for (j = IEEE80211_MODE_11A;
649			     j < IEEE80211_MODE_MAX; j++) {
650				if ((ic->ic_modecaps & (1<<j)) == 0)
651					continue;
652				i = findrate(ic, j, newrate);
653				if (i != -1) {
654					/* lock mode too */
655					newphymode = j;
656					break;
657				}
658			}
659		} else {
660			i = findrate(ic, newphymode, newrate);
661		}
662		if (i == -1)			/* mode/rate mismatch */
663			return EINVAL;
664	}
665	/* NB: defer rate setting to later */
666
667	/*
668	 * Deduce new operating mode but don't install it just yet.
669	 */
670	if ((ime->ifm_media & (IFM_IEEE80211_ADHOC|IFM_FLAG0)) ==
671	    (IFM_IEEE80211_ADHOC|IFM_FLAG0))
672		newopmode = IEEE80211_M_AHDEMO;
673	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
674		newopmode = IEEE80211_M_HOSTAP;
675	else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
676		newopmode = IEEE80211_M_IBSS;
677	else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
678		newopmode = IEEE80211_M_MONITOR;
679	else
680		newopmode = IEEE80211_M_STA;
681
682	/*
683	 * Autoselect doesn't make sense when operating as an AP.
684	 * If no phy mode has been selected, pick one and lock it
685	 * down so rate tables can be used in forming beacon frames
686	 * and the like.
687	 */
688	if (newopmode == IEEE80211_M_HOSTAP &&
689	    newphymode == IEEE80211_MODE_AUTO) {
690		for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++)
691			if (ic->ic_modecaps & (1<<j)) {
692				newphymode = j;
693				break;
694			}
695	}
696
697	/*
698	 * Handle phy mode change.
699	 */
700	if (ic->ic_curmode != newphymode) {		/* change phy mode */
701		error = ieee80211_setmode(ic, newphymode);
702		if (error != 0)
703			return error;
704		error = ENETRESET;
705	}
706
707	/*
708	 * Committed to changes, install the rate setting.
709	 */
710	if (ic->ic_fixed_rate != i) {
711		ic->ic_fixed_rate = i;			/* set fixed tx rate */
712		error = ENETRESET;
713	}
714
715	/*
716	 * Handle operating mode change.
717	 */
718	if (ic->ic_opmode != newopmode) {
719		ic->ic_opmode = newopmode;
720		switch (newopmode) {
721		case IEEE80211_M_AHDEMO:
722		case IEEE80211_M_HOSTAP:
723		case IEEE80211_M_STA:
724		case IEEE80211_M_MONITOR:
725			ic->ic_flags &= ~IEEE80211_F_IBSSON;
726			break;
727		case IEEE80211_M_IBSS:
728			ic->ic_flags |= IEEE80211_F_IBSSON;
729			break;
730		}
731		/*
732		 * Yech, slot time may change depending on the
733		 * operating mode so reset it to be sure everything
734		 * is setup appropriately.
735		 */
736		ieee80211_reset_erp(ic);
737		ieee80211_wme_initparams(ic);	/* after opmode change */
738		error = ENETRESET;
739	}
740#ifdef notdef
741	if (error == 0)
742		ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
743#endif
744	return error;
745}
746
747void
748ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
749{
750	struct ieee80211com *ic;
751	const struct ieee80211_rateset *rs;
752
753	ic = ieee80211_find_instance(ifp);
754	if (!ic) {
755		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
756		return;
757	}
758	imr->ifm_status = IFM_AVALID;
759	imr->ifm_active = IFM_IEEE80211;
760	if (ic->ic_state == IEEE80211_S_RUN)
761		imr->ifm_status |= IFM_ACTIVE;
762	/*
763	 * Calculate a current rate if possible.
764	 */
765	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
766		/*
767		 * A fixed rate is set, report that.
768		 */
769		rs = &ic->ic_sup_rates[ic->ic_curmode];
770		imr->ifm_active |= ieee80211_rate2media(ic,
771			rs->rs_rates[ic->ic_fixed_rate], ic->ic_curmode);
772	} else if (ic->ic_opmode == IEEE80211_M_STA) {
773		/*
774		 * In station mode report the current transmit rate.
775		 */
776		rs = &ic->ic_bss->ni_rates;
777		imr->ifm_active |= ieee80211_rate2media(ic,
778			rs->rs_rates[ic->ic_bss->ni_txrate], ic->ic_curmode);
779	} else
780		imr->ifm_active |= IFM_AUTO;
781	switch (ic->ic_opmode) {
782	case IEEE80211_M_STA:
783		break;
784	case IEEE80211_M_IBSS:
785		imr->ifm_active |= IFM_IEEE80211_ADHOC;
786		break;
787	case IEEE80211_M_AHDEMO:
788		/* should not come here */
789		break;
790	case IEEE80211_M_HOSTAP:
791		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
792		break;
793	case IEEE80211_M_MONITOR:
794		imr->ifm_active |= IFM_IEEE80211_MONITOR;
795		break;
796	}
797	switch (ic->ic_curmode) {
798	case IEEE80211_MODE_11A:
799		imr->ifm_active |= IFM_IEEE80211_11A;
800		break;
801	case IEEE80211_MODE_11B:
802		imr->ifm_active |= IFM_IEEE80211_11B;
803		break;
804	case IEEE80211_MODE_11G:
805		imr->ifm_active |= IFM_IEEE80211_11G;
806		break;
807	case IEEE80211_MODE_FH:
808		imr->ifm_active |= IFM_IEEE80211_FH;
809		break;
810	case IEEE80211_MODE_TURBO_A:
811		imr->ifm_active |= IFM_IEEE80211_11A
812				|  IFM_IEEE80211_TURBO;
813		break;
814	case IEEE80211_MODE_TURBO_G:
815		imr->ifm_active |= IFM_IEEE80211_11G
816				|  IFM_IEEE80211_TURBO;
817		break;
818	}
819}
820
821void
822ieee80211_watchdog(struct ieee80211com *ic)
823{
824	struct ieee80211_node_table *nt;
825	int need_inact_timer = 0;
826
827	if (ic->ic_state != IEEE80211_S_INIT) {
828		if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0)
829			ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
830		nt = &ic->ic_scan;
831		if (nt->nt_inact_timer) {
832			if (--nt->nt_inact_timer == 0)
833				nt->nt_timeout(nt);
834			need_inact_timer += nt->nt_inact_timer;
835		}
836		nt = &ic->ic_sta;
837		if (nt->nt_inact_timer) {
838			if (--nt->nt_inact_timer == 0)
839				nt->nt_timeout(nt);
840			need_inact_timer += nt->nt_inact_timer;
841		}
842	}
843	if (ic->ic_mgt_timer != 0 || need_inact_timer)
844		ic->ic_ifp->if_timer = 1;
845}
846
847/*
848 * Set the current phy mode and recalculate the active channel
849 * set based on the available channels for this mode.  Also
850 * select a new default/current channel if the current one is
851 * inappropriate for this mode.
852 */
853int
854ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
855{
856#define	N(a)	(sizeof(a) / sizeof(a[0]))
857	static const u_int chanflags[] = {
858		0,			/* IEEE80211_MODE_AUTO */
859		IEEE80211_CHAN_A,	/* IEEE80211_MODE_11A */
860		IEEE80211_CHAN_B,	/* IEEE80211_MODE_11B */
861		IEEE80211_CHAN_PUREG,	/* IEEE80211_MODE_11G */
862		IEEE80211_CHAN_FHSS,	/* IEEE80211_MODE_FH */
863		IEEE80211_CHAN_T,	/* IEEE80211_MODE_TURBO_A */
864		IEEE80211_CHAN_108G,	/* IEEE80211_MODE_TURBO_G */
865	};
866	struct ieee80211_channel *c;
867	u_int modeflags;
868	int i;
869
870	/* validate new mode */
871	if ((ic->ic_modecaps & (1<<mode)) == 0) {
872		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
873			"%s: mode %u not supported (caps 0x%x)\n",
874			__func__, mode, ic->ic_modecaps);
875		return EINVAL;
876	}
877
878	/*
879	 * Verify at least one channel is present in the available
880	 * channel list before committing to the new mode.
881	 */
882	KASSERT(mode < N(chanflags), ("Unexpected mode %u", mode));
883	modeflags = chanflags[mode];
884	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
885		c = &ic->ic_channels[i];
886		if (c->ic_flags == 0)
887			continue;
888		if (mode == IEEE80211_MODE_AUTO) {
889			/* ignore static turbo channels for autoselect */
890			if (!IEEE80211_IS_CHAN_T(c))
891				break;
892		} else {
893			if ((c->ic_flags & modeflags) == modeflags)
894				break;
895		}
896	}
897	if (i > IEEE80211_CHAN_MAX) {
898		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
899			"%s: no channels found for mode %u\n", __func__, mode);
900		return EINVAL;
901	}
902
903	/*
904	 * Calculate the active channel set.
905	 */
906	memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
907	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
908		c = &ic->ic_channels[i];
909		if (c->ic_flags == 0)
910			continue;
911		if (mode == IEEE80211_MODE_AUTO) {
912			/* take anything but static turbo channels */
913			if (!IEEE80211_IS_CHAN_T(c))
914				setbit(ic->ic_chan_active, i);
915		} else {
916			if ((c->ic_flags & modeflags) == modeflags)
917				setbit(ic->ic_chan_active, i);
918		}
919	}
920	/*
921	 * If no current/default channel is setup or the current
922	 * channel is wrong for the mode then pick the first
923	 * available channel from the active list.  This is likely
924	 * not the right one.
925	 */
926	if (ic->ic_ibss_chan == NULL ||
927	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) {
928		for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
929			if (isset(ic->ic_chan_active, i)) {
930				ic->ic_ibss_chan = &ic->ic_channels[i];
931				break;
932			}
933		KASSERT(ic->ic_ibss_chan != NULL &&
934		    isset(ic->ic_chan_active,
935			ieee80211_chan2ieee(ic, ic->ic_ibss_chan)),
936		    ("Bad IBSS channel %u",
937		     ieee80211_chan2ieee(ic, ic->ic_ibss_chan)));
938	}
939	/*
940	 * If the desired channel is set but no longer valid then reset it.
941	 */
942	if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
943	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_des_chan)))
944		ic->ic_des_chan = IEEE80211_CHAN_ANYC;
945
946	/*
947	 * Do mode-specific rate setup.
948	 */
949	if (mode == IEEE80211_MODE_11G) {
950		/*
951		 * Use a mixed 11b/11g rate set.
952		 */
953		ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode],
954			IEEE80211_MODE_11G);
955	} else if (mode == IEEE80211_MODE_11B) {
956		/*
957		 * Force pure 11b rate set.
958		 */
959		ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode],
960			IEEE80211_MODE_11B);
961	}
962	/*
963	 * Setup an initial rate set according to the
964	 * current/default channel selected above.  This
965	 * will be changed when scanning but must exist
966	 * now so driver have a consistent state of ic_ibss_chan.
967	 */
968	if (ic->ic_bss)		/* NB: can be called before lateattach */
969		ic->ic_bss->ni_rates = ic->ic_sup_rates[mode];
970
971	ic->ic_curmode = mode;
972	ieee80211_reset_erp(ic);	/* reset ERP state */
973	ieee80211_wme_initparams(ic);	/* reset WME stat */
974
975	return 0;
976#undef N
977}
978
979/*
980 * Return the phy mode for with the specified channel so the
981 * caller can select a rate set.  This is problematic for channels
982 * where multiple operating modes are possible (e.g. 11g+11b).
983 * In those cases we defer to the current operating mode when set.
984 */
985enum ieee80211_phymode
986ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan)
987{
988	if (IEEE80211_IS_CHAN_T(chan)) {
989		return IEEE80211_MODE_TURBO_A;
990	} else if (IEEE80211_IS_CHAN_5GHZ(chan)) {
991		return IEEE80211_MODE_11A;
992	} else if (IEEE80211_IS_CHAN_FHSS(chan))
993		return IEEE80211_MODE_FH;
994	else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) {
995		/*
996		 * This assumes all 11g channels are also usable
997		 * for 11b, which is currently true.
998		 */
999		if (ic->ic_curmode == IEEE80211_MODE_TURBO_G)
1000			return IEEE80211_MODE_TURBO_G;
1001		if (ic->ic_curmode == IEEE80211_MODE_11B)
1002			return IEEE80211_MODE_11B;
1003		return IEEE80211_MODE_11G;
1004	} else
1005		return IEEE80211_MODE_11B;
1006}
1007
1008/*
1009 * convert IEEE80211 rate value to ifmedia subtype.
1010 * ieee80211 rate is in unit of 0.5Mbps.
1011 */
1012int
1013ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1014{
1015#define	N(a)	(sizeof(a) / sizeof(a[0]))
1016	static const struct {
1017		u_int	m;	/* rate + mode */
1018		u_int	r;	/* if_media rate */
1019	} rates[] = {
1020		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1021		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1022		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1023		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1024		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1025		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1026		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1027		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1028		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1029		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1030		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1031		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1032		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1033		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1034		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1035		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1036		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1037		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1038		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1039		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1040		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1041		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1042		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1043		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1044		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1045		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1046		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1047		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1048		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1049		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1050		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1051	};
1052	u_int mask, i;
1053
1054	mask = rate & IEEE80211_RATE_VAL;
1055	switch (mode) {
1056	case IEEE80211_MODE_11A:
1057	case IEEE80211_MODE_TURBO_A:
1058		mask |= IFM_IEEE80211_11A;
1059		break;
1060	case IEEE80211_MODE_11B:
1061		mask |= IFM_IEEE80211_11B;
1062		break;
1063	case IEEE80211_MODE_FH:
1064		mask |= IFM_IEEE80211_FH;
1065		break;
1066	case IEEE80211_MODE_AUTO:
1067		/* NB: ic may be NULL for some drivers */
1068		if (ic && ic->ic_phytype == IEEE80211_T_FH) {
1069			mask |= IFM_IEEE80211_FH;
1070			break;
1071		}
1072		/* NB: hack, 11g matches both 11b+11a rates */
1073		/* fall thru... */
1074	case IEEE80211_MODE_11G:
1075	case IEEE80211_MODE_TURBO_G:
1076		mask |= IFM_IEEE80211_11G;
1077		break;
1078	}
1079	for (i = 0; i < N(rates); i++)
1080		if (rates[i].m == mask)
1081			return rates[i].r;
1082	return IFM_AUTO;
1083#undef N
1084}
1085
1086int
1087ieee80211_media2rate(int mword)
1088{
1089#define	N(a)	(sizeof(a) / sizeof(a[0]))
1090	static const int ieeerates[] = {
1091		-1,		/* IFM_AUTO */
1092		0,		/* IFM_MANUAL */
1093		0,		/* IFM_NONE */
1094		2,		/* IFM_IEEE80211_FH1 */
1095		4,		/* IFM_IEEE80211_FH2 */
1096		2,		/* IFM_IEEE80211_DS1 */
1097		4,		/* IFM_IEEE80211_DS2 */
1098		11,		/* IFM_IEEE80211_DS5 */
1099		22,		/* IFM_IEEE80211_DS11 */
1100		44,		/* IFM_IEEE80211_DS22 */
1101		12,		/* IFM_IEEE80211_OFDM6 */
1102		18,		/* IFM_IEEE80211_OFDM9 */
1103		24,		/* IFM_IEEE80211_OFDM12 */
1104		36,		/* IFM_IEEE80211_OFDM18 */
1105		48,		/* IFM_IEEE80211_OFDM24 */
1106		72,		/* IFM_IEEE80211_OFDM36 */
1107		96,		/* IFM_IEEE80211_OFDM48 */
1108		108,		/* IFM_IEEE80211_OFDM54 */
1109		144,		/* IFM_IEEE80211_OFDM72 */
1110		0,		/* IFM_IEEE80211_DS354k */
1111		0,		/* IFM_IEEE80211_DS512k */
1112		6,		/* IFM_IEEE80211_OFDM3 */
1113		9,		/* IFM_IEEE80211_OFDM4 */
1114		54,		/* IFM_IEEE80211_OFDM27 */
1115	};
1116	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1117		ieeerates[IFM_SUBTYPE(mword)] : 0;
1118#undef N
1119}
1120