radix.c revision 46161
1/*
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34 *	$Id: radix.c,v 1.16 1999/04/26 09:05:31 peter Exp $
35 */
36
37/*
38 * Routines to build and maintain radix trees for routing lookups.
39 */
40#ifndef _RADIX_H_
41#include <sys/param.h>
42#ifdef	KERNEL
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#define	M_DONTWAIT M_NOWAIT
46#include <sys/domain.h>
47#else
48#include <stdlib.h>
49#endif
50#include <sys/syslog.h>
51#include <net/radix.h>
52#endif
53
54static int	rn_walktree_from __P((struct radix_node_head *h, void *a,
55				      void *m, walktree_f_t *f, void *w));
56static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
57static struct radix_node
58	 *rn_insert __P((void *, struct radix_node_head *, int *,
59			struct radix_node [2])),
60	 *rn_newpair __P((void *, int, struct radix_node[2])),
61	 *rn_search __P((void *, struct radix_node *)),
62	 *rn_search_m __P((void *, struct radix_node *, void *));
63
64static int	max_keylen;
65static struct radix_mask *rn_mkfreelist;
66static struct radix_node_head *mask_rnhead;
67static char *addmask_key;
68static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69static char *rn_zeros, *rn_ones;
70
71#define rn_masktop (mask_rnhead->rnh_treetop)
72#undef Bcmp
73#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
74
75static int	rn_lexobetter __P((void *m_arg, void *n_arg));
76static struct radix_mask *
77		rn_new_radix_mask __P((struct radix_node *tt,
78				       struct radix_mask *next));
79static int	rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
80				       int skip));
81
82/*
83 * The data structure for the keys is a radix tree with one way
84 * branching removed.  The index rn_b at an internal node n represents a bit
85 * position to be tested.  The tree is arranged so that all descendants
86 * of a node n have keys whose bits all agree up to position rn_b - 1.
87 * (We say the index of n is rn_b.)
88 *
89 * There is at least one descendant which has a one bit at position rn_b,
90 * and at least one with a zero there.
91 *
92 * A route is determined by a pair of key and mask.  We require that the
93 * bit-wise logical and of the key and mask to be the key.
94 * We define the index of a route to associated with the mask to be
95 * the first bit number in the mask where 0 occurs (with bit number 0
96 * representing the highest order bit).
97 *
98 * We say a mask is normal if every bit is 0, past the index of the mask.
99 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
100 * and m is a normal mask, then the route applies to every descendant of n.
101 * If the index(m) < rn_b, this implies the trailing last few bits of k
102 * before bit b are all 0, (and hence consequently true of every descendant
103 * of n), so the route applies to all descendants of the node as well.
104 *
105 * Similar logic shows that a non-normal mask m such that
106 * index(m) <= index(n) could potentially apply to many children of n.
107 * Thus, for each non-host route, we attach its mask to a list at an internal
108 * node as high in the tree as we can go.
109 *
110 * The present version of the code makes use of normal routes in short-
111 * circuiting an explict mask and compare operation when testing whether
112 * a key satisfies a normal route, and also in remembering the unique leaf
113 * that governs a subtree.
114 */
115
116static struct radix_node *
117rn_search(v_arg, head)
118	void *v_arg;
119	struct radix_node *head;
120{
121	register struct radix_node *x;
122	register caddr_t v;
123
124	for (x = head, v = v_arg; x->rn_b >= 0;) {
125		if (x->rn_bmask & v[x->rn_off])
126			x = x->rn_r;
127		else
128			x = x->rn_l;
129	}
130	return (x);
131}
132
133static struct radix_node *
134rn_search_m(v_arg, head, m_arg)
135	struct radix_node *head;
136	void *v_arg, *m_arg;
137{
138	register struct radix_node *x;
139	register caddr_t v = v_arg, m = m_arg;
140
141	for (x = head; x->rn_b >= 0;) {
142		if ((x->rn_bmask & m[x->rn_off]) &&
143		    (x->rn_bmask & v[x->rn_off]))
144			x = x->rn_r;
145		else
146			x = x->rn_l;
147	}
148	return x;
149}
150
151int
152rn_refines(m_arg, n_arg)
153	void *m_arg, *n_arg;
154{
155	register caddr_t m = m_arg, n = n_arg;
156	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
157	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
158	int masks_are_equal = 1;
159
160	if (longer > 0)
161		lim -= longer;
162	while (n < lim) {
163		if (*n & ~(*m))
164			return 0;
165		if (*n++ != *m++)
166			masks_are_equal = 0;
167	}
168	while (n < lim2)
169		if (*n++)
170			return 0;
171	if (masks_are_equal && (longer < 0))
172		for (lim2 = m - longer; m < lim2; )
173			if (*m++)
174				return 1;
175	return (!masks_are_equal);
176}
177
178struct radix_node *
179rn_lookup(v_arg, m_arg, head)
180	void *v_arg, *m_arg;
181	struct radix_node_head *head;
182{
183	register struct radix_node *x;
184	caddr_t netmask = 0;
185
186	if (m_arg) {
187		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
188			return (0);
189		netmask = x->rn_key;
190	}
191	x = rn_match(v_arg, head);
192	if (x && netmask) {
193		while (x && x->rn_mask != netmask)
194			x = x->rn_dupedkey;
195	}
196	return x;
197}
198
199static int
200rn_satsifies_leaf(trial, leaf, skip)
201	char *trial;
202	register struct radix_node *leaf;
203	int skip;
204{
205	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
206	char *cplim;
207	int length = min(*(u_char *)cp, *(u_char *)cp2);
208
209	if (cp3 == 0)
210		cp3 = rn_ones;
211	else
212		length = min(length, *(u_char *)cp3);
213	cplim = cp + length; cp3 += skip; cp2 += skip;
214	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
215		if ((*cp ^ *cp2) & *cp3)
216			return 0;
217	return 1;
218}
219
220struct radix_node *
221rn_match(v_arg, head)
222	void *v_arg;
223	struct radix_node_head *head;
224{
225	caddr_t v = v_arg;
226	register struct radix_node *t = head->rnh_treetop, *x;
227	register caddr_t cp = v, cp2;
228	caddr_t cplim;
229	struct radix_node *saved_t, *top = t;
230	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
231	register int test, b, rn_b;
232
233	/*
234	 * Open code rn_search(v, top) to avoid overhead of extra
235	 * subroutine call.
236	 */
237	for (; t->rn_b >= 0; ) {
238		if (t->rn_bmask & cp[t->rn_off])
239			t = t->rn_r;
240		else
241			t = t->rn_l;
242	}
243	/*
244	 * See if we match exactly as a host destination
245	 * or at least learn how many bits match, for normal mask finesse.
246	 *
247	 * It doesn't hurt us to limit how many bytes to check
248	 * to the length of the mask, since if it matches we had a genuine
249	 * match and the leaf we have is the most specific one anyway;
250	 * if it didn't match with a shorter length it would fail
251	 * with a long one.  This wins big for class B&C netmasks which
252	 * are probably the most common case...
253	 */
254	if (t->rn_mask)
255		vlen = *(u_char *)t->rn_mask;
256	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
257	for (; cp < cplim; cp++, cp2++)
258		if (*cp != *cp2)
259			goto on1;
260	/*
261	 * This extra grot is in case we are explicitly asked
262	 * to look up the default.  Ugh!
263	 */
264	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
265		t = t->rn_dupedkey;
266	return t;
267on1:
268	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
269	for (b = 7; (test >>= 1) > 0;)
270		b--;
271	matched_off = cp - v;
272	b += matched_off << 3;
273	rn_b = -1 - b;
274	/*
275	 * If there is a host route in a duped-key chain, it will be first.
276	 */
277	if ((saved_t = t)->rn_mask == 0)
278		t = t->rn_dupedkey;
279	for (; t; t = t->rn_dupedkey)
280		/*
281		 * Even if we don't match exactly as a host,
282		 * we may match if the leaf we wound up at is
283		 * a route to a net.
284		 */
285		if (t->rn_flags & RNF_NORMAL) {
286			if (rn_b <= t->rn_b)
287				return t;
288		} else if (rn_satsifies_leaf(v, t, matched_off))
289				return t;
290	t = saved_t;
291	/* start searching up the tree */
292	do {
293		register struct radix_mask *m;
294		t = t->rn_p;
295		m = t->rn_mklist;
296		if (m) {
297			/*
298			 * If non-contiguous masks ever become important
299			 * we can restore the masking and open coding of
300			 * the search and satisfaction test and put the
301			 * calculation of "off" back before the "do".
302			 */
303			do {
304				if (m->rm_flags & RNF_NORMAL) {
305					if (rn_b <= m->rm_b)
306						return (m->rm_leaf);
307				} else {
308					off = min(t->rn_off, matched_off);
309					x = rn_search_m(v, t, m->rm_mask);
310					while (x && x->rn_mask != m->rm_mask)
311						x = x->rn_dupedkey;
312					if (x && rn_satsifies_leaf(v, x, off))
313						    return x;
314				}
315				m = m->rm_mklist;
316			} while (m);
317		}
318	} while (t != top);
319	return 0;
320}
321
322#ifdef RN_DEBUG
323int	rn_nodenum;
324struct	radix_node *rn_clist;
325int	rn_saveinfo;
326int	rn_debug =  1;
327#endif
328
329static struct radix_node *
330rn_newpair(v, b, nodes)
331	void *v;
332	int b;
333	struct radix_node nodes[2];
334{
335	register struct radix_node *tt = nodes, *t = tt + 1;
336	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
337	t->rn_l = tt; t->rn_off = b >> 3;
338	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
339	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
340#ifdef RN_DEBUG
341	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
342	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
343#endif
344	return t;
345}
346
347static struct radix_node *
348rn_insert(v_arg, head, dupentry, nodes)
349	void *v_arg;
350	struct radix_node_head *head;
351	int *dupentry;
352	struct radix_node nodes[2];
353{
354	caddr_t v = v_arg;
355	struct radix_node *top = head->rnh_treetop;
356	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
357	register struct radix_node *t = rn_search(v_arg, top);
358	register caddr_t cp = v + head_off;
359	register int b;
360	struct radix_node *tt;
361    	/*
362	 * Find first bit at which v and t->rn_key differ
363	 */
364    {
365	register caddr_t cp2 = t->rn_key + head_off;
366	register int cmp_res;
367	caddr_t cplim = v + vlen;
368
369	while (cp < cplim)
370		if (*cp2++ != *cp++)
371			goto on1;
372	*dupentry = 1;
373	return t;
374on1:
375	*dupentry = 0;
376	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
377	for (b = (cp - v) << 3; cmp_res; b--)
378		cmp_res >>= 1;
379    }
380    {
381	register struct radix_node *p, *x = top;
382	cp = v;
383	do {
384		p = x;
385		if (cp[x->rn_off] & x->rn_bmask)
386			x = x->rn_r;
387		else x = x->rn_l;
388	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
389#ifdef RN_DEBUG
390	if (rn_debug)
391		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
392#endif
393	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
394	if ((cp[p->rn_off] & p->rn_bmask) == 0)
395		p->rn_l = t;
396	else
397		p->rn_r = t;
398	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
399	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
400		t->rn_r = x;
401	} else {
402		t->rn_r = tt; t->rn_l = x;
403	}
404#ifdef RN_DEBUG
405	if (rn_debug)
406		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
407#endif
408    }
409	return (tt);
410}
411
412struct radix_node *
413rn_addmask(n_arg, search, skip)
414	int search, skip;
415	void *n_arg;
416{
417	caddr_t netmask = (caddr_t)n_arg;
418	register struct radix_node *x;
419	register caddr_t cp, cplim;
420	register int b = 0, mlen, j;
421	int maskduplicated, m0, isnormal;
422	struct radix_node *saved_x;
423	static int last_zeroed = 0;
424
425	if ((mlen = *(u_char *)netmask) > max_keylen)
426		mlen = max_keylen;
427	if (skip == 0)
428		skip = 1;
429	if (mlen <= skip)
430		return (mask_rnhead->rnh_nodes);
431	if (skip > 1)
432		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
433	if ((m0 = mlen) > skip)
434		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
435	/*
436	 * Trim trailing zeroes.
437	 */
438	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
439		cp--;
440	mlen = cp - addmask_key;
441	if (mlen <= skip) {
442		if (m0 >= last_zeroed)
443			last_zeroed = mlen;
444		return (mask_rnhead->rnh_nodes);
445	}
446	if (m0 < last_zeroed)
447		Bzero(addmask_key + m0, last_zeroed - m0);
448	*addmask_key = last_zeroed = mlen;
449	x = rn_search(addmask_key, rn_masktop);
450	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
451		x = 0;
452	if (x || search)
453		return (x);
454	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
455	if ((saved_x = x) == 0)
456		return (0);
457	Bzero(x, max_keylen + 2 * sizeof (*x));
458	netmask = cp = (caddr_t)(x + 2);
459	Bcopy(addmask_key, cp, mlen);
460	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
461	if (maskduplicated) {
462		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
463		Free(saved_x);
464		return (x);
465	}
466	/*
467	 * Calculate index of mask, and check for normalcy.
468	 */
469	cplim = netmask + mlen; isnormal = 1;
470	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
471		cp++;
472	if (cp != cplim) {
473		for (j = 0x80; (j & *cp) != 0; j >>= 1)
474			b++;
475		if (*cp != normal_chars[b] || cp != (cplim - 1))
476			isnormal = 0;
477	}
478	b += (cp - netmask) << 3;
479	x->rn_b = -1 - b;
480	if (isnormal)
481		x->rn_flags |= RNF_NORMAL;
482	return (x);
483}
484
485static int	/* XXX: arbitrary ordering for non-contiguous masks */
486rn_lexobetter(m_arg, n_arg)
487	void *m_arg, *n_arg;
488{
489	register u_char *mp = m_arg, *np = n_arg, *lim;
490
491	if (*mp > *np)
492		return 1;  /* not really, but need to check longer one first */
493	if (*mp == *np)
494		for (lim = mp + *mp; mp < lim;)
495			if (*mp++ > *np++)
496				return 1;
497	return 0;
498}
499
500static struct radix_mask *
501rn_new_radix_mask(tt, next)
502	register struct radix_node *tt;
503	register struct radix_mask *next;
504{
505	register struct radix_mask *m;
506
507	MKGet(m);
508	if (m == 0) {
509		log(LOG_ERR, "Mask for route not entered\n");
510		return (0);
511	}
512	Bzero(m, sizeof *m);
513	m->rm_b = tt->rn_b;
514	m->rm_flags = tt->rn_flags;
515	if (tt->rn_flags & RNF_NORMAL)
516		m->rm_leaf = tt;
517	else
518		m->rm_mask = tt->rn_mask;
519	m->rm_mklist = next;
520	tt->rn_mklist = m;
521	return m;
522}
523
524struct radix_node *
525rn_addroute(v_arg, n_arg, head, treenodes)
526	void *v_arg, *n_arg;
527	struct radix_node_head *head;
528	struct radix_node treenodes[2];
529{
530	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
531	register struct radix_node *t, *x = 0, *tt;
532	struct radix_node *saved_tt, *top = head->rnh_treetop;
533	short b = 0, b_leaf = 0;
534	int keyduplicated;
535	caddr_t mmask;
536	struct radix_mask *m, **mp;
537
538	/*
539	 * In dealing with non-contiguous masks, there may be
540	 * many different routes which have the same mask.
541	 * We will find it useful to have a unique pointer to
542	 * the mask to speed avoiding duplicate references at
543	 * nodes and possibly save time in calculating indices.
544	 */
545	if (netmask)  {
546		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
547			return (0);
548		b_leaf = x->rn_b;
549		b = -1 - x->rn_b;
550		netmask = x->rn_key;
551	}
552	/*
553	 * Deal with duplicated keys: attach node to previous instance
554	 */
555	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
556	if (keyduplicated) {
557		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
558			if (tt->rn_mask == netmask)
559				return (0);
560			if (netmask == 0 ||
561			    (tt->rn_mask &&
562			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
563			       rn_refines(netmask, tt->rn_mask) ||
564			       rn_lexobetter(netmask, tt->rn_mask))))
565				break;
566		}
567		/*
568		 * If the mask is not duplicated, we wouldn't
569		 * find it among possible duplicate key entries
570		 * anyway, so the above test doesn't hurt.
571		 *
572		 * We sort the masks for a duplicated key the same way as
573		 * in a masklist -- most specific to least specific.
574		 * This may require the unfortunate nuisance of relocating
575		 * the head of the list.
576		 */
577		if (tt == saved_tt) {
578			struct	radix_node *xx = x;
579			/* link in at head of list */
580			(tt = treenodes)->rn_dupedkey = t;
581			tt->rn_flags = t->rn_flags;
582			tt->rn_p = x = t->rn_p;
583			t->rn_p = tt;				/* parent */
584			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
585			saved_tt = tt; x = xx;
586		} else {
587			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
588			t->rn_dupedkey = tt;
589			tt->rn_p = t;				/* parent */
590			if (tt->rn_dupedkey)			/* parent */
591				tt->rn_dupedkey->rn_p = tt;	/* parent */
592		}
593#ifdef RN_DEBUG
594		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
595		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
596#endif
597		tt->rn_key = (caddr_t) v;
598		tt->rn_b = -1;
599		tt->rn_flags = RNF_ACTIVE;
600	}
601	/*
602	 * Put mask in tree.
603	 */
604	if (netmask) {
605		tt->rn_mask = netmask;
606		tt->rn_b = x->rn_b;
607		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
608	}
609	t = saved_tt->rn_p;
610	if (keyduplicated)
611		goto on2;
612	b_leaf = -1 - t->rn_b;
613	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
614	/* Promote general routes from below */
615	if (x->rn_b < 0) {
616	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
617		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
618			*mp = m = rn_new_radix_mask(x, 0);
619			if (m)
620				mp = &m->rm_mklist;
621		}
622	} else if (x->rn_mklist) {
623		/*
624		 * Skip over masks whose index is > that of new node
625		 */
626		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
627			if (m->rm_b >= b_leaf)
628				break;
629		t->rn_mklist = m; *mp = 0;
630	}
631on2:
632	/* Add new route to highest possible ancestor's list */
633	if ((netmask == 0) || (b > t->rn_b ))
634		return tt; /* can't lift at all */
635	b_leaf = tt->rn_b;
636	do {
637		x = t;
638		t = t->rn_p;
639	} while (b <= t->rn_b && x != top);
640	/*
641	 * Search through routes associated with node to
642	 * insert new route according to index.
643	 * Need same criteria as when sorting dupedkeys to avoid
644	 * double loop on deletion.
645	 */
646	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
647		if (m->rm_b < b_leaf)
648			continue;
649		if (m->rm_b > b_leaf)
650			break;
651		if (m->rm_flags & RNF_NORMAL) {
652			mmask = m->rm_leaf->rn_mask;
653			if (tt->rn_flags & RNF_NORMAL) {
654				log(LOG_ERR,
655				   "Non-unique normal route, mask not entered");
656				return tt;
657			}
658		} else
659			mmask = m->rm_mask;
660		if (mmask == netmask) {
661			m->rm_refs++;
662			tt->rn_mklist = m;
663			return tt;
664		}
665		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
666			break;
667	}
668	*mp = rn_new_radix_mask(tt, *mp);
669	return tt;
670}
671
672struct radix_node *
673rn_delete(v_arg, netmask_arg, head)
674	void *v_arg, *netmask_arg;
675	struct radix_node_head *head;
676{
677	register struct radix_node *t, *p, *x, *tt;
678	struct radix_mask *m, *saved_m, **mp;
679	struct radix_node *dupedkey, *saved_tt, *top;
680	caddr_t v, netmask;
681	int b, head_off, vlen;
682
683	v = v_arg;
684	netmask = netmask_arg;
685	x = head->rnh_treetop;
686	tt = rn_search(v, x);
687	head_off = x->rn_off;
688	vlen =  *(u_char *)v;
689	saved_tt = tt;
690	top = x;
691	if (tt == 0 ||
692	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
693		return (0);
694	/*
695	 * Delete our route from mask lists.
696	 */
697	if (netmask) {
698		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
699			return (0);
700		netmask = x->rn_key;
701		while (tt->rn_mask != netmask)
702			if ((tt = tt->rn_dupedkey) == 0)
703				return (0);
704	}
705	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
706		goto on1;
707	if (tt->rn_flags & RNF_NORMAL) {
708		if (m->rm_leaf != tt || m->rm_refs > 0) {
709			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
710			return 0;  /* dangling ref could cause disaster */
711		}
712	} else {
713		if (m->rm_mask != tt->rn_mask) {
714			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
715			goto on1;
716		}
717		if (--m->rm_refs >= 0)
718			goto on1;
719	}
720	b = -1 - tt->rn_b;
721	t = saved_tt->rn_p;
722	if (b > t->rn_b)
723		goto on1; /* Wasn't lifted at all */
724	do {
725		x = t;
726		t = t->rn_p;
727	} while (b <= t->rn_b && x != top);
728	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
729		if (m == saved_m) {
730			*mp = m->rm_mklist;
731			MKFree(m);
732			break;
733		}
734	if (m == 0) {
735		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
736		if (tt->rn_flags & RNF_NORMAL)
737			return (0); /* Dangling ref to us */
738	}
739on1:
740	/*
741	 * Eliminate us from tree
742	 */
743	if (tt->rn_flags & RNF_ROOT)
744		return (0);
745#ifdef RN_DEBUG
746	/* Get us out of the creation list */
747	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
748	if (t) t->rn_ybro = tt->rn_ybro;
749#endif
750	t = tt->rn_p;
751	dupedkey = saved_tt->rn_dupedkey;
752	if (dupedkey) {
753		/*
754		 * at this point, tt is the deletion target and saved_tt
755		 * is the head of the dupekey chain
756		 */
757		if (tt == saved_tt) {
758			/* remove from head of chain */
759			x = dupedkey; x->rn_p = t;
760			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
761		} else {
762			/* find node in front of tt on the chain */
763			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
764				p = p->rn_dupedkey;
765			if (p) {
766				p->rn_dupedkey = tt->rn_dupedkey;
767				if (tt->rn_dupedkey)		   /* parent */
768					tt->rn_dupedkey->rn_p = p; /* parent */
769			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
770		}
771		t = tt + 1;
772		if  (t->rn_flags & RNF_ACTIVE) {
773#ifndef RN_DEBUG
774			*++x = *t; p = t->rn_p;
775#else
776			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
777#endif
778			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
779			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
780		}
781		goto out;
782	}
783	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
784	p = t->rn_p;
785	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
786	x->rn_p = p;
787	/*
788	 * Demote routes attached to us.
789	 */
790	if (t->rn_mklist) {
791		if (x->rn_b >= 0) {
792			for (mp = &x->rn_mklist; (m = *mp);)
793				mp = &m->rm_mklist;
794			*mp = t->rn_mklist;
795		} else {
796			/* If there are any key,mask pairs in a sibling
797			   duped-key chain, some subset will appear sorted
798			   in the same order attached to our mklist */
799			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
800				if (m == x->rn_mklist) {
801					struct radix_mask *mm = m->rm_mklist;
802					x->rn_mklist = 0;
803					if (--(m->rm_refs) < 0)
804						MKFree(m);
805					m = mm;
806				}
807			if (m)
808				log(LOG_ERR,
809				    "rn_delete: Orphaned Mask %p at %p\n",
810				    (void *)m, (void *)x);
811		}
812	}
813	/*
814	 * We may be holding an active internal node in the tree.
815	 */
816	x = tt + 1;
817	if (t != x) {
818#ifndef RN_DEBUG
819		*t = *x;
820#else
821		b = t->rn_info; *t = *x; t->rn_info = b;
822#endif
823		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
824		p = x->rn_p;
825		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
826	}
827out:
828	tt->rn_flags &= ~RNF_ACTIVE;
829	tt[1].rn_flags &= ~RNF_ACTIVE;
830	return (tt);
831}
832
833/*
834 * This is the same as rn_walktree() except for the parameters and the
835 * exit.
836 */
837static int
838rn_walktree_from(h, a, m, f, w)
839	struct radix_node_head *h;
840	void *a, *m;
841	walktree_f_t *f;
842	void *w;
843{
844	int error;
845	struct radix_node *base, *next;
846	u_char *xa = (u_char *)a;
847	u_char *xm = (u_char *)m;
848	register struct radix_node *rn, *last = 0 /* shut up gcc */;
849	int stopping = 0;
850	int lastb;
851
852	/*
853	 * rn_search_m is sort-of-open-coded here.
854	 */
855	/* printf("about to search\n"); */
856	for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
857		last = rn;
858		/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
859		       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
860		if (!(rn->rn_bmask & xm[rn->rn_off])) {
861			break;
862		}
863		if (rn->rn_bmask & xa[rn->rn_off]) {
864			rn = rn->rn_r;
865		} else {
866			rn = rn->rn_l;
867		}
868	}
869	/* printf("done searching\n"); */
870
871	/*
872	 * Two cases: either we stepped off the end of our mask,
873	 * in which case last == rn, or we reached a leaf, in which
874	 * case we want to start from the last node we looked at.
875	 * Either way, last is the node we want to start from.
876	 */
877	rn = last;
878	lastb = rn->rn_b;
879
880	/* printf("rn %p, lastb %d\n", rn, lastb);*/
881
882	/*
883	 * This gets complicated because we may delete the node
884	 * while applying the function f to it, so we need to calculate
885	 * the successor node in advance.
886	 */
887	while (rn->rn_b >= 0)
888		rn = rn->rn_l;
889
890	while (!stopping) {
891		/* printf("node %p (%d)\n", rn, rn->rn_b); */
892		base = rn;
893		/* If at right child go back up, otherwise, go right */
894		while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
895			rn = rn->rn_p;
896
897			/* if went up beyond last, stop */
898			if (rn->rn_b < lastb) {
899				stopping = 1;
900				/* printf("up too far\n"); */
901			}
902		}
903
904		/* Find the next *leaf* since next node might vanish, too */
905		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
906			rn = rn->rn_l;
907		next = rn;
908		/* Process leaves */
909		while ((rn = base) != 0) {
910			base = rn->rn_dupedkey;
911			/* printf("leaf %p\n", rn); */
912			if (!(rn->rn_flags & RNF_ROOT)
913			    && (error = (*f)(rn, w)))
914				return (error);
915		}
916		rn = next;
917
918		if (rn->rn_flags & RNF_ROOT) {
919			/* printf("root, stopping"); */
920			stopping = 1;
921		}
922
923	}
924	return 0;
925}
926
927static int
928rn_walktree(h, f, w)
929	struct radix_node_head *h;
930	walktree_f_t *f;
931	void *w;
932{
933	int error;
934	struct radix_node *base, *next;
935	register struct radix_node *rn = h->rnh_treetop;
936	/*
937	 * This gets complicated because we may delete the node
938	 * while applying the function f to it, so we need to calculate
939	 * the successor node in advance.
940	 */
941	/* First time through node, go left */
942	while (rn->rn_b >= 0)
943		rn = rn->rn_l;
944	for (;;) {
945		base = rn;
946		/* If at right child go back up, otherwise, go right */
947		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
948			rn = rn->rn_p;
949		/* Find the next *leaf* since next node might vanish, too */
950		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
951			rn = rn->rn_l;
952		next = rn;
953		/* Process leaves */
954		while ((rn = base)) {
955			base = rn->rn_dupedkey;
956			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
957				return (error);
958		}
959		rn = next;
960		if (rn->rn_flags & RNF_ROOT)
961			return (0);
962	}
963	/* NOTREACHED */
964}
965
966int
967rn_inithead(head, off)
968	void **head;
969	int off;
970{
971	register struct radix_node_head *rnh;
972	register struct radix_node *t, *tt, *ttt;
973	if (*head)
974		return (1);
975	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
976	if (rnh == 0)
977		return (0);
978	Bzero(rnh, sizeof (*rnh));
979	*head = rnh;
980	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
981	ttt = rnh->rnh_nodes + 2;
982	t->rn_r = ttt;
983	t->rn_p = t;
984	tt = t->rn_l;
985	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
986	tt->rn_b = -1 - off;
987	*ttt = *tt;
988	ttt->rn_key = rn_ones;
989	rnh->rnh_addaddr = rn_addroute;
990	rnh->rnh_deladdr = rn_delete;
991	rnh->rnh_matchaddr = rn_match;
992	rnh->rnh_lookup = rn_lookup;
993	rnh->rnh_walktree = rn_walktree;
994	rnh->rnh_walktree_from = rn_walktree_from;
995	rnh->rnh_treetop = t;
996	return (1);
997}
998
999void
1000rn_init()
1001{
1002	char *cp, *cplim;
1003#ifdef KERNEL
1004	struct domain *dom;
1005
1006	for (dom = domains; dom; dom = dom->dom_next)
1007		if (dom->dom_maxrtkey > max_keylen)
1008			max_keylen = dom->dom_maxrtkey;
1009#endif
1010	if (max_keylen == 0) {
1011		log(LOG_ERR,
1012		    "rn_init: radix functions require max_keylen be set\n");
1013		return;
1014	}
1015	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1016	if (rn_zeros == NULL)
1017		panic("rn_init");
1018	Bzero(rn_zeros, 3 * max_keylen);
1019	rn_ones = cp = rn_zeros + max_keylen;
1020	addmask_key = cplim = rn_ones + max_keylen;
1021	while (cp < cplim)
1022		*cp++ = -1;
1023	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1024		panic("rn_init 2");
1025}
1026