1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD$
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#include <sys/param.h>
37#ifdef	_KERNEL
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/syslog.h>
44#include <net/radix.h>
45#include "opt_mpath.h"
46#ifdef RADIX_MPATH
47#include <net/radix_mpath.h>
48#endif
49#else /* !_KERNEL */
50#include <stdio.h>
51#include <strings.h>
52#include <stdlib.h>
53#define log(x, arg...)	fprintf(stderr, ## arg)
54#define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55#define min(a, b) ((a) < (b) ? (a) : (b) )
56#include <net/radix.h>
57#endif /* !_KERNEL */
58
59static struct radix_node
60	 *rn_insert(void *, struct radix_head *, int *,
61	     struct radix_node [2]),
62	 *rn_newpair(void *, int, struct radix_node[2]),
63	 *rn_search(void *, struct radix_node *),
64	 *rn_search_m(void *, struct radix_node *, void *);
65static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
66
67static void rn_detachhead_internal(struct radix_head *);
68
69#define	RADIX_MAX_KEY_LEN	32
70
71static char rn_zeros[RADIX_MAX_KEY_LEN];
72static char rn_ones[RADIX_MAX_KEY_LEN] = {
73	-1, -1, -1, -1, -1, -1, -1, -1,
74	-1, -1, -1, -1, -1, -1, -1, -1,
75	-1, -1, -1, -1, -1, -1, -1, -1,
76	-1, -1, -1, -1, -1, -1, -1, -1,
77};
78
79
80static int	rn_lexobetter(void *m_arg, void *n_arg);
81static struct radix_mask *
82		rn_new_radix_mask(struct radix_node *tt,
83		    struct radix_mask *next);
84static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
85		    int skip);
86
87/*
88 * The data structure for the keys is a radix tree with one way
89 * branching removed.  The index rn_bit at an internal node n represents a bit
90 * position to be tested.  The tree is arranged so that all descendants
91 * of a node n have keys whose bits all agree up to position rn_bit - 1.
92 * (We say the index of n is rn_bit.)
93 *
94 * There is at least one descendant which has a one bit at position rn_bit,
95 * and at least one with a zero there.
96 *
97 * A route is determined by a pair of key and mask.  We require that the
98 * bit-wise logical and of the key and mask to be the key.
99 * We define the index of a route to associated with the mask to be
100 * the first bit number in the mask where 0 occurs (with bit number 0
101 * representing the highest order bit).
102 *
103 * We say a mask is normal if every bit is 0, past the index of the mask.
104 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
105 * and m is a normal mask, then the route applies to every descendant of n.
106 * If the index(m) < rn_bit, this implies the trailing last few bits of k
107 * before bit b are all 0, (and hence consequently true of every descendant
108 * of n), so the route applies to all descendants of the node as well.
109 *
110 * Similar logic shows that a non-normal mask m such that
111 * index(m) <= index(n) could potentially apply to many children of n.
112 * Thus, for each non-host route, we attach its mask to a list at an internal
113 * node as high in the tree as we can go.
114 *
115 * The present version of the code makes use of normal routes in short-
116 * circuiting an explict mask and compare operation when testing whether
117 * a key satisfies a normal route, and also in remembering the unique leaf
118 * that governs a subtree.
119 */
120
121/*
122 * Most of the functions in this code assume that the key/mask arguments
123 * are sockaddr-like structures, where the first byte is an u_char
124 * indicating the size of the entire structure.
125 *
126 * To make the assumption more explicit, we use the LEN() macro to access
127 * this field. It is safe to pass an expression with side effects
128 * to LEN() as the argument is evaluated only once.
129 * We cast the result to int as this is the dominant usage.
130 */
131#define LEN(x) ( (int) (*(const u_char *)(x)) )
132
133/*
134 * XXX THIS NEEDS TO BE FIXED
135 * In the code, pointers to keys and masks are passed as either
136 * 'void *' (because callers use to pass pointers of various kinds), or
137 * 'caddr_t' (which is fine for pointer arithmetics, but not very
138 * clean when you dereference it to access data). Furthermore, caddr_t
139 * is really 'char *', while the natural type to operate on keys and
140 * masks would be 'u_char'. This mismatch require a lot of casts and
141 * intermediate variables to adapt types that clutter the code.
142 */
143
144/*
145 * Search a node in the tree matching the key.
146 */
147static struct radix_node *
148rn_search(void *v_arg, struct radix_node *head)
149{
150	struct radix_node *x;
151	caddr_t v;
152
153	for (x = head, v = v_arg; x->rn_bit >= 0;) {
154		if (x->rn_bmask & v[x->rn_offset])
155			x = x->rn_right;
156		else
157			x = x->rn_left;
158	}
159	return (x);
160}
161
162/*
163 * Same as above, but with an additional mask.
164 * XXX note this function is used only once.
165 */
166static struct radix_node *
167rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
168{
169	struct radix_node *x;
170	caddr_t v = v_arg, m = m_arg;
171
172	for (x = head; x->rn_bit >= 0;) {
173		if ((x->rn_bmask & m[x->rn_offset]) &&
174		    (x->rn_bmask & v[x->rn_offset]))
175			x = x->rn_right;
176		else
177			x = x->rn_left;
178	}
179	return (x);
180}
181
182int
183rn_refines(void *m_arg, void *n_arg)
184{
185	caddr_t m = m_arg, n = n_arg;
186	caddr_t lim, lim2 = lim = n + LEN(n);
187	int longer = LEN(n++) - LEN(m++);
188	int masks_are_equal = 1;
189
190	if (longer > 0)
191		lim -= longer;
192	while (n < lim) {
193		if (*n & ~(*m))
194			return (0);
195		if (*n++ != *m++)
196			masks_are_equal = 0;
197	}
198	while (n < lim2)
199		if (*n++)
200			return (0);
201	if (masks_are_equal && (longer < 0))
202		for (lim2 = m - longer; m < lim2; )
203			if (*m++)
204				return (1);
205	return (!masks_are_equal);
206}
207
208/*
209 * Search for exact match in given @head.
210 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
211 * Note that prefixes with /32 or /128 masks are treated differently
212 * from host routes.
213 */
214struct radix_node *
215rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
216{
217	struct radix_node *x;
218	caddr_t netmask;
219
220	if (m_arg != NULL) {
221		/*
222		 * Most common case: search exact prefix/mask
223		 */
224		x = rn_addmask(m_arg, head->rnh_masks, 1,
225		    head->rnh_treetop->rn_offset);
226		if (x == NULL)
227			return (NULL);
228		netmask = x->rn_key;
229
230		x = rn_match(v_arg, head);
231
232		while (x != NULL && x->rn_mask != netmask)
233			x = x->rn_dupedkey;
234
235		return (x);
236	}
237
238	/*
239	 * Search for host address.
240	 */
241	if ((x = rn_match(v_arg, head)) == NULL)
242		return (NULL);
243
244	/* Check if found key is the same */
245	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
246		return (NULL);
247
248	/* Check if this is not host route */
249	if (x->rn_mask != NULL)
250		return (NULL);
251
252	return (x);
253}
254
255static int
256rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
257{
258	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
259	char *cplim;
260	int length = min(LEN(cp), LEN(cp2));
261
262	if (cp3 == NULL)
263		cp3 = rn_ones;
264	else
265		length = min(length, LEN(cp3));
266	cplim = cp + length; cp3 += skip; cp2 += skip;
267	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
268		if ((*cp ^ *cp2) & *cp3)
269			return (0);
270	return (1);
271}
272
273/*
274 * Search for longest-prefix match in given @head
275 */
276struct radix_node *
277rn_match(void *v_arg, struct radix_head *head)
278{
279	caddr_t v = v_arg;
280	struct radix_node *t = head->rnh_treetop, *x;
281	caddr_t cp = v, cp2;
282	caddr_t cplim;
283	struct radix_node *saved_t, *top = t;
284	int off = t->rn_offset, vlen = LEN(cp), matched_off;
285	int test, b, rn_bit;
286
287	/*
288	 * Open code rn_search(v, top) to avoid overhead of extra
289	 * subroutine call.
290	 */
291	for (; t->rn_bit >= 0; ) {
292		if (t->rn_bmask & cp[t->rn_offset])
293			t = t->rn_right;
294		else
295			t = t->rn_left;
296	}
297	/*
298	 * See if we match exactly as a host destination
299	 * or at least learn how many bits match, for normal mask finesse.
300	 *
301	 * It doesn't hurt us to limit how many bytes to check
302	 * to the length of the mask, since if it matches we had a genuine
303	 * match and the leaf we have is the most specific one anyway;
304	 * if it didn't match with a shorter length it would fail
305	 * with a long one.  This wins big for class B&C netmasks which
306	 * are probably the most common case...
307	 */
308	if (t->rn_mask)
309		vlen = *(u_char *)t->rn_mask;
310	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
311	for (; cp < cplim; cp++, cp2++)
312		if (*cp != *cp2)
313			goto on1;
314	/*
315	 * This extra grot is in case we are explicitly asked
316	 * to look up the default.  Ugh!
317	 *
318	 * Never return the root node itself, it seems to cause a
319	 * lot of confusion.
320	 */
321	if (t->rn_flags & RNF_ROOT)
322		t = t->rn_dupedkey;
323	return (t);
324on1:
325	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
326	for (b = 7; (test >>= 1) > 0;)
327		b--;
328	matched_off = cp - v;
329	b += matched_off << 3;
330	rn_bit = -1 - b;
331	/*
332	 * If there is a host route in a duped-key chain, it will be first.
333	 */
334	if ((saved_t = t)->rn_mask == 0)
335		t = t->rn_dupedkey;
336	for (; t; t = t->rn_dupedkey)
337		/*
338		 * Even if we don't match exactly as a host,
339		 * we may match if the leaf we wound up at is
340		 * a route to a net.
341		 */
342		if (t->rn_flags & RNF_NORMAL) {
343			if (rn_bit <= t->rn_bit)
344				return (t);
345		} else if (rn_satisfies_leaf(v, t, matched_off))
346				return (t);
347	t = saved_t;
348	/* start searching up the tree */
349	do {
350		struct radix_mask *m;
351		t = t->rn_parent;
352		m = t->rn_mklist;
353		/*
354		 * If non-contiguous masks ever become important
355		 * we can restore the masking and open coding of
356		 * the search and satisfaction test and put the
357		 * calculation of "off" back before the "do".
358		 */
359		while (m) {
360			if (m->rm_flags & RNF_NORMAL) {
361				if (rn_bit <= m->rm_bit)
362					return (m->rm_leaf);
363			} else {
364				off = min(t->rn_offset, matched_off);
365				x = rn_search_m(v, t, m->rm_mask);
366				while (x && x->rn_mask != m->rm_mask)
367					x = x->rn_dupedkey;
368				if (x && rn_satisfies_leaf(v, x, off))
369					return (x);
370			}
371			m = m->rm_mklist;
372		}
373	} while (t != top);
374	return (0);
375}
376
377#ifdef RN_DEBUG
378int	rn_nodenum;
379struct	radix_node *rn_clist;
380int	rn_saveinfo;
381int	rn_debug =  1;
382#endif
383
384/*
385 * Whenever we add a new leaf to the tree, we also add a parent node,
386 * so we allocate them as an array of two elements: the first one must be
387 * the leaf (see RNTORT() in route.c), the second one is the parent.
388 * This routine initializes the relevant fields of the nodes, so that
389 * the leaf is the left child of the parent node, and both nodes have
390 * (almost) all all fields filled as appropriate.
391 * (XXX some fields are left unset, see the '#if 0' section).
392 * The function returns a pointer to the parent node.
393 */
394
395static struct radix_node *
396rn_newpair(void *v, int b, struct radix_node nodes[2])
397{
398	struct radix_node *tt = nodes, *t = tt + 1;
399	t->rn_bit = b;
400	t->rn_bmask = 0x80 >> (b & 7);
401	t->rn_left = tt;
402	t->rn_offset = b >> 3;
403
404#if 0  /* XXX perhaps we should fill these fields as well. */
405	t->rn_parent = t->rn_right = NULL;
406
407	tt->rn_mask = NULL;
408	tt->rn_dupedkey = NULL;
409	tt->rn_bmask = 0;
410#endif
411	tt->rn_bit = -1;
412	tt->rn_key = (caddr_t)v;
413	tt->rn_parent = t;
414	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
415	tt->rn_mklist = t->rn_mklist = 0;
416#ifdef RN_DEBUG
417	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
418	tt->rn_twin = t;
419	tt->rn_ybro = rn_clist;
420	rn_clist = tt;
421#endif
422	return (t);
423}
424
425static struct radix_node *
426rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
427    struct radix_node nodes[2])
428{
429	caddr_t v = v_arg;
430	struct radix_node *top = head->rnh_treetop;
431	int head_off = top->rn_offset, vlen = LEN(v);
432	struct radix_node *t = rn_search(v_arg, top);
433	caddr_t cp = v + head_off;
434	int b;
435	struct radix_node *p, *tt, *x;
436    	/*
437	 * Find first bit at which v and t->rn_key differ
438	 */
439	caddr_t cp2 = t->rn_key + head_off;
440	int cmp_res;
441	caddr_t cplim = v + vlen;
442
443	while (cp < cplim)
444		if (*cp2++ != *cp++)
445			goto on1;
446	*dupentry = 1;
447	return (t);
448on1:
449	*dupentry = 0;
450	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
451	for (b = (cp - v) << 3; cmp_res; b--)
452		cmp_res >>= 1;
453
454	x = top;
455	cp = v;
456	do {
457		p = x;
458		if (cp[x->rn_offset] & x->rn_bmask)
459			x = x->rn_right;
460		else
461			x = x->rn_left;
462	} while (b > (unsigned) x->rn_bit);
463				/* x->rn_bit < b && x->rn_bit >= 0 */
464#ifdef RN_DEBUG
465	if (rn_debug)
466		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
467#endif
468	t = rn_newpair(v_arg, b, nodes);
469	tt = t->rn_left;
470	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
471		p->rn_left = t;
472	else
473		p->rn_right = t;
474	x->rn_parent = t;
475	t->rn_parent = p; /* frees x, p as temp vars below */
476	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
477		t->rn_right = x;
478	} else {
479		t->rn_right = tt;
480		t->rn_left = x;
481	}
482#ifdef RN_DEBUG
483	if (rn_debug)
484		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
485#endif
486	return (tt);
487}
488
489struct radix_node *
490rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
491{
492	unsigned char *netmask = n_arg;
493	unsigned char *cp, *cplim;
494	struct radix_node *x;
495	int b = 0, mlen, j;
496	int maskduplicated, isnormal;
497	struct radix_node *saved_x;
498	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
499
500	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
501		mlen = RADIX_MAX_KEY_LEN;
502	if (skip == 0)
503		skip = 1;
504	if (mlen <= skip)
505		return (maskhead->mask_nodes);
506
507	bzero(addmask_key, RADIX_MAX_KEY_LEN);
508	if (skip > 1)
509		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
510	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
511	/*
512	 * Trim trailing zeroes.
513	 */
514	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
515		cp--;
516	mlen = cp - addmask_key;
517	if (mlen <= skip)
518		return (maskhead->mask_nodes);
519	*addmask_key = mlen;
520	x = rn_search(addmask_key, maskhead->head.rnh_treetop);
521	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
522		x = NULL;
523	if (x || search)
524		return (x);
525	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
526	if ((saved_x = x) == NULL)
527		return (0);
528	netmask = cp = (unsigned char *)(x + 2);
529	bcopy(addmask_key, cp, mlen);
530	x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
531	if (maskduplicated) {
532		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
533		R_Free(saved_x);
534		return (x);
535	}
536	/*
537	 * Calculate index of mask, and check for normalcy.
538	 * First find the first byte with a 0 bit, then if there are
539	 * more bits left (remember we already trimmed the trailing 0's),
540	 * the bits should be contiguous, otherwise we have got
541	 * a non-contiguous mask.
542	 */
543#define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
544	cplim = netmask + mlen;
545	isnormal = 1;
546	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
547		cp++;
548	if (cp != cplim) {
549		for (j = 0x80; (j & *cp) != 0; j >>= 1)
550			b++;
551		if (!CONTIG(*cp) || cp != (cplim - 1))
552			isnormal = 0;
553	}
554	b += (cp - netmask) << 3;
555	x->rn_bit = -1 - b;
556	if (isnormal)
557		x->rn_flags |= RNF_NORMAL;
558	return (x);
559}
560
561static int	/* XXX: arbitrary ordering for non-contiguous masks */
562rn_lexobetter(void *m_arg, void *n_arg)
563{
564	u_char *mp = m_arg, *np = n_arg, *lim;
565
566	if (LEN(mp) > LEN(np))
567		return (1);  /* not really, but need to check longer one first */
568	if (LEN(mp) == LEN(np))
569		for (lim = mp + LEN(mp); mp < lim;)
570			if (*mp++ > *np++)
571				return (1);
572	return (0);
573}
574
575static struct radix_mask *
576rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
577{
578	struct radix_mask *m;
579
580	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
581	if (m == NULL) {
582		log(LOG_ERR, "Failed to allocate route mask\n");
583		return (0);
584	}
585	bzero(m, sizeof(*m));
586	m->rm_bit = tt->rn_bit;
587	m->rm_flags = tt->rn_flags;
588	if (tt->rn_flags & RNF_NORMAL)
589		m->rm_leaf = tt;
590	else
591		m->rm_mask = tt->rn_mask;
592	m->rm_mklist = next;
593	tt->rn_mklist = m;
594	return (m);
595}
596
597struct radix_node *
598rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
599    struct radix_node treenodes[2])
600{
601	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
602	struct radix_node *t, *x = NULL, *tt;
603	struct radix_node *saved_tt, *top = head->rnh_treetop;
604	short b = 0, b_leaf = 0;
605	int keyduplicated;
606	caddr_t mmask;
607	struct radix_mask *m, **mp;
608
609	/*
610	 * In dealing with non-contiguous masks, there may be
611	 * many different routes which have the same mask.
612	 * We will find it useful to have a unique pointer to
613	 * the mask to speed avoiding duplicate references at
614	 * nodes and possibly save time in calculating indices.
615	 */
616	if (netmask)  {
617		x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
618		if (x == NULL)
619			return (0);
620		b_leaf = x->rn_bit;
621		b = -1 - x->rn_bit;
622		netmask = x->rn_key;
623	}
624	/*
625	 * Deal with duplicated keys: attach node to previous instance
626	 */
627	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
628	if (keyduplicated) {
629		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
630#ifdef RADIX_MPATH
631			/* permit multipath, if enabled for the family */
632			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
633				/*
634				 * go down to the end of multipaths, so that
635				 * new entry goes into the end of rn_dupedkey
636				 * chain.
637				 */
638				do {
639					t = tt;
640					tt = tt->rn_dupedkey;
641				} while (tt && t->rn_mask == tt->rn_mask);
642				break;
643			}
644#endif
645			if (tt->rn_mask == netmask)
646				return (0);
647			if (netmask == 0 ||
648			    (tt->rn_mask &&
649			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
650			      || rn_refines(netmask, tt->rn_mask)
651			      || rn_lexobetter(netmask, tt->rn_mask))))
652				break;
653		}
654		/*
655		 * If the mask is not duplicated, we wouldn't
656		 * find it among possible duplicate key entries
657		 * anyway, so the above test doesn't hurt.
658		 *
659		 * We sort the masks for a duplicated key the same way as
660		 * in a masklist -- most specific to least specific.
661		 * This may require the unfortunate nuisance of relocating
662		 * the head of the list.
663		 *
664		 * We also reverse, or doubly link the list through the
665		 * parent pointer.
666		 */
667		if (tt == saved_tt) {
668			struct	radix_node *xx = x;
669			/* link in at head of list */
670			(tt = treenodes)->rn_dupedkey = t;
671			tt->rn_flags = t->rn_flags;
672			tt->rn_parent = x = t->rn_parent;
673			t->rn_parent = tt;	 		/* parent */
674			if (x->rn_left == t)
675				x->rn_left = tt;
676			else
677				x->rn_right = tt;
678			saved_tt = tt; x = xx;
679		} else {
680			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
681			t->rn_dupedkey = tt;
682			tt->rn_parent = t;			/* parent */
683			if (tt->rn_dupedkey)			/* parent */
684				tt->rn_dupedkey->rn_parent = tt; /* parent */
685		}
686#ifdef RN_DEBUG
687		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
688		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
689#endif
690		tt->rn_key = (caddr_t) v;
691		tt->rn_bit = -1;
692		tt->rn_flags = RNF_ACTIVE;
693	}
694	/*
695	 * Put mask in tree.
696	 */
697	if (netmask) {
698		tt->rn_mask = netmask;
699		tt->rn_bit = x->rn_bit;
700		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
701	}
702	t = saved_tt->rn_parent;
703	if (keyduplicated)
704		goto on2;
705	b_leaf = -1 - t->rn_bit;
706	if (t->rn_right == saved_tt)
707		x = t->rn_left;
708	else
709		x = t->rn_right;
710	/* Promote general routes from below */
711	if (x->rn_bit < 0) {
712	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
713		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
714			*mp = m = rn_new_radix_mask(x, 0);
715			if (m)
716				mp = &m->rm_mklist;
717		}
718	} else if (x->rn_mklist) {
719		/*
720		 * Skip over masks whose index is > that of new node
721		 */
722		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
723			if (m->rm_bit >= b_leaf)
724				break;
725		t->rn_mklist = m; *mp = NULL;
726	}
727on2:
728	/* Add new route to highest possible ancestor's list */
729	if ((netmask == 0) || (b > t->rn_bit ))
730		return (tt); /* can't lift at all */
731	b_leaf = tt->rn_bit;
732	do {
733		x = t;
734		t = t->rn_parent;
735	} while (b <= t->rn_bit && x != top);
736	/*
737	 * Search through routes associated with node to
738	 * insert new route according to index.
739	 * Need same criteria as when sorting dupedkeys to avoid
740	 * double loop on deletion.
741	 */
742	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
743		if (m->rm_bit < b_leaf)
744			continue;
745		if (m->rm_bit > b_leaf)
746			break;
747		if (m->rm_flags & RNF_NORMAL) {
748			mmask = m->rm_leaf->rn_mask;
749			if (tt->rn_flags & RNF_NORMAL) {
750#if !defined(RADIX_MPATH)
751			    log(LOG_ERR,
752			        "Non-unique normal route, mask not entered\n");
753#endif
754				return (tt);
755			}
756		} else
757			mmask = m->rm_mask;
758		if (mmask == netmask) {
759			m->rm_refs++;
760			tt->rn_mklist = m;
761			return (tt);
762		}
763		if (rn_refines(netmask, mmask)
764		    || rn_lexobetter(netmask, mmask))
765			break;
766	}
767	*mp = rn_new_radix_mask(tt, *mp);
768	return (tt);
769}
770
771struct radix_node *
772rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
773{
774	struct radix_node *t, *p, *x, *tt;
775	struct radix_mask *m, *saved_m, **mp;
776	struct radix_node *dupedkey, *saved_tt, *top;
777	caddr_t v, netmask;
778	int b, head_off, vlen;
779
780	v = v_arg;
781	netmask = netmask_arg;
782	x = head->rnh_treetop;
783	tt = rn_search(v, x);
784	head_off = x->rn_offset;
785	vlen =  LEN(v);
786	saved_tt = tt;
787	top = x;
788	if (tt == NULL ||
789	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
790		return (0);
791	/*
792	 * Delete our route from mask lists.
793	 */
794	if (netmask) {
795		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
796		if (x == NULL)
797			return (0);
798		netmask = x->rn_key;
799		while (tt->rn_mask != netmask)
800			if ((tt = tt->rn_dupedkey) == NULL)
801				return (0);
802	}
803	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
804		goto on1;
805	if (tt->rn_flags & RNF_NORMAL) {
806		if (m->rm_leaf != tt || m->rm_refs > 0) {
807			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
808			return (0);  /* dangling ref could cause disaster */
809		}
810	} else {
811		if (m->rm_mask != tt->rn_mask) {
812			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
813			goto on1;
814		}
815		if (--m->rm_refs >= 0)
816			goto on1;
817	}
818	b = -1 - tt->rn_bit;
819	t = saved_tt->rn_parent;
820	if (b > t->rn_bit)
821		goto on1; /* Wasn't lifted at all */
822	do {
823		x = t;
824		t = t->rn_parent;
825	} while (b <= t->rn_bit && x != top);
826	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
827		if (m == saved_m) {
828			*mp = m->rm_mklist;
829			R_Free(m);
830			break;
831		}
832	if (m == NULL) {
833		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
834		if (tt->rn_flags & RNF_NORMAL)
835			return (0); /* Dangling ref to us */
836	}
837on1:
838	/*
839	 * Eliminate us from tree
840	 */
841	if (tt->rn_flags & RNF_ROOT)
842		return (0);
843#ifdef RN_DEBUG
844	/* Get us out of the creation list */
845	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
846	if (t) t->rn_ybro = tt->rn_ybro;
847#endif
848	t = tt->rn_parent;
849	dupedkey = saved_tt->rn_dupedkey;
850	if (dupedkey) {
851		/*
852		 * Here, tt is the deletion target and
853		 * saved_tt is the head of the dupekey chain.
854		 */
855		if (tt == saved_tt) {
856			/* remove from head of chain */
857			x = dupedkey; x->rn_parent = t;
858			if (t->rn_left == tt)
859				t->rn_left = x;
860			else
861				t->rn_right = x;
862		} else {
863			/* find node in front of tt on the chain */
864			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
865				p = p->rn_dupedkey;
866			if (p) {
867				p->rn_dupedkey = tt->rn_dupedkey;
868				if (tt->rn_dupedkey)		/* parent */
869					tt->rn_dupedkey->rn_parent = p;
870								/* parent */
871			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
872		}
873		t = tt + 1;
874		if  (t->rn_flags & RNF_ACTIVE) {
875#ifndef RN_DEBUG
876			*++x = *t;
877			p = t->rn_parent;
878#else
879			b = t->rn_info;
880			*++x = *t;
881			t->rn_info = b;
882			p = t->rn_parent;
883#endif
884			if (p->rn_left == t)
885				p->rn_left = x;
886			else
887				p->rn_right = x;
888			x->rn_left->rn_parent = x;
889			x->rn_right->rn_parent = x;
890		}
891		goto out;
892	}
893	if (t->rn_left == tt)
894		x = t->rn_right;
895	else
896		x = t->rn_left;
897	p = t->rn_parent;
898	if (p->rn_right == t)
899		p->rn_right = x;
900	else
901		p->rn_left = x;
902	x->rn_parent = p;
903	/*
904	 * Demote routes attached to us.
905	 */
906	if (t->rn_mklist) {
907		if (x->rn_bit >= 0) {
908			for (mp = &x->rn_mklist; (m = *mp);)
909				mp = &m->rm_mklist;
910			*mp = t->rn_mklist;
911		} else {
912			/* If there are any key,mask pairs in a sibling
913			   duped-key chain, some subset will appear sorted
914			   in the same order attached to our mklist */
915			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
916				if (m == x->rn_mklist) {
917					struct radix_mask *mm = m->rm_mklist;
918					x->rn_mklist = 0;
919					if (--(m->rm_refs) < 0)
920						R_Free(m);
921					m = mm;
922				}
923			if (m)
924				log(LOG_ERR,
925				    "rn_delete: Orphaned Mask %p at %p\n",
926				    m, x);
927		}
928	}
929	/*
930	 * We may be holding an active internal node in the tree.
931	 */
932	x = tt + 1;
933	if (t != x) {
934#ifndef RN_DEBUG
935		*t = *x;
936#else
937		b = t->rn_info;
938		*t = *x;
939		t->rn_info = b;
940#endif
941		t->rn_left->rn_parent = t;
942		t->rn_right->rn_parent = t;
943		p = x->rn_parent;
944		if (p->rn_left == x)
945			p->rn_left = t;
946		else
947			p->rn_right = t;
948	}
949out:
950	tt->rn_flags &= ~RNF_ACTIVE;
951	tt[1].rn_flags &= ~RNF_ACTIVE;
952	return (tt);
953}
954
955/*
956 * This is the same as rn_walktree() except for the parameters and the
957 * exit.
958 */
959int
960rn_walktree_from(struct radix_head *h, void *a, void *m,
961    walktree_f_t *f, void *w)
962{
963	int error;
964	struct radix_node *base, *next;
965	u_char *xa = (u_char *)a;
966	u_char *xm = (u_char *)m;
967	struct radix_node *rn, *last = NULL; /* shut up gcc */
968	int stopping = 0;
969	int lastb;
970
971	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
972
973	/*
974	 * rn_search_m is sort-of-open-coded here. We cannot use the
975	 * function because we need to keep track of the last node seen.
976	 */
977	/* printf("about to search\n"); */
978	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
979		last = rn;
980		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
981		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
982		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
983			break;
984		}
985		if (rn->rn_bmask & xa[rn->rn_offset]) {
986			rn = rn->rn_right;
987		} else {
988			rn = rn->rn_left;
989		}
990	}
991	/* printf("done searching\n"); */
992
993	/*
994	 * Two cases: either we stepped off the end of our mask,
995	 * in which case last == rn, or we reached a leaf, in which
996	 * case we want to start from the leaf.
997	 */
998	if (rn->rn_bit >= 0)
999		rn = last;
1000	lastb = last->rn_bit;
1001
1002	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1003
1004	/*
1005	 * This gets complicated because we may delete the node
1006	 * while applying the function f to it, so we need to calculate
1007	 * the successor node in advance.
1008	 */
1009	while (rn->rn_bit >= 0)
1010		rn = rn->rn_left;
1011
1012	while (!stopping) {
1013		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1014		base = rn;
1015		/* If at right child go back up, otherwise, go right */
1016		while (rn->rn_parent->rn_right == rn
1017		       && !(rn->rn_flags & RNF_ROOT)) {
1018			rn = rn->rn_parent;
1019
1020			/* if went up beyond last, stop */
1021			if (rn->rn_bit <= lastb) {
1022				stopping = 1;
1023				/* printf("up too far\n"); */
1024				/*
1025				 * XXX we should jump to the 'Process leaves'
1026				 * part, because the values of 'rn' and 'next'
1027				 * we compute will not be used. Not a big deal
1028				 * because this loop will terminate, but it is
1029				 * inefficient and hard to understand!
1030				 */
1031			}
1032		}
1033
1034		/*
1035		 * At the top of the tree, no need to traverse the right
1036		 * half, prevent the traversal of the entire tree in the
1037		 * case of default route.
1038		 */
1039		if (rn->rn_parent->rn_flags & RNF_ROOT)
1040			stopping = 1;
1041
1042		/* Find the next *leaf* since next node might vanish, too */
1043		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1044			rn = rn->rn_left;
1045		next = rn;
1046		/* Process leaves */
1047		while ((rn = base) != NULL) {
1048			base = rn->rn_dupedkey;
1049			/* printf("leaf %p\n", rn); */
1050			if (!(rn->rn_flags & RNF_ROOT)
1051			    && (error = (*f)(rn, w)))
1052				return (error);
1053		}
1054		rn = next;
1055
1056		if (rn->rn_flags & RNF_ROOT) {
1057			/* printf("root, stopping"); */
1058			stopping = 1;
1059		}
1060
1061	}
1062	return (0);
1063}
1064
1065int
1066rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1067{
1068	int error;
1069	struct radix_node *base, *next;
1070	struct radix_node *rn = h->rnh_treetop;
1071	/*
1072	 * This gets complicated because we may delete the node
1073	 * while applying the function f to it, so we need to calculate
1074	 * the successor node in advance.
1075	 */
1076
1077	/* First time through node, go left */
1078	while (rn->rn_bit >= 0)
1079		rn = rn->rn_left;
1080	for (;;) {
1081		base = rn;
1082		/* If at right child go back up, otherwise, go right */
1083		while (rn->rn_parent->rn_right == rn
1084		       && (rn->rn_flags & RNF_ROOT) == 0)
1085			rn = rn->rn_parent;
1086		/* Find the next *leaf* since next node might vanish, too */
1087		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1088			rn = rn->rn_left;
1089		next = rn;
1090		/* Process leaves */
1091		while ((rn = base)) {
1092			base = rn->rn_dupedkey;
1093			if (!(rn->rn_flags & RNF_ROOT)
1094			    && (error = (*f)(rn, w)))
1095				return (error);
1096		}
1097		rn = next;
1098		if (rn->rn_flags & RNF_ROOT)
1099			return (0);
1100	}
1101	/* NOTREACHED */
1102}
1103
1104/*
1105 * Initialize an empty tree. This has 3 nodes, which are passed
1106 * via base_nodes (in the order <left,root,right>) and are
1107 * marked RNF_ROOT so they cannot be freed.
1108 * The leaves have all-zero and all-one keys, with significant
1109 * bits starting at 'off'.
1110 */
1111void
1112rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1113{
1114	struct radix_node *t, *tt, *ttt;
1115
1116	t = rn_newpair(rn_zeros, off, base_nodes);
1117	ttt = base_nodes + 2;
1118	t->rn_right = ttt;
1119	t->rn_parent = t;
1120	tt = t->rn_left;	/* ... which in turn is base_nodes */
1121	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1122	tt->rn_bit = -1 - off;
1123	*ttt = *tt;
1124	ttt->rn_key = rn_ones;
1125
1126	rh->rnh_treetop = t;
1127}
1128
1129static void
1130rn_detachhead_internal(struct radix_head *head)
1131{
1132
1133	KASSERT((head != NULL),
1134	    ("%s: head already freed", __func__));
1135
1136	/* Free <left,root,right> nodes. */
1137	R_Free(head);
1138}
1139
1140/* Functions used by 'struct radix_node_head' users */
1141
1142int
1143rn_inithead(void **head, int off)
1144{
1145	struct radix_node_head *rnh;
1146	struct radix_mask_head *rmh;
1147
1148	rnh = *head;
1149	rmh = NULL;
1150
1151	if (*head != NULL)
1152		return (1);
1153
1154	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1155	R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1156	if (rnh == NULL || rmh == NULL) {
1157		if (rnh != NULL)
1158			R_Free(rnh);
1159		if (rmh != NULL)
1160			R_Free(rmh);
1161		return (0);
1162	}
1163
1164	/* Init trees */
1165	rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1166	rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1167	*head = rnh;
1168	rnh->rh.rnh_masks = rmh;
1169
1170	/* Finally, set base callbacks */
1171	rnh->rnh_addaddr = rn_addroute;
1172	rnh->rnh_deladdr = rn_delete;
1173	rnh->rnh_matchaddr = rn_match;
1174	rnh->rnh_lookup = rn_lookup;
1175	rnh->rnh_walktree = rn_walktree;
1176	rnh->rnh_walktree_from = rn_walktree_from;
1177
1178	return (1);
1179}
1180
1181static int
1182rn_freeentry(struct radix_node *rn, void *arg)
1183{
1184	struct radix_head * const rnh = arg;
1185	struct radix_node *x;
1186
1187	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1188	if (x != NULL)
1189		R_Free(x);
1190	return (0);
1191}
1192
1193int
1194rn_detachhead(void **head)
1195{
1196	struct radix_node_head *rnh;
1197
1198	KASSERT((head != NULL && *head != NULL),
1199	    ("%s: head already freed", __func__));
1200
1201	rnh = (struct radix_node_head *)(*head);
1202
1203	rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1204	rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1205	rn_detachhead_internal(&rnh->rh);
1206
1207	*head = NULL;
1208
1209	return (1);
1210}
1211
1212