radix.c revision 273479
1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD: head/sys/net/radix.c 273479 2014-10-22 18:55:36Z luigi $
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#include <sys/param.h>
37#ifdef	_KERNEL
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/syslog.h>
44#include <net/radix.h>
45#include "opt_mpath.h"
46#ifdef RADIX_MPATH
47#include <net/radix_mpath.h>
48#endif
49#else /* !_KERNEL */
50#include <stdio.h>
51#include <strings.h>
52#include <stdlib.h>
53#define log(x, arg...)	fprintf(stderr, ## arg)
54#define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55#define min(a, b) ((a) < (b) ? (a) : (b) )
56#include <net/radix.h>
57#endif /* !_KERNEL */
58
59static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60		    walktree_f_t *f, void *w);
61static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62static struct radix_node
63	 *rn_insert(void *, struct radix_node_head *, int *,
64	     struct radix_node [2]),
65	 *rn_newpair(void *, int, struct radix_node[2]),
66	 *rn_search(void *, struct radix_node *),
67	 *rn_search_m(void *, struct radix_node *, void *);
68
69static void rn_detachhead_internal(void **head);
70static int rn_inithead_internal(void **head, int off);
71
72#define	RADIX_MAX_KEY_LEN	32
73
74static char rn_zeros[RADIX_MAX_KEY_LEN];
75static char rn_ones[RADIX_MAX_KEY_LEN] = {
76	-1, -1, -1, -1, -1, -1, -1, -1,
77	-1, -1, -1, -1, -1, -1, -1, -1,
78	-1, -1, -1, -1, -1, -1, -1, -1,
79	-1, -1, -1, -1, -1, -1, -1, -1,
80};
81
82
83static int	rn_lexobetter(void *m_arg, void *n_arg);
84static struct radix_mask *
85		rn_new_radix_mask(struct radix_node *tt,
86		    struct radix_mask *next);
87static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
88		    int skip);
89
90/*
91 * The data structure for the keys is a radix tree with one way
92 * branching removed.  The index rn_bit at an internal node n represents a bit
93 * position to be tested.  The tree is arranged so that all descendants
94 * of a node n have keys whose bits all agree up to position rn_bit - 1.
95 * (We say the index of n is rn_bit.)
96 *
97 * There is at least one descendant which has a one bit at position rn_bit,
98 * and at least one with a zero there.
99 *
100 * A route is determined by a pair of key and mask.  We require that the
101 * bit-wise logical and of the key and mask to be the key.
102 * We define the index of a route to associated with the mask to be
103 * the first bit number in the mask where 0 occurs (with bit number 0
104 * representing the highest order bit).
105 *
106 * We say a mask is normal if every bit is 0, past the index of the mask.
107 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
108 * and m is a normal mask, then the route applies to every descendant of n.
109 * If the index(m) < rn_bit, this implies the trailing last few bits of k
110 * before bit b are all 0, (and hence consequently true of every descendant
111 * of n), so the route applies to all descendants of the node as well.
112 *
113 * Similar logic shows that a non-normal mask m such that
114 * index(m) <= index(n) could potentially apply to many children of n.
115 * Thus, for each non-host route, we attach its mask to a list at an internal
116 * node as high in the tree as we can go.
117 *
118 * The present version of the code makes use of normal routes in short-
119 * circuiting an explict mask and compare operation when testing whether
120 * a key satisfies a normal route, and also in remembering the unique leaf
121 * that governs a subtree.
122 */
123
124/*
125 * Most of the functions in this code assume that the key/mask arguments
126 * are sockaddr-like structures, where the first byte is an u_char
127 * indicating the size of the entire structure.
128 *
129 * To make the assumption more explicit, we use the LEN() macro to access
130 * this field. It is safe to pass an expression with side effects
131 * to LEN() as the argument is evaluated only once.
132 * We cast the result to int as this is the dominant usage.
133 */
134#define LEN(x) ( (int) (*(const u_char *)(x)) )
135
136/*
137 * XXX THIS NEEDS TO BE FIXED
138 * In the code, pointers to keys and masks are passed as either
139 * 'void *' (because callers use to pass pointers of various kinds), or
140 * 'caddr_t' (which is fine for pointer arithmetics, but not very
141 * clean when you dereference it to access data). Furthermore, caddr_t
142 * is really 'char *', while the natural type to operate on keys and
143 * masks would be 'u_char'. This mismatch require a lot of casts and
144 * intermediate variables to adapt types that clutter the code.
145 */
146
147/*
148 * Search a node in the tree matching the key.
149 */
150static struct radix_node *
151rn_search(void *v_arg, struct radix_node *head)
152{
153	struct radix_node *x;
154	caddr_t v;
155
156	for (x = head, v = v_arg; x->rn_bit >= 0;) {
157		if (x->rn_bmask & v[x->rn_offset])
158			x = x->rn_right;
159		else
160			x = x->rn_left;
161	}
162	return (x);
163}
164
165/*
166 * Same as above, but with an additional mask.
167 * XXX note this function is used only once.
168 */
169static struct radix_node *
170rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
171{
172	struct radix_node *x;
173	caddr_t v = v_arg, m = m_arg;
174
175	for (x = head; x->rn_bit >= 0;) {
176		if ((x->rn_bmask & m[x->rn_offset]) &&
177		    (x->rn_bmask & v[x->rn_offset]))
178			x = x->rn_right;
179		else
180			x = x->rn_left;
181	}
182	return (x);
183}
184
185int
186rn_refines(void *m_arg, void *n_arg)
187{
188	caddr_t m = m_arg, n = n_arg;
189	caddr_t lim, lim2 = lim = n + LEN(n);
190	int longer = LEN(n++) - LEN(m++);
191	int masks_are_equal = 1;
192
193	if (longer > 0)
194		lim -= longer;
195	while (n < lim) {
196		if (*n & ~(*m))
197			return (0);
198		if (*n++ != *m++)
199			masks_are_equal = 0;
200	}
201	while (n < lim2)
202		if (*n++)
203			return (0);
204	if (masks_are_equal && (longer < 0))
205		for (lim2 = m - longer; m < lim2; )
206			if (*m++)
207				return (1);
208	return (!masks_are_equal);
209}
210
211/*
212 * Search for exact match in given @head.
213 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
214 * Note that prefixes with /32 or /128 masks are treated differently
215 * from host routes.
216 */
217struct radix_node *
218rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
219{
220	struct radix_node *x;
221	caddr_t netmask;
222
223	if (m_arg != NULL) {
224		/*
225		 * Most common case: search exact prefix/mask
226		 */
227		x = rn_addmask(m_arg, head->rnh_masks, 1,
228		    head->rnh_treetop->rn_offset);
229		if (x == NULL)
230			return (NULL);
231		netmask = x->rn_key;
232
233		x = rn_match(v_arg, head);
234
235		while (x != NULL && x->rn_mask != netmask)
236			x = x->rn_dupedkey;
237
238		return (x);
239	}
240
241	/*
242	 * Search for host address.
243	 */
244	if ((x = rn_match(v_arg, head)) == NULL)
245		return (NULL);
246
247	/* Check if found key is the same */
248	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
249		return (NULL);
250
251	/* Check if this is not host route */
252	if (x->rn_mask != NULL)
253		return (NULL);
254
255	return (x);
256}
257
258static int
259rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
260{
261	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
262	char *cplim;
263	int length = min(LEN(cp), LEN(cp2));
264
265	if (cp3 == NULL)
266		cp3 = rn_ones;
267	else
268		length = min(length, LEN(cp3));
269	cplim = cp + length; cp3 += skip; cp2 += skip;
270	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
271		if ((*cp ^ *cp2) & *cp3)
272			return (0);
273	return (1);
274}
275
276/*
277 * Search for longest-prefix match in given @head
278 */
279struct radix_node *
280rn_match(void *v_arg, struct radix_node_head *head)
281{
282	caddr_t v = v_arg;
283	struct radix_node *t = head->rnh_treetop, *x;
284	caddr_t cp = v, cp2;
285	caddr_t cplim;
286	struct radix_node *saved_t, *top = t;
287	int off = t->rn_offset, vlen = LEN(cp), matched_off;
288	int test, b, rn_bit;
289
290	/*
291	 * Open code rn_search(v, top) to avoid overhead of extra
292	 * subroutine call.
293	 */
294	for (; t->rn_bit >= 0; ) {
295		if (t->rn_bmask & cp[t->rn_offset])
296			t = t->rn_right;
297		else
298			t = t->rn_left;
299	}
300	/*
301	 * See if we match exactly as a host destination
302	 * or at least learn how many bits match, for normal mask finesse.
303	 *
304	 * It doesn't hurt us to limit how many bytes to check
305	 * to the length of the mask, since if it matches we had a genuine
306	 * match and the leaf we have is the most specific one anyway;
307	 * if it didn't match with a shorter length it would fail
308	 * with a long one.  This wins big for class B&C netmasks which
309	 * are probably the most common case...
310	 */
311	if (t->rn_mask)
312		vlen = *(u_char *)t->rn_mask;
313	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
314	for (; cp < cplim; cp++, cp2++)
315		if (*cp != *cp2)
316			goto on1;
317	/*
318	 * This extra grot is in case we are explicitly asked
319	 * to look up the default.  Ugh!
320	 *
321	 * Never return the root node itself, it seems to cause a
322	 * lot of confusion.
323	 */
324	if (t->rn_flags & RNF_ROOT)
325		t = t->rn_dupedkey;
326	return (t);
327on1:
328	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
329	for (b = 7; (test >>= 1) > 0;)
330		b--;
331	matched_off = cp - v;
332	b += matched_off << 3;
333	rn_bit = -1 - b;
334	/*
335	 * If there is a host route in a duped-key chain, it will be first.
336	 */
337	if ((saved_t = t)->rn_mask == 0)
338		t = t->rn_dupedkey;
339	for (; t; t = t->rn_dupedkey)
340		/*
341		 * Even if we don't match exactly as a host,
342		 * we may match if the leaf we wound up at is
343		 * a route to a net.
344		 */
345		if (t->rn_flags & RNF_NORMAL) {
346			if (rn_bit <= t->rn_bit)
347				return (t);
348		} else if (rn_satisfies_leaf(v, t, matched_off))
349				return (t);
350	t = saved_t;
351	/* start searching up the tree */
352	do {
353		struct radix_mask *m;
354		t = t->rn_parent;
355		m = t->rn_mklist;
356		/*
357		 * If non-contiguous masks ever become important
358		 * we can restore the masking and open coding of
359		 * the search and satisfaction test and put the
360		 * calculation of "off" back before the "do".
361		 */
362		while (m) {
363			if (m->rm_flags & RNF_NORMAL) {
364				if (rn_bit <= m->rm_bit)
365					return (m->rm_leaf);
366			} else {
367				off = min(t->rn_offset, matched_off);
368				x = rn_search_m(v, t, m->rm_mask);
369				while (x && x->rn_mask != m->rm_mask)
370					x = x->rn_dupedkey;
371				if (x && rn_satisfies_leaf(v, x, off))
372					return (x);
373			}
374			m = m->rm_mklist;
375		}
376	} while (t != top);
377	return (0);
378}
379
380#ifdef RN_DEBUG
381int	rn_nodenum;
382struct	radix_node *rn_clist;
383int	rn_saveinfo;
384int	rn_debug =  1;
385#endif
386
387/*
388 * Whenever we add a new leaf to the tree, we also add a parent node,
389 * so we allocate them as an array of two elements: the first one must be
390 * the leaf (see RNTORT() in route.c), the second one is the parent.
391 * This routine initializes the relevant fields of the nodes, so that
392 * the leaf is the left child of the parent node, and both nodes have
393 * (almost) all all fields filled as appropriate.
394 * (XXX some fields are left unset, see the '#if 0' section).
395 * The function returns a pointer to the parent node.
396 */
397
398static struct radix_node *
399rn_newpair(void *v, int b, struct radix_node nodes[2])
400{
401	struct radix_node *tt = nodes, *t = tt + 1;
402	t->rn_bit = b;
403	t->rn_bmask = 0x80 >> (b & 7);
404	t->rn_left = tt;
405	t->rn_offset = b >> 3;
406
407#if 0  /* XXX perhaps we should fill these fields as well. */
408	t->rn_parent = t->rn_right = NULL;
409
410	tt->rn_mask = NULL;
411	tt->rn_dupedkey = NULL;
412	tt->rn_bmask = 0;
413#endif
414	tt->rn_bit = -1;
415	tt->rn_key = (caddr_t)v;
416	tt->rn_parent = t;
417	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
418	tt->rn_mklist = t->rn_mklist = 0;
419#ifdef RN_DEBUG
420	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
421	tt->rn_twin = t;
422	tt->rn_ybro = rn_clist;
423	rn_clist = tt;
424#endif
425	return (t);
426}
427
428static struct radix_node *
429rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
430    struct radix_node nodes[2])
431{
432	caddr_t v = v_arg;
433	struct radix_node *top = head->rnh_treetop;
434	int head_off = top->rn_offset, vlen = LEN(v);
435	struct radix_node *t = rn_search(v_arg, top);
436	caddr_t cp = v + head_off;
437	int b;
438	struct radix_node *p, *tt, *x;
439    	/*
440	 * Find first bit at which v and t->rn_key differ
441	 */
442	caddr_t cp2 = t->rn_key + head_off;
443	int cmp_res;
444	caddr_t cplim = v + vlen;
445
446	while (cp < cplim)
447		if (*cp2++ != *cp++)
448			goto on1;
449	*dupentry = 1;
450	return (t);
451on1:
452	*dupentry = 0;
453	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
454	for (b = (cp - v) << 3; cmp_res; b--)
455		cmp_res >>= 1;
456
457	x = top;
458	cp = v;
459	do {
460		p = x;
461		if (cp[x->rn_offset] & x->rn_bmask)
462			x = x->rn_right;
463		else
464			x = x->rn_left;
465	} while (b > (unsigned) x->rn_bit);
466				/* x->rn_bit < b && x->rn_bit >= 0 */
467#ifdef RN_DEBUG
468	if (rn_debug)
469		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
470#endif
471	t = rn_newpair(v_arg, b, nodes);
472	tt = t->rn_left;
473	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
474		p->rn_left = t;
475	else
476		p->rn_right = t;
477	x->rn_parent = t;
478	t->rn_parent = p; /* frees x, p as temp vars below */
479	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
480		t->rn_right = x;
481	} else {
482		t->rn_right = tt;
483		t->rn_left = x;
484	}
485#ifdef RN_DEBUG
486	if (rn_debug)
487		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
488#endif
489	return (tt);
490}
491
492struct radix_node *
493rn_addmask(void *n_arg, struct radix_node_head *maskhead, int search, int skip)
494{
495	unsigned char *netmask = n_arg;
496	unsigned char *cp, *cplim;
497	struct radix_node *x;
498	int b = 0, mlen, j;
499	int maskduplicated, isnormal;
500	struct radix_node *saved_x;
501	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
502
503	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
504		mlen = RADIX_MAX_KEY_LEN;
505	if (skip == 0)
506		skip = 1;
507	if (mlen <= skip)
508		return (maskhead->rnh_nodes);
509
510	bzero(addmask_key, RADIX_MAX_KEY_LEN);
511	if (skip > 1)
512		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
513	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
514	/*
515	 * Trim trailing zeroes.
516	 */
517	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
518		cp--;
519	mlen = cp - addmask_key;
520	if (mlen <= skip)
521		return (maskhead->rnh_nodes);
522	*addmask_key = mlen;
523	x = rn_search(addmask_key, maskhead->rnh_treetop);
524	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
525		x = 0;
526	if (x || search)
527		return (x);
528	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
529	if ((saved_x = x) == 0)
530		return (0);
531	netmask = cp = (unsigned char *)(x + 2);
532	bcopy(addmask_key, cp, mlen);
533	x = rn_insert(cp, maskhead, &maskduplicated, x);
534	if (maskduplicated) {
535		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
536		Free(saved_x);
537		return (x);
538	}
539	/*
540	 * Calculate index of mask, and check for normalcy.
541	 * First find the first byte with a 0 bit, then if there are
542	 * more bits left (remember we already trimmed the trailing 0's),
543	 * the bits should be contiguous, otherwise we have got
544	 * a non-contiguous mask.
545	 */
546#define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
547	cplim = netmask + mlen;
548	isnormal = 1;
549	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
550		cp++;
551	if (cp != cplim) {
552		for (j = 0x80; (j & *cp) != 0; j >>= 1)
553			b++;
554		if (!CONTIG(*cp) || cp != (cplim - 1))
555			isnormal = 0;
556	}
557	b += (cp - netmask) << 3;
558	x->rn_bit = -1 - b;
559	if (isnormal)
560		x->rn_flags |= RNF_NORMAL;
561	return (x);
562}
563
564static int	/* XXX: arbitrary ordering for non-contiguous masks */
565rn_lexobetter(void *m_arg, void *n_arg)
566{
567	u_char *mp = m_arg, *np = n_arg, *lim;
568
569	if (LEN(mp) > LEN(np))
570		return (1);  /* not really, but need to check longer one first */
571	if (LEN(mp) == LEN(np))
572		for (lim = mp + LEN(mp); mp < lim;)
573			if (*mp++ > *np++)
574				return (1);
575	return (0);
576}
577
578static struct radix_mask *
579rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
580{
581	struct radix_mask *m;
582
583	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
584	if (m == NULL) {
585		log(LOG_ERR, "Failed to allocate route mask\n");
586		return (0);
587	}
588	bzero(m, sizeof(*m));
589	m->rm_bit = tt->rn_bit;
590	m->rm_flags = tt->rn_flags;
591	if (tt->rn_flags & RNF_NORMAL)
592		m->rm_leaf = tt;
593	else
594		m->rm_mask = tt->rn_mask;
595	m->rm_mklist = next;
596	tt->rn_mklist = m;
597	return (m);
598}
599
600struct radix_node *
601rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
602    struct radix_node treenodes[2])
603{
604	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
605	struct radix_node *t, *x = 0, *tt;
606	struct radix_node *saved_tt, *top = head->rnh_treetop;
607	short b = 0, b_leaf = 0;
608	int keyduplicated;
609	caddr_t mmask;
610	struct radix_mask *m, **mp;
611
612	/*
613	 * In dealing with non-contiguous masks, there may be
614	 * many different routes which have the same mask.
615	 * We will find it useful to have a unique pointer to
616	 * the mask to speed avoiding duplicate references at
617	 * nodes and possibly save time in calculating indices.
618	 */
619	if (netmask)  {
620		x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
621		if (x == NULL)
622			return (0);
623		b_leaf = x->rn_bit;
624		b = -1 - x->rn_bit;
625		netmask = x->rn_key;
626	}
627	/*
628	 * Deal with duplicated keys: attach node to previous instance
629	 */
630	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
631	if (keyduplicated) {
632		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
633#ifdef RADIX_MPATH
634			/* permit multipath, if enabled for the family */
635			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
636				/*
637				 * go down to the end of multipaths, so that
638				 * new entry goes into the end of rn_dupedkey
639				 * chain.
640				 */
641				do {
642					t = tt;
643					tt = tt->rn_dupedkey;
644				} while (tt && t->rn_mask == tt->rn_mask);
645				break;
646			}
647#endif
648			if (tt->rn_mask == netmask)
649				return (0);
650			if (netmask == 0 ||
651			    (tt->rn_mask &&
652			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
653			      || rn_refines(netmask, tt->rn_mask)
654			      || rn_lexobetter(netmask, tt->rn_mask))))
655				break;
656		}
657		/*
658		 * If the mask is not duplicated, we wouldn't
659		 * find it among possible duplicate key entries
660		 * anyway, so the above test doesn't hurt.
661		 *
662		 * We sort the masks for a duplicated key the same way as
663		 * in a masklist -- most specific to least specific.
664		 * This may require the unfortunate nuisance of relocating
665		 * the head of the list.
666		 *
667		 * We also reverse, or doubly link the list through the
668		 * parent pointer.
669		 */
670		if (tt == saved_tt) {
671			struct	radix_node *xx = x;
672			/* link in at head of list */
673			(tt = treenodes)->rn_dupedkey = t;
674			tt->rn_flags = t->rn_flags;
675			tt->rn_parent = x = t->rn_parent;
676			t->rn_parent = tt;	 		/* parent */
677			if (x->rn_left == t)
678				x->rn_left = tt;
679			else
680				x->rn_right = tt;
681			saved_tt = tt; x = xx;
682		} else {
683			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
684			t->rn_dupedkey = tt;
685			tt->rn_parent = t;			/* parent */
686			if (tt->rn_dupedkey)			/* parent */
687				tt->rn_dupedkey->rn_parent = tt; /* parent */
688		}
689#ifdef RN_DEBUG
690		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
691		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
692#endif
693		tt->rn_key = (caddr_t) v;
694		tt->rn_bit = -1;
695		tt->rn_flags = RNF_ACTIVE;
696	}
697	/*
698	 * Put mask in tree.
699	 */
700	if (netmask) {
701		tt->rn_mask = netmask;
702		tt->rn_bit = x->rn_bit;
703		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
704	}
705	t = saved_tt->rn_parent;
706	if (keyduplicated)
707		goto on2;
708	b_leaf = -1 - t->rn_bit;
709	if (t->rn_right == saved_tt)
710		x = t->rn_left;
711	else
712		x = t->rn_right;
713	/* Promote general routes from below */
714	if (x->rn_bit < 0) {
715	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
716		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
717			*mp = m = rn_new_radix_mask(x, 0);
718			if (m)
719				mp = &m->rm_mklist;
720		}
721	} else if (x->rn_mklist) {
722		/*
723		 * Skip over masks whose index is > that of new node
724		 */
725		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
726			if (m->rm_bit >= b_leaf)
727				break;
728		t->rn_mklist = m; *mp = 0;
729	}
730on2:
731	/* Add new route to highest possible ancestor's list */
732	if ((netmask == 0) || (b > t->rn_bit ))
733		return (tt); /* can't lift at all */
734	b_leaf = tt->rn_bit;
735	do {
736		x = t;
737		t = t->rn_parent;
738	} while (b <= t->rn_bit && x != top);
739	/*
740	 * Search through routes associated with node to
741	 * insert new route according to index.
742	 * Need same criteria as when sorting dupedkeys to avoid
743	 * double loop on deletion.
744	 */
745	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
746		if (m->rm_bit < b_leaf)
747			continue;
748		if (m->rm_bit > b_leaf)
749			break;
750		if (m->rm_flags & RNF_NORMAL) {
751			mmask = m->rm_leaf->rn_mask;
752			if (tt->rn_flags & RNF_NORMAL) {
753#if !defined(RADIX_MPATH)
754			    log(LOG_ERR,
755			        "Non-unique normal route, mask not entered\n");
756#endif
757				return (tt);
758			}
759		} else
760			mmask = m->rm_mask;
761		if (mmask == netmask) {
762			m->rm_refs++;
763			tt->rn_mklist = m;
764			return (tt);
765		}
766		if (rn_refines(netmask, mmask)
767		    || rn_lexobetter(netmask, mmask))
768			break;
769	}
770	*mp = rn_new_radix_mask(tt, *mp);
771	return (tt);
772}
773
774struct radix_node *
775rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
776{
777	struct radix_node *t, *p, *x, *tt;
778	struct radix_mask *m, *saved_m, **mp;
779	struct radix_node *dupedkey, *saved_tt, *top;
780	caddr_t v, netmask;
781	int b, head_off, vlen;
782
783	v = v_arg;
784	netmask = netmask_arg;
785	x = head->rnh_treetop;
786	tt = rn_search(v, x);
787	head_off = x->rn_offset;
788	vlen =  LEN(v);
789	saved_tt = tt;
790	top = x;
791	if (tt == 0 ||
792	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
793		return (0);
794	/*
795	 * Delete our route from mask lists.
796	 */
797	if (netmask) {
798		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
799		if (x == NULL)
800			return (0);
801		netmask = x->rn_key;
802		while (tt->rn_mask != netmask)
803			if ((tt = tt->rn_dupedkey) == 0)
804				return (0);
805	}
806	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
807		goto on1;
808	if (tt->rn_flags & RNF_NORMAL) {
809		if (m->rm_leaf != tt || m->rm_refs > 0) {
810			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
811			return (0);  /* dangling ref could cause disaster */
812		}
813	} else {
814		if (m->rm_mask != tt->rn_mask) {
815			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
816			goto on1;
817		}
818		if (--m->rm_refs >= 0)
819			goto on1;
820	}
821	b = -1 - tt->rn_bit;
822	t = saved_tt->rn_parent;
823	if (b > t->rn_bit)
824		goto on1; /* Wasn't lifted at all */
825	do {
826		x = t;
827		t = t->rn_parent;
828	} while (b <= t->rn_bit && x != top);
829	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
830		if (m == saved_m) {
831			*mp = m->rm_mklist;
832			Free(m);
833			break;
834		}
835	if (m == 0) {
836		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
837		if (tt->rn_flags & RNF_NORMAL)
838			return (0); /* Dangling ref to us */
839	}
840on1:
841	/*
842	 * Eliminate us from tree
843	 */
844	if (tt->rn_flags & RNF_ROOT)
845		return (0);
846#ifdef RN_DEBUG
847	/* Get us out of the creation list */
848	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
849	if (t) t->rn_ybro = tt->rn_ybro;
850#endif
851	t = tt->rn_parent;
852	dupedkey = saved_tt->rn_dupedkey;
853	if (dupedkey) {
854		/*
855		 * Here, tt is the deletion target and
856		 * saved_tt is the head of the dupekey chain.
857		 */
858		if (tt == saved_tt) {
859			/* remove from head of chain */
860			x = dupedkey; x->rn_parent = t;
861			if (t->rn_left == tt)
862				t->rn_left = x;
863			else
864				t->rn_right = x;
865		} else {
866			/* find node in front of tt on the chain */
867			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
868				p = p->rn_dupedkey;
869			if (p) {
870				p->rn_dupedkey = tt->rn_dupedkey;
871				if (tt->rn_dupedkey)		/* parent */
872					tt->rn_dupedkey->rn_parent = p;
873								/* parent */
874			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
875		}
876		t = tt + 1;
877		if  (t->rn_flags & RNF_ACTIVE) {
878#ifndef RN_DEBUG
879			*++x = *t;
880			p = t->rn_parent;
881#else
882			b = t->rn_info;
883			*++x = *t;
884			t->rn_info = b;
885			p = t->rn_parent;
886#endif
887			if (p->rn_left == t)
888				p->rn_left = x;
889			else
890				p->rn_right = x;
891			x->rn_left->rn_parent = x;
892			x->rn_right->rn_parent = x;
893		}
894		goto out;
895	}
896	if (t->rn_left == tt)
897		x = t->rn_right;
898	else
899		x = t->rn_left;
900	p = t->rn_parent;
901	if (p->rn_right == t)
902		p->rn_right = x;
903	else
904		p->rn_left = x;
905	x->rn_parent = p;
906	/*
907	 * Demote routes attached to us.
908	 */
909	if (t->rn_mklist) {
910		if (x->rn_bit >= 0) {
911			for (mp = &x->rn_mklist; (m = *mp);)
912				mp = &m->rm_mklist;
913			*mp = t->rn_mklist;
914		} else {
915			/* If there are any key,mask pairs in a sibling
916			   duped-key chain, some subset will appear sorted
917			   in the same order attached to our mklist */
918			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
919				if (m == x->rn_mklist) {
920					struct radix_mask *mm = m->rm_mklist;
921					x->rn_mklist = 0;
922					if (--(m->rm_refs) < 0)
923						Free(m);
924					m = mm;
925				}
926			if (m)
927				log(LOG_ERR,
928				    "rn_delete: Orphaned Mask %p at %p\n",
929				    m, x);
930		}
931	}
932	/*
933	 * We may be holding an active internal node in the tree.
934	 */
935	x = tt + 1;
936	if (t != x) {
937#ifndef RN_DEBUG
938		*t = *x;
939#else
940		b = t->rn_info;
941		*t = *x;
942		t->rn_info = b;
943#endif
944		t->rn_left->rn_parent = t;
945		t->rn_right->rn_parent = t;
946		p = x->rn_parent;
947		if (p->rn_left == x)
948			p->rn_left = t;
949		else
950			p->rn_right = t;
951	}
952out:
953	tt->rn_flags &= ~RNF_ACTIVE;
954	tt[1].rn_flags &= ~RNF_ACTIVE;
955	return (tt);
956}
957
958/*
959 * This is the same as rn_walktree() except for the parameters and the
960 * exit.
961 */
962static int
963rn_walktree_from(struct radix_node_head *h, void *a, void *m,
964    walktree_f_t *f, void *w)
965{
966	int error;
967	struct radix_node *base, *next;
968	u_char *xa = (u_char *)a;
969	u_char *xm = (u_char *)m;
970	struct radix_node *rn, *last = NULL; /* shut up gcc */
971	int stopping = 0;
972	int lastb;
973
974	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
975
976	/*
977	 * rn_search_m is sort-of-open-coded here. We cannot use the
978	 * function because we need to keep track of the last node seen.
979	 */
980	/* printf("about to search\n"); */
981	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
982		last = rn;
983		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
984		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
985		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
986			break;
987		}
988		if (rn->rn_bmask & xa[rn->rn_offset]) {
989			rn = rn->rn_right;
990		} else {
991			rn = rn->rn_left;
992		}
993	}
994	/* printf("done searching\n"); */
995
996	/*
997	 * Two cases: either we stepped off the end of our mask,
998	 * in which case last == rn, or we reached a leaf, in which
999	 * case we want to start from the leaf.
1000	 */
1001	if (rn->rn_bit >= 0)
1002		rn = last;
1003	lastb = last->rn_bit;
1004
1005	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1006
1007	/*
1008	 * This gets complicated because we may delete the node
1009	 * while applying the function f to it, so we need to calculate
1010	 * the successor node in advance.
1011	 */
1012	while (rn->rn_bit >= 0)
1013		rn = rn->rn_left;
1014
1015	while (!stopping) {
1016		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1017		base = rn;
1018		/* If at right child go back up, otherwise, go right */
1019		while (rn->rn_parent->rn_right == rn
1020		       && !(rn->rn_flags & RNF_ROOT)) {
1021			rn = rn->rn_parent;
1022
1023			/* if went up beyond last, stop */
1024			if (rn->rn_bit <= lastb) {
1025				stopping = 1;
1026				/* printf("up too far\n"); */
1027				/*
1028				 * XXX we should jump to the 'Process leaves'
1029				 * part, because the values of 'rn' and 'next'
1030				 * we compute will not be used. Not a big deal
1031				 * because this loop will terminate, but it is
1032				 * inefficient and hard to understand!
1033				 */
1034			}
1035		}
1036
1037		/*
1038		 * At the top of the tree, no need to traverse the right
1039		 * half, prevent the traversal of the entire tree in the
1040		 * case of default route.
1041		 */
1042		if (rn->rn_parent->rn_flags & RNF_ROOT)
1043			stopping = 1;
1044
1045		/* Find the next *leaf* since next node might vanish, too */
1046		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1047			rn = rn->rn_left;
1048		next = rn;
1049		/* Process leaves */
1050		while ((rn = base) != 0) {
1051			base = rn->rn_dupedkey;
1052			/* printf("leaf %p\n", rn); */
1053			if (!(rn->rn_flags & RNF_ROOT)
1054			    && (error = (*f)(rn, w)))
1055				return (error);
1056		}
1057		rn = next;
1058
1059		if (rn->rn_flags & RNF_ROOT) {
1060			/* printf("root, stopping"); */
1061			stopping = 1;
1062		}
1063
1064	}
1065	return (0);
1066}
1067
1068static int
1069rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1070{
1071	int error;
1072	struct radix_node *base, *next;
1073	struct radix_node *rn = h->rnh_treetop;
1074	/*
1075	 * This gets complicated because we may delete the node
1076	 * while applying the function f to it, so we need to calculate
1077	 * the successor node in advance.
1078	 */
1079
1080	/* First time through node, go left */
1081	while (rn->rn_bit >= 0)
1082		rn = rn->rn_left;
1083	for (;;) {
1084		base = rn;
1085		/* If at right child go back up, otherwise, go right */
1086		while (rn->rn_parent->rn_right == rn
1087		       && (rn->rn_flags & RNF_ROOT) == 0)
1088			rn = rn->rn_parent;
1089		/* Find the next *leaf* since next node might vanish, too */
1090		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1091			rn = rn->rn_left;
1092		next = rn;
1093		/* Process leaves */
1094		while ((rn = base)) {
1095			base = rn->rn_dupedkey;
1096			if (!(rn->rn_flags & RNF_ROOT)
1097			    && (error = (*f)(rn, w)))
1098				return (error);
1099		}
1100		rn = next;
1101		if (rn->rn_flags & RNF_ROOT)
1102			return (0);
1103	}
1104	/* NOTREACHED */
1105}
1106
1107/*
1108 * Allocate and initialize an empty tree. This has 3 nodes, which are
1109 * part of the radix_node_head (in the order <left,root,right>) and are
1110 * marked RNF_ROOT so they cannot be freed.
1111 * The leaves have all-zero and all-one keys, with significant
1112 * bits starting at 'off'.
1113 * Return 1 on success, 0 on error.
1114 */
1115static int
1116rn_inithead_internal(void **head, int off)
1117{
1118	struct radix_node_head *rnh;
1119	struct radix_node *t, *tt, *ttt;
1120	if (*head)
1121		return (1);
1122	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1123	if (rnh == 0)
1124		return (0);
1125	*head = rnh;
1126	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1127	ttt = rnh->rnh_nodes + 2;
1128	t->rn_right = ttt;
1129	t->rn_parent = t;
1130	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1131	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1132	tt->rn_bit = -1 - off;
1133	*ttt = *tt;
1134	ttt->rn_key = rn_ones;
1135	rnh->rnh_addaddr = rn_addroute;
1136	rnh->rnh_deladdr = rn_delete;
1137	rnh->rnh_matchaddr = rn_match;
1138	rnh->rnh_lookup = rn_lookup;
1139	rnh->rnh_walktree = rn_walktree;
1140	rnh->rnh_walktree_from = rn_walktree_from;
1141	rnh->rnh_treetop = t;
1142	return (1);
1143}
1144
1145static void
1146rn_detachhead_internal(void **head)
1147{
1148	struct radix_node_head *rnh;
1149
1150	KASSERT((head != NULL && *head != NULL),
1151	    ("%s: head already freed", __func__));
1152	rnh = *head;
1153
1154	/* Free <left,root,right> nodes. */
1155	Free(rnh);
1156
1157	*head = NULL;
1158}
1159
1160int
1161rn_inithead(void **head, int off)
1162{
1163	struct radix_node_head *rnh;
1164
1165	if (*head != NULL)
1166		return (1);
1167
1168	if (rn_inithead_internal(head, off) == 0)
1169		return (0);
1170
1171	rnh = (struct radix_node_head *)(*head);
1172
1173	if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
1174		rn_detachhead_internal(head);
1175		return (0);
1176	}
1177
1178	return (1);
1179}
1180
1181static int
1182rn_freeentry(struct radix_node *rn, void *arg)
1183{
1184	struct radix_node_head * const rnh = arg;
1185	struct radix_node *x;
1186
1187	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1188	if (x != NULL)
1189		Free(x);
1190	return (0);
1191}
1192
1193int
1194rn_detachhead(void **head)
1195{
1196	struct radix_node_head *rnh;
1197
1198	KASSERT((head != NULL && *head != NULL),
1199	    ("%s: head already freed", __func__));
1200
1201	rnh = *head;
1202
1203	rn_walktree(rnh->rnh_masks, rn_freeentry, rnh->rnh_masks);
1204	rn_detachhead_internal((void **)&rnh->rnh_masks);
1205	rn_detachhead_internal(head);
1206	return (1);
1207}
1208
1209