radix.c revision 186166
1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD: head/sys/net/radix.c 186166 2008-12-16 04:40:43Z kmacy $
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#ifndef _RADIX_H_
37#include <sys/param.h>
38#ifdef	_KERNEL
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/rwlock.h>
42#include <sys/systm.h>
43#include <sys/malloc.h>
44#include <sys/domain.h>
45#else
46#include <stdlib.h>
47#endif
48#include <sys/syslog.h>
49#include <net/radix.h>
50#endif
51
52#include "opt_mpath.h"
53
54#ifdef RADIX_MPATH
55#include <net/radix_mpath.h>
56#endif
57
58
59static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60		    walktree_f_t *f, void *w);
61static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62static struct radix_node
63	 *rn_insert(void *, struct radix_node_head *, int *,
64	     struct radix_node [2]),
65	 *rn_newpair(void *, int, struct radix_node[2]),
66	 *rn_search(void *, struct radix_node *),
67	 *rn_search_m(void *, struct radix_node *, void *);
68
69static int	max_keylen;
70static struct radix_mask *rn_mkfreelist;
71static struct radix_node_head *mask_rnhead;
72/*
73 * Work area -- the following point to 3 buffers of size max_keylen,
74 * allocated in this order in a block of memory malloc'ed by rn_init.
75 */
76static char *rn_zeros, *rn_ones, *addmask_key;
77
78#define MKGet(m) {						\
79	if (rn_mkfreelist) {					\
80		m = rn_mkfreelist;				\
81		rn_mkfreelist = (m)->rm_mklist;			\
82	} else							\
83		R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
84
85#define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
86
87#define rn_masktop (mask_rnhead->rnh_treetop)
88
89static int	rn_lexobetter(void *m_arg, void *n_arg);
90static struct radix_mask *
91		rn_new_radix_mask(struct radix_node *tt,
92		    struct radix_mask *next);
93static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
94		    int skip);
95
96/*
97 * The data structure for the keys is a radix tree with one way
98 * branching removed.  The index rn_bit at an internal node n represents a bit
99 * position to be tested.  The tree is arranged so that all descendants
100 * of a node n have keys whose bits all agree up to position rn_bit - 1.
101 * (We say the index of n is rn_bit.)
102 *
103 * There is at least one descendant which has a one bit at position rn_bit,
104 * and at least one with a zero there.
105 *
106 * A route is determined by a pair of key and mask.  We require that the
107 * bit-wise logical and of the key and mask to be the key.
108 * We define the index of a route to associated with the mask to be
109 * the first bit number in the mask where 0 occurs (with bit number 0
110 * representing the highest order bit).
111 *
112 * We say a mask is normal if every bit is 0, past the index of the mask.
113 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
114 * and m is a normal mask, then the route applies to every descendant of n.
115 * If the index(m) < rn_bit, this implies the trailing last few bits of k
116 * before bit b are all 0, (and hence consequently true of every descendant
117 * of n), so the route applies to all descendants of the node as well.
118 *
119 * Similar logic shows that a non-normal mask m such that
120 * index(m) <= index(n) could potentially apply to many children of n.
121 * Thus, for each non-host route, we attach its mask to a list at an internal
122 * node as high in the tree as we can go.
123 *
124 * The present version of the code makes use of normal routes in short-
125 * circuiting an explict mask and compare operation when testing whether
126 * a key satisfies a normal route, and also in remembering the unique leaf
127 * that governs a subtree.
128 */
129
130/*
131 * Most of the functions in this code assume that the key/mask arguments
132 * are sockaddr-like structures, where the first byte is an u_char
133 * indicating the size of the entire structure.
134 *
135 * To make the assumption more explicit, we use the LEN() macro to access
136 * this field. It is safe to pass an expression with side effects
137 * to LEN() as the argument is evaluated only once.
138 */
139#define LEN(x) (*(const u_char *)(x))
140
141/*
142 * XXX THIS NEEDS TO BE FIXED
143 * In the code, pointers to keys and masks are passed as either
144 * 'void *' (because callers use to pass pointers of various kinds), or
145 * 'caddr_t' (which is fine for pointer arithmetics, but not very
146 * clean when you dereference it to access data). Furthermore, caddr_t
147 * is really 'char *', while the natural type to operate on keys and
148 * masks would be 'u_char'. This mismatch require a lot of casts and
149 * intermediate variables to adapt types that clutter the code.
150 */
151
152/*
153 * Search a node in the tree matching the key.
154 */
155static struct radix_node *
156rn_search(v_arg, head)
157	void *v_arg;
158	struct radix_node *head;
159{
160	register struct radix_node *x;
161	register caddr_t v;
162
163	for (x = head, v = v_arg; x->rn_bit >= 0;) {
164		if (x->rn_bmask & v[x->rn_offset])
165			x = x->rn_right;
166		else
167			x = x->rn_left;
168	}
169	return (x);
170}
171
172/*
173 * Same as above, but with an additional mask.
174 * XXX note this function is used only once.
175 */
176static struct radix_node *
177rn_search_m(v_arg, head, m_arg)
178	struct radix_node *head;
179	void *v_arg, *m_arg;
180{
181	register struct radix_node *x;
182	register caddr_t v = v_arg, m = m_arg;
183
184	for (x = head; x->rn_bit >= 0;) {
185		if ((x->rn_bmask & m[x->rn_offset]) &&
186		    (x->rn_bmask & v[x->rn_offset]))
187			x = x->rn_right;
188		else
189			x = x->rn_left;
190	}
191	return x;
192}
193
194int
195rn_refines(m_arg, n_arg)
196	void *m_arg, *n_arg;
197{
198	register caddr_t m = m_arg, n = n_arg;
199	register caddr_t lim, lim2 = lim = n + LEN(n);
200	int longer = LEN(n++) - (int)LEN(m++);
201	int masks_are_equal = 1;
202
203	if (longer > 0)
204		lim -= longer;
205	while (n < lim) {
206		if (*n & ~(*m))
207			return 0;
208		if (*n++ != *m++)
209			masks_are_equal = 0;
210	}
211	while (n < lim2)
212		if (*n++)
213			return 0;
214	if (masks_are_equal && (longer < 0))
215		for (lim2 = m - longer; m < lim2; )
216			if (*m++)
217				return 1;
218	return (!masks_are_equal);
219}
220
221struct radix_node *
222rn_lookup(v_arg, m_arg, head)
223	void *v_arg, *m_arg;
224	struct radix_node_head *head;
225{
226	register struct radix_node *x;
227	caddr_t netmask = 0;
228
229	if (m_arg) {
230		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
231		if (x == 0)
232			return (0);
233		netmask = x->rn_key;
234	}
235	x = rn_match(v_arg, head);
236	if (x && netmask) {
237		while (x && x->rn_mask != netmask)
238			x = x->rn_dupedkey;
239	}
240	return x;
241}
242
243static int
244rn_satisfies_leaf(trial, leaf, skip)
245	char *trial;
246	register struct radix_node *leaf;
247	int skip;
248{
249	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
250	char *cplim;
251	int length = min(LEN(cp), LEN(cp2));
252
253	if (cp3 == 0)
254		cp3 = rn_ones;
255	else
256		length = min(length, *(u_char *)cp3);
257	cplim = cp + length; cp3 += skip; cp2 += skip;
258	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
259		if ((*cp ^ *cp2) & *cp3)
260			return 0;
261	return 1;
262}
263
264struct radix_node *
265rn_match(v_arg, head)
266	void *v_arg;
267	struct radix_node_head *head;
268{
269	caddr_t v = v_arg;
270	register struct radix_node *t = head->rnh_treetop, *x;
271	register caddr_t cp = v, cp2;
272	caddr_t cplim;
273	struct radix_node *saved_t, *top = t;
274	int off = t->rn_offset, vlen = LEN(cp), matched_off;
275	register int test, b, rn_bit;
276
277	RADIX_NODE_HEAD_LOCK_ASSERT(head);
278	/*
279	 * Open code rn_search(v, top) to avoid overhead of extra
280	 * subroutine call.
281	 */
282	for (; t->rn_bit >= 0; ) {
283		if (t->rn_bmask & cp[t->rn_offset])
284			t = t->rn_right;
285		else
286			t = t->rn_left;
287	}
288	/*
289	 * See if we match exactly as a host destination
290	 * or at least learn how many bits match, for normal mask finesse.
291	 *
292	 * It doesn't hurt us to limit how many bytes to check
293	 * to the length of the mask, since if it matches we had a genuine
294	 * match and the leaf we have is the most specific one anyway;
295	 * if it didn't match with a shorter length it would fail
296	 * with a long one.  This wins big for class B&C netmasks which
297	 * are probably the most common case...
298	 */
299	if (t->rn_mask)
300		vlen = *(u_char *)t->rn_mask;
301	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
302	for (; cp < cplim; cp++, cp2++)
303		if (*cp != *cp2)
304			goto on1;
305	/*
306	 * This extra grot is in case we are explicitly asked
307	 * to look up the default.  Ugh!
308	 *
309	 * Never return the root node itself, it seems to cause a
310	 * lot of confusion.
311	 */
312	if (t->rn_flags & RNF_ROOT)
313		t = t->rn_dupedkey;
314	return t;
315on1:
316	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
317	for (b = 7; (test >>= 1) > 0;)
318		b--;
319	matched_off = cp - v;
320	b += matched_off << 3;
321	rn_bit = -1 - b;
322	/*
323	 * If there is a host route in a duped-key chain, it will be first.
324	 */
325	if ((saved_t = t)->rn_mask == 0)
326		t = t->rn_dupedkey;
327	for (; t; t = t->rn_dupedkey)
328		/*
329		 * Even if we don't match exactly as a host,
330		 * we may match if the leaf we wound up at is
331		 * a route to a net.
332		 */
333		if (t->rn_flags & RNF_NORMAL) {
334			if (rn_bit <= t->rn_bit)
335				return t;
336		} else if (rn_satisfies_leaf(v, t, matched_off))
337				return t;
338	t = saved_t;
339	/* start searching up the tree */
340	do {
341		register struct radix_mask *m;
342		t = t->rn_parent;
343		m = t->rn_mklist;
344		/*
345		 * If non-contiguous masks ever become important
346		 * we can restore the masking and open coding of
347		 * the search and satisfaction test and put the
348		 * calculation of "off" back before the "do".
349		 */
350		while (m) {
351			if (m->rm_flags & RNF_NORMAL) {
352				if (rn_bit <= m->rm_bit)
353					return (m->rm_leaf);
354			} else {
355				off = min(t->rn_offset, matched_off);
356				x = rn_search_m(v, t, m->rm_mask);
357				while (x && x->rn_mask != m->rm_mask)
358					x = x->rn_dupedkey;
359				if (x && rn_satisfies_leaf(v, x, off))
360					return x;
361			}
362			m = m->rm_mklist;
363		}
364	} while (t != top);
365	return 0;
366}
367
368#ifdef RN_DEBUG
369int	rn_nodenum;
370struct	radix_node *rn_clist;
371int	rn_saveinfo;
372int	rn_debug =  1;
373#endif
374
375/*
376 * Whenever we add a new leaf to the tree, we also add a parent node,
377 * so we allocate them as an array of two elements: the first one must be
378 * the leaf (see RNTORT() in route.c), the second one is the parent.
379 * This routine initializes the relevant fields of the nodes, so that
380 * the leaf is the left child of the parent node, and both nodes have
381 * (almost) all all fields filled as appropriate.
382 * (XXX some fields are left unset, see the '#if 0' section).
383 * The function returns a pointer to the parent node.
384 */
385
386static struct radix_node *
387rn_newpair(v, b, nodes)
388	void *v;
389	int b;
390	struct radix_node nodes[2];
391{
392	register struct radix_node *tt = nodes, *t = tt + 1;
393	t->rn_bit = b;
394	t->rn_bmask = 0x80 >> (b & 7);
395	t->rn_left = tt;
396	t->rn_offset = b >> 3;
397
398#if 0  /* XXX perhaps we should fill these fields as well. */
399	t->rn_parent = t->rn_right = NULL;
400
401	tt->rn_mask = NULL;
402	tt->rn_dupedkey = NULL;
403	tt->rn_bmask = 0;
404#endif
405	tt->rn_bit = -1;
406	tt->rn_key = (caddr_t)v;
407	tt->rn_parent = t;
408	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
409	tt->rn_mklist = t->rn_mklist = 0;
410#ifdef RN_DEBUG
411	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
412	tt->rn_twin = t;
413	tt->rn_ybro = rn_clist;
414	rn_clist = tt;
415#endif
416	return t;
417}
418
419static struct radix_node *
420rn_insert(v_arg, head, dupentry, nodes)
421	void *v_arg;
422	struct radix_node_head *head;
423	int *dupentry;
424	struct radix_node nodes[2];
425{
426	caddr_t v = v_arg;
427	struct radix_node *top = head->rnh_treetop;
428	int head_off = top->rn_offset, vlen = (int)LEN(v);
429	register struct radix_node *t = rn_search(v_arg, top);
430	register caddr_t cp = v + head_off;
431	register int b;
432	struct radix_node *tt;
433    	/*
434	 * Find first bit at which v and t->rn_key differ
435	 */
436    {
437	register caddr_t cp2 = t->rn_key + head_off;
438	register int cmp_res;
439	caddr_t cplim = v + vlen;
440
441	while (cp < cplim)
442		if (*cp2++ != *cp++)
443			goto on1;
444	*dupentry = 1;
445	return t;
446on1:
447	*dupentry = 0;
448	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
449	for (b = (cp - v) << 3; cmp_res; b--)
450		cmp_res >>= 1;
451    }
452    {
453	register struct radix_node *p, *x = top;
454	cp = v;
455	do {
456		p = x;
457		if (cp[x->rn_offset] & x->rn_bmask)
458			x = x->rn_right;
459		else
460			x = x->rn_left;
461	} while (b > (unsigned) x->rn_bit);
462				/* x->rn_bit < b && x->rn_bit >= 0 */
463#ifdef RN_DEBUG
464	if (rn_debug)
465		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
466#endif
467	t = rn_newpair(v_arg, b, nodes);
468	tt = t->rn_left;
469	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
470		p->rn_left = t;
471	else
472		p->rn_right = t;
473	x->rn_parent = t;
474	t->rn_parent = p; /* frees x, p as temp vars below */
475	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
476		t->rn_right = x;
477	} else {
478		t->rn_right = tt;
479		t->rn_left = x;
480	}
481#ifdef RN_DEBUG
482	if (rn_debug)
483		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
484#endif
485    }
486	return (tt);
487}
488
489struct radix_node *
490rn_addmask(n_arg, search, skip)
491	int search, skip;
492	void *n_arg;
493{
494	caddr_t netmask = (caddr_t)n_arg;
495	register struct radix_node *x;
496	register caddr_t cp, cplim;
497	register int b = 0, mlen, j;
498	int maskduplicated, m0, isnormal;
499	struct radix_node *saved_x;
500	static int last_zeroed = 0;
501
502	if ((mlen = LEN(netmask)) > max_keylen)
503		mlen = max_keylen;
504	if (skip == 0)
505		skip = 1;
506	if (mlen <= skip)
507		return (mask_rnhead->rnh_nodes);
508	if (skip > 1)
509		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
510	if ((m0 = mlen) > skip)
511		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
512	/*
513	 * Trim trailing zeroes.
514	 */
515	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
516		cp--;
517	mlen = cp - addmask_key;
518	if (mlen <= skip) {
519		if (m0 >= last_zeroed)
520			last_zeroed = mlen;
521		return (mask_rnhead->rnh_nodes);
522	}
523	if (m0 < last_zeroed)
524		bzero(addmask_key + m0, last_zeroed - m0);
525	*addmask_key = last_zeroed = mlen;
526	x = rn_search(addmask_key, rn_masktop);
527	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
528		x = 0;
529	if (x || search)
530		return (x);
531	R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
532	if ((saved_x = x) == 0)
533		return (0);
534	netmask = cp = (caddr_t)(x + 2);
535	bcopy(addmask_key, cp, mlen);
536	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
537	if (maskduplicated) {
538		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
539		Free(saved_x);
540		return (x);
541	}
542	/*
543	 * Calculate index of mask, and check for normalcy.
544	 * First find the first byte with a 0 bit, then if there are
545	 * more bits left (remember we already trimmed the trailing 0's),
546	 * the pattern must be one of those in normal_chars[], or we have
547	 * a non-contiguous mask.
548	 */
549	cplim = netmask + mlen;
550	isnormal = 1;
551	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
552		cp++;
553	if (cp != cplim) {
554		static char normal_chars[] = {
555			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
556
557		for (j = 0x80; (j & *cp) != 0; j >>= 1)
558			b++;
559		if (*cp != normal_chars[b] || cp != (cplim - 1))
560			isnormal = 0;
561	}
562	b += (cp - netmask) << 3;
563	x->rn_bit = -1 - b;
564	if (isnormal)
565		x->rn_flags |= RNF_NORMAL;
566	return (x);
567}
568
569static int	/* XXX: arbitrary ordering for non-contiguous masks */
570rn_lexobetter(m_arg, n_arg)
571	void *m_arg, *n_arg;
572{
573	register u_char *mp = m_arg, *np = n_arg, *lim;
574
575	if (LEN(mp) > LEN(np))
576		return 1;  /* not really, but need to check longer one first */
577	if (LEN(mp) == LEN(np))
578		for (lim = mp + LEN(mp); mp < lim;)
579			if (*mp++ > *np++)
580				return 1;
581	return 0;
582}
583
584static struct radix_mask *
585rn_new_radix_mask(tt, next)
586	register struct radix_node *tt;
587	register struct radix_mask *next;
588{
589	register struct radix_mask *m;
590
591	MKGet(m);
592	if (m == 0) {
593		log(LOG_ERR, "Mask for route not entered\n");
594		return (0);
595	}
596	bzero(m, sizeof *m);
597	m->rm_bit = tt->rn_bit;
598	m->rm_flags = tt->rn_flags;
599	if (tt->rn_flags & RNF_NORMAL)
600		m->rm_leaf = tt;
601	else
602		m->rm_mask = tt->rn_mask;
603	m->rm_mklist = next;
604	tt->rn_mklist = m;
605	return m;
606}
607
608struct radix_node *
609rn_addroute(v_arg, n_arg, head, treenodes)
610	void *v_arg, *n_arg;
611	struct radix_node_head *head;
612	struct radix_node treenodes[2];
613{
614	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
615	register struct radix_node *t, *x = 0, *tt;
616	struct radix_node *saved_tt, *top = head->rnh_treetop;
617	short b = 0, b_leaf = 0;
618	int keyduplicated;
619	caddr_t mmask;
620	struct radix_mask *m, **mp;
621
622
623	RADIX_NODE_HEAD_WLOCK_ASSERT(head);
624	/*
625	 * In dealing with non-contiguous masks, there may be
626	 * many different routes which have the same mask.
627	 * We will find it useful to have a unique pointer to
628	 * the mask to speed avoiding duplicate references at
629	 * nodes and possibly save time in calculating indices.
630	 */
631	if (netmask)  {
632		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
633			return (0);
634		b_leaf = x->rn_bit;
635		b = -1 - x->rn_bit;
636		netmask = x->rn_key;
637	}
638	/*
639	 * Deal with duplicated keys: attach node to previous instance
640	 */
641	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
642	if (keyduplicated) {
643		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
644#ifdef RADIX_MPATH
645			/* permit multipath, if enabled for the family */
646			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
647				/*
648				 * go down to the end of multipaths, so that
649				 * new entry goes into the end of rn_dupedkey
650				 * chain.
651				 */
652				do {
653					t = tt;
654					tt = tt->rn_dupedkey;
655				} while (tt && t->rn_mask == tt->rn_mask);
656				break;
657			}
658#endif
659			if (tt->rn_mask == netmask)
660				return (0);
661			if (netmask == 0 ||
662			    (tt->rn_mask &&
663			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
664			      || rn_refines(netmask, tt->rn_mask)
665			      || rn_lexobetter(netmask, tt->rn_mask))))
666				break;
667		}
668		/*
669		 * If the mask is not duplicated, we wouldn't
670		 * find it among possible duplicate key entries
671		 * anyway, so the above test doesn't hurt.
672		 *
673		 * We sort the masks for a duplicated key the same way as
674		 * in a masklist -- most specific to least specific.
675		 * This may require the unfortunate nuisance of relocating
676		 * the head of the list.
677		 *
678		 * We also reverse, or doubly link the list through the
679		 * parent pointer.
680		 */
681		if (tt == saved_tt) {
682			struct	radix_node *xx = x;
683			/* link in at head of list */
684			(tt = treenodes)->rn_dupedkey = t;
685			tt->rn_flags = t->rn_flags;
686			tt->rn_parent = x = t->rn_parent;
687			t->rn_parent = tt;	 		/* parent */
688			if (x->rn_left == t)
689				x->rn_left = tt;
690			else
691				x->rn_right = tt;
692			saved_tt = tt; x = xx;
693		} else {
694			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
695			t->rn_dupedkey = tt;
696			tt->rn_parent = t;			/* parent */
697			if (tt->rn_dupedkey)			/* parent */
698				tt->rn_dupedkey->rn_parent = tt; /* parent */
699		}
700#ifdef RN_DEBUG
701		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
702		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
703#endif
704		tt->rn_key = (caddr_t) v;
705		tt->rn_bit = -1;
706		tt->rn_flags = RNF_ACTIVE;
707	}
708	/*
709	 * Put mask in tree.
710	 */
711	if (netmask) {
712		tt->rn_mask = netmask;
713		tt->rn_bit = x->rn_bit;
714		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
715	}
716	t = saved_tt->rn_parent;
717	if (keyduplicated)
718		goto on2;
719	b_leaf = -1 - t->rn_bit;
720	if (t->rn_right == saved_tt)
721		x = t->rn_left;
722	else
723		x = t->rn_right;
724	/* Promote general routes from below */
725	if (x->rn_bit < 0) {
726	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
727		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
728			*mp = m = rn_new_radix_mask(x, 0);
729			if (m)
730				mp = &m->rm_mklist;
731		}
732	} else if (x->rn_mklist) {
733		/*
734		 * Skip over masks whose index is > that of new node
735		 */
736		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
737			if (m->rm_bit >= b_leaf)
738				break;
739		t->rn_mklist = m; *mp = 0;
740	}
741on2:
742	/* Add new route to highest possible ancestor's list */
743	if ((netmask == 0) || (b > t->rn_bit ))
744		return tt; /* can't lift at all */
745	b_leaf = tt->rn_bit;
746	do {
747		x = t;
748		t = t->rn_parent;
749	} while (b <= t->rn_bit && x != top);
750	/*
751	 * Search through routes associated with node to
752	 * insert new route according to index.
753	 * Need same criteria as when sorting dupedkeys to avoid
754	 * double loop on deletion.
755	 */
756	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
757		if (m->rm_bit < b_leaf)
758			continue;
759		if (m->rm_bit > b_leaf)
760			break;
761		if (m->rm_flags & RNF_NORMAL) {
762			mmask = m->rm_leaf->rn_mask;
763			if (tt->rn_flags & RNF_NORMAL) {
764			    log(LOG_ERR,
765			        "Non-unique normal route, mask not entered\n");
766				return tt;
767			}
768		} else
769			mmask = m->rm_mask;
770		if (mmask == netmask) {
771			m->rm_refs++;
772			tt->rn_mklist = m;
773			return tt;
774		}
775		if (rn_refines(netmask, mmask)
776		    || rn_lexobetter(netmask, mmask))
777			break;
778	}
779	*mp = rn_new_radix_mask(tt, *mp);
780	return tt;
781}
782
783struct radix_node *
784rn_delete(v_arg, netmask_arg, head)
785	void *v_arg, *netmask_arg;
786	struct radix_node_head *head;
787{
788	register struct radix_node *t, *p, *x, *tt;
789	struct radix_mask *m, *saved_m, **mp;
790	struct radix_node *dupedkey, *saved_tt, *top;
791	caddr_t v, netmask;
792	int b, head_off, vlen;
793
794	RADIX_NODE_HEAD_WLOCK_ASSERT(head);
795	v = v_arg;
796	netmask = netmask_arg;
797	x = head->rnh_treetop;
798	tt = rn_search(v, x);
799	head_off = x->rn_offset;
800	vlen =  LEN(v);
801	saved_tt = tt;
802	top = x;
803	if (tt == 0 ||
804	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
805		return (0);
806	/*
807	 * Delete our route from mask lists.
808	 */
809	if (netmask) {
810		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
811			return (0);
812		netmask = x->rn_key;
813		while (tt->rn_mask != netmask)
814			if ((tt = tt->rn_dupedkey) == 0)
815				return (0);
816	}
817	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
818		goto on1;
819	if (tt->rn_flags & RNF_NORMAL) {
820		if (m->rm_leaf != tt || m->rm_refs > 0) {
821			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
822			return 0;  /* dangling ref could cause disaster */
823		}
824	} else {
825		if (m->rm_mask != tt->rn_mask) {
826			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
827			goto on1;
828		}
829		if (--m->rm_refs >= 0)
830			goto on1;
831	}
832	b = -1 - tt->rn_bit;
833	t = saved_tt->rn_parent;
834	if (b > t->rn_bit)
835		goto on1; /* Wasn't lifted at all */
836	do {
837		x = t;
838		t = t->rn_parent;
839	} while (b <= t->rn_bit && x != top);
840	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
841		if (m == saved_m) {
842			*mp = m->rm_mklist;
843			MKFree(m);
844			break;
845		}
846	if (m == 0) {
847		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
848		if (tt->rn_flags & RNF_NORMAL)
849			return (0); /* Dangling ref to us */
850	}
851on1:
852	/*
853	 * Eliminate us from tree
854	 */
855	if (tt->rn_flags & RNF_ROOT)
856		return (0);
857#ifdef RN_DEBUG
858	/* Get us out of the creation list */
859	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
860	if (t) t->rn_ybro = tt->rn_ybro;
861#endif
862	t = tt->rn_parent;
863	dupedkey = saved_tt->rn_dupedkey;
864	if (dupedkey) {
865		/*
866		 * Here, tt is the deletion target and
867		 * saved_tt is the head of the dupekey chain.
868		 */
869		if (tt == saved_tt) {
870			/* remove from head of chain */
871			x = dupedkey; x->rn_parent = t;
872			if (t->rn_left == tt)
873				t->rn_left = x;
874			else
875				t->rn_right = x;
876		} else {
877			/* find node in front of tt on the chain */
878			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
879				p = p->rn_dupedkey;
880			if (p) {
881				p->rn_dupedkey = tt->rn_dupedkey;
882				if (tt->rn_dupedkey)		/* parent */
883					tt->rn_dupedkey->rn_parent = p;
884								/* parent */
885			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
886		}
887		t = tt + 1;
888		if  (t->rn_flags & RNF_ACTIVE) {
889#ifndef RN_DEBUG
890			*++x = *t;
891			p = t->rn_parent;
892#else
893			b = t->rn_info;
894			*++x = *t;
895			t->rn_info = b;
896			p = t->rn_parent;
897#endif
898			if (p->rn_left == t)
899				p->rn_left = x;
900			else
901				p->rn_right = x;
902			x->rn_left->rn_parent = x;
903			x->rn_right->rn_parent = x;
904		}
905		goto out;
906	}
907	if (t->rn_left == tt)
908		x = t->rn_right;
909	else
910		x = t->rn_left;
911	p = t->rn_parent;
912	if (p->rn_right == t)
913		p->rn_right = x;
914	else
915		p->rn_left = x;
916	x->rn_parent = p;
917	/*
918	 * Demote routes attached to us.
919	 */
920	if (t->rn_mklist) {
921		if (x->rn_bit >= 0) {
922			for (mp = &x->rn_mklist; (m = *mp);)
923				mp = &m->rm_mklist;
924			*mp = t->rn_mklist;
925		} else {
926			/* If there are any key,mask pairs in a sibling
927			   duped-key chain, some subset will appear sorted
928			   in the same order attached to our mklist */
929			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
930				if (m == x->rn_mklist) {
931					struct radix_mask *mm = m->rm_mklist;
932					x->rn_mklist = 0;
933					if (--(m->rm_refs) < 0)
934						MKFree(m);
935					m = mm;
936				}
937			if (m)
938				log(LOG_ERR,
939				    "rn_delete: Orphaned Mask %p at %p\n",
940				    (void *)m, (void *)x);
941		}
942	}
943	/*
944	 * We may be holding an active internal node in the tree.
945	 */
946	x = tt + 1;
947	if (t != x) {
948#ifndef RN_DEBUG
949		*t = *x;
950#else
951		b = t->rn_info;
952		*t = *x;
953		t->rn_info = b;
954#endif
955		t->rn_left->rn_parent = t;
956		t->rn_right->rn_parent = t;
957		p = x->rn_parent;
958		if (p->rn_left == x)
959			p->rn_left = t;
960		else
961			p->rn_right = t;
962	}
963out:
964	tt->rn_flags &= ~RNF_ACTIVE;
965	tt[1].rn_flags &= ~RNF_ACTIVE;
966	return (tt);
967}
968
969/*
970 * This is the same as rn_walktree() except for the parameters and the
971 * exit.
972 */
973static int
974rn_walktree_from(h, a, m, f, w)
975	struct radix_node_head *h;
976	void *a, *m;
977	walktree_f_t *f;
978	void *w;
979{
980	int error;
981	struct radix_node *base, *next;
982	u_char *xa = (u_char *)a;
983	u_char *xm = (u_char *)m;
984	register struct radix_node *rn, *last = 0 /* shut up gcc */;
985	int stopping = 0;
986	int lastb;
987
988	RADIX_NODE_HEAD_LOCK_ASSERT(h);
989	/*
990	 * rn_search_m is sort-of-open-coded here. We cannot use the
991	 * function because we need to keep track of the last node seen.
992	 */
993	/* printf("about to search\n"); */
994	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
995		last = rn;
996		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
997		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
998		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
999			break;
1000		}
1001		if (rn->rn_bmask & xa[rn->rn_offset]) {
1002			rn = rn->rn_right;
1003		} else {
1004			rn = rn->rn_left;
1005		}
1006	}
1007	/* printf("done searching\n"); */
1008
1009	/*
1010	 * Two cases: either we stepped off the end of our mask,
1011	 * in which case last == rn, or we reached a leaf, in which
1012	 * case we want to start from the last node we looked at.
1013	 * Either way, last is the node we want to start from.
1014	 */
1015	rn = last;
1016	lastb = rn->rn_bit;
1017
1018	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1019
1020	/*
1021	 * This gets complicated because we may delete the node
1022	 * while applying the function f to it, so we need to calculate
1023	 * the successor node in advance.
1024	 */
1025	while (rn->rn_bit >= 0)
1026		rn = rn->rn_left;
1027
1028	while (!stopping) {
1029		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1030		base = rn;
1031		/* If at right child go back up, otherwise, go right */
1032		while (rn->rn_parent->rn_right == rn
1033		       && !(rn->rn_flags & RNF_ROOT)) {
1034			rn = rn->rn_parent;
1035
1036			/* if went up beyond last, stop */
1037			if (rn->rn_bit <= lastb) {
1038				stopping = 1;
1039				/* printf("up too far\n"); */
1040				/*
1041				 * XXX we should jump to the 'Process leaves'
1042				 * part, because the values of 'rn' and 'next'
1043				 * we compute will not be used. Not a big deal
1044				 * because this loop will terminate, but it is
1045				 * inefficient and hard to understand!
1046				 */
1047			}
1048		}
1049
1050		/*
1051		 * At the top of the tree, no need to traverse the right
1052		 * half, prevent the traversal of the entire tree in the
1053		 * case of default route.
1054		 */
1055		if (rn->rn_parent->rn_flags & RNF_ROOT)
1056			stopping = 1;
1057
1058		/* Find the next *leaf* since next node might vanish, too */
1059		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1060			rn = rn->rn_left;
1061		next = rn;
1062		/* Process leaves */
1063		while ((rn = base) != 0) {
1064			base = rn->rn_dupedkey;
1065			/* printf("leaf %p\n", rn); */
1066			if (!(rn->rn_flags & RNF_ROOT)
1067			    && (error = (*f)(rn, w)))
1068				return (error);
1069		}
1070		rn = next;
1071
1072		if (rn->rn_flags & RNF_ROOT) {
1073			/* printf("root, stopping"); */
1074			stopping = 1;
1075		}
1076
1077	}
1078	return 0;
1079}
1080
1081static int
1082rn_walktree(h, f, w)
1083	struct radix_node_head *h;
1084	walktree_f_t *f;
1085	void *w;
1086{
1087	int error;
1088	struct radix_node *base, *next;
1089	register struct radix_node *rn = h->rnh_treetop;
1090	/*
1091	 * This gets complicated because we may delete the node
1092	 * while applying the function f to it, so we need to calculate
1093	 * the successor node in advance.
1094	 */
1095
1096	RADIX_NODE_HEAD_LOCK_ASSERT(h);
1097	/* First time through node, go left */
1098	while (rn->rn_bit >= 0)
1099		rn = rn->rn_left;
1100	for (;;) {
1101		base = rn;
1102		/* If at right child go back up, otherwise, go right */
1103		while (rn->rn_parent->rn_right == rn
1104		       && (rn->rn_flags & RNF_ROOT) == 0)
1105			rn = rn->rn_parent;
1106		/* Find the next *leaf* since next node might vanish, too */
1107		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1108			rn = rn->rn_left;
1109		next = rn;
1110		/* Process leaves */
1111		while ((rn = base)) {
1112			base = rn->rn_dupedkey;
1113			if (!(rn->rn_flags & RNF_ROOT)
1114			    && (error = (*f)(rn, w)))
1115				return (error);
1116		}
1117		rn = next;
1118		if (rn->rn_flags & RNF_ROOT)
1119			return (0);
1120	}
1121	/* NOTREACHED */
1122}
1123
1124/*
1125 * Allocate and initialize an empty tree. This has 3 nodes, which are
1126 * part of the radix_node_head (in the order <left,root,right>) and are
1127 * marked RNF_ROOT so they cannot be freed.
1128 * The leaves have all-zero and all-one keys, with significant
1129 * bits starting at 'off'.
1130 * Return 1 on success, 0 on error.
1131 */
1132int
1133rn_inithead(head, off)
1134	void **head;
1135	int off;
1136{
1137	register struct radix_node_head *rnh;
1138	register struct radix_node *t, *tt, *ttt;
1139	if (*head)
1140		return (1);
1141	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1142	if (rnh == 0)
1143		return (0);
1144#ifdef _KERNEL
1145	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1146#endif
1147	*head = rnh;
1148	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1149	ttt = rnh->rnh_nodes + 2;
1150	t->rn_right = ttt;
1151	t->rn_parent = t;
1152	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1153	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1154	tt->rn_bit = -1 - off;
1155	*ttt = *tt;
1156	ttt->rn_key = rn_ones;
1157	rnh->rnh_addaddr = rn_addroute;
1158	rnh->rnh_deladdr = rn_delete;
1159	rnh->rnh_matchaddr = rn_match;
1160	rnh->rnh_lookup = rn_lookup;
1161	rnh->rnh_walktree = rn_walktree;
1162	rnh->rnh_walktree_from = rn_walktree_from;
1163	rnh->rnh_treetop = t;
1164	return (1);
1165}
1166
1167void
1168rn_init()
1169{
1170	char *cp, *cplim;
1171#ifdef _KERNEL
1172	struct domain *dom;
1173
1174	for (dom = domains; dom; dom = dom->dom_next)
1175		if (dom->dom_maxrtkey > max_keylen)
1176			max_keylen = dom->dom_maxrtkey;
1177#endif
1178	if (max_keylen == 0) {
1179		log(LOG_ERR,
1180		    "rn_init: radix functions require max_keylen be set\n");
1181		return;
1182	}
1183	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1184	if (rn_zeros == NULL)
1185		panic("rn_init");
1186	bzero(rn_zeros, 3 * max_keylen);
1187	rn_ones = cp = rn_zeros + max_keylen;
1188	addmask_key = cplim = rn_ones + max_keylen;
1189	while (cp < cplim)
1190		*cp++ = -1;
1191	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1192		panic("rn_init 2");
1193}
1194