if_fwsubr.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2004 Doug Rabson
5 * Copyright (c) 1982, 1989, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: stable/11/sys/net/if_fwsubr.c 330897 2018-03-14 03:19:51Z eadler $
33 */
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/netisr.h>
50#include <net/route.h>
51#include <net/if_llc.h>
52#include <net/if_dl.h>
53#include <net/if_types.h>
54#include <net/bpf.h>
55#include <net/firewire.h>
56#include <net/if_llatbl.h>
57
58#if defined(INET) || defined(INET6)
59#include <netinet/in.h>
60#include <netinet/in_var.h>
61#include <netinet/if_ether.h>
62#endif
63#ifdef INET6
64#include <netinet6/nd6.h>
65#endif
66
67#include <security/mac/mac_framework.h>
68
69static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
70
71struct fw_hwaddr firewire_broadcastaddr = {
72	0xffffffff,
73	0xffffffff,
74	0xff,
75	0xff,
76	0xffff,
77	0xffffffff
78};
79
80static int
81firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
82    struct route *ro)
83{
84	struct fw_com *fc = IFP2FWC(ifp);
85	int error, type;
86	struct m_tag *mtag;
87	union fw_encap *enc;
88	struct fw_hwaddr *destfw;
89	uint8_t speed;
90	uint16_t psize, fsize, dsize;
91	struct mbuf *mtail;
92	int unicast, dgl, foff;
93	static int next_dgl;
94#if defined(INET) || defined(INET6)
95	int is_gw = 0;
96#endif
97
98#ifdef MAC
99	error = mac_ifnet_check_transmit(ifp, m);
100	if (error)
101		goto bad;
102#endif
103
104	if (!((ifp->if_flags & IFF_UP) &&
105	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
106		error = ENETDOWN;
107		goto bad;
108	}
109
110#if defined(INET) || defined(INET6)
111	if (ro != NULL)
112		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
113#endif
114	/*
115	 * For unicast, we make a tag to store the lladdr of the
116	 * destination. This might not be the first time we have seen
117	 * the packet (for instance, the arp code might be trying to
118	 * re-send it after receiving an arp reply) so we only
119	 * allocate a tag if there isn't one there already. For
120	 * multicast, we will eventually use a different tag to store
121	 * the channel number.
122	 */
123	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
124	if (unicast) {
125		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
126		if (!mtag) {
127			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
128			    sizeof (struct fw_hwaddr), M_NOWAIT);
129			if (!mtag) {
130				error = ENOMEM;
131				goto bad;
132			}
133			m_tag_prepend(m, mtag);
134		}
135		destfw = (struct fw_hwaddr *)(mtag + 1);
136	} else {
137		destfw = NULL;
138	}
139
140	switch (dst->sa_family) {
141#ifdef INET
142	case AF_INET:
143		/*
144		 * Only bother with arp for unicast. Allocation of
145		 * channels etc. for firewire is quite different and
146		 * doesn't fit into the arp model.
147		 */
148		if (unicast) {
149			error = arpresolve(ifp, is_gw, m, dst,
150			    (u_char *) destfw, NULL, NULL);
151			if (error)
152				return (error == EWOULDBLOCK ? 0 : error);
153		}
154		type = ETHERTYPE_IP;
155		break;
156
157	case AF_ARP:
158	{
159		struct arphdr *ah;
160		ah = mtod(m, struct arphdr *);
161		ah->ar_hrd = htons(ARPHRD_IEEE1394);
162		type = ETHERTYPE_ARP;
163		if (unicast)
164			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
165
166		/*
167		 * The standard arp code leaves a hole for the target
168		 * hardware address which we need to close up.
169		 */
170		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
171		m_adj(m, -ah->ar_hln);
172		break;
173	}
174#endif
175
176#ifdef INET6
177	case AF_INET6:
178		if (unicast) {
179			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
180			    (u_char *) destfw, NULL, NULL);
181			if (error)
182				return (error == EWOULDBLOCK ? 0 : error);
183		}
184		type = ETHERTYPE_IPV6;
185		break;
186#endif
187
188	default:
189		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
190		error = EAFNOSUPPORT;
191		goto bad;
192	}
193
194	/*
195	 * Let BPF tap off a copy before we encapsulate.
196	 */
197	if (bpf_peers_present(ifp->if_bpf)) {
198		struct fw_bpfhdr h;
199		if (unicast)
200			bcopy(destfw, h.firewire_dhost, 8);
201		else
202			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
203		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
204		h.firewire_type = htons(type);
205		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
206	}
207
208	/*
209	 * Punt on MCAP for now and send all multicast packets on the
210	 * broadcast channel.
211	 */
212	if (m->m_flags & M_MCAST)
213		m->m_flags |= M_BCAST;
214
215	/*
216	 * Figure out what speed to use and what the largest supported
217	 * packet size is. For unicast, this is the minimum of what we
218	 * can speak and what they can hear. For broadcast, lets be
219	 * conservative and use S100. We could possibly improve that
220	 * by examining the bus manager's speed map or similar. We
221	 * also reduce the packet size for broadcast to account for
222	 * the GASP header.
223	 */
224	if (unicast) {
225		speed = min(fc->fc_speed, destfw->sspd);
226		psize = min(512 << speed, 2 << destfw->sender_max_rec);
227	} else {
228		speed = 0;
229		psize = 512 - 2*sizeof(uint32_t);
230	}
231
232	/*
233	 * Next, we encapsulate, possibly fragmenting the original
234	 * datagram if it won't fit into a single packet.
235	 */
236	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
237		/*
238		 * No fragmentation is necessary.
239		 */
240		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
241		if (!m) {
242			error = ENOBUFS;
243			goto bad;
244		}
245		enc = mtod(m, union fw_encap *);
246		enc->unfrag.ether_type = type;
247		enc->unfrag.lf = FW_ENCAP_UNFRAG;
248		enc->unfrag.reserved = 0;
249
250		/*
251		 * Byte swap the encapsulation header manually.
252		 */
253		enc->ul[0] = htonl(enc->ul[0]);
254
255		error = (ifp->if_transmit)(ifp, m);
256		return (error);
257	} else {
258		/*
259		 * Fragment the datagram, making sure to leave enough
260		 * space for the encapsulation header in each packet.
261		 */
262		fsize = psize - 2*sizeof(uint32_t);
263		dgl = next_dgl++;
264		dsize = m->m_pkthdr.len;
265		foff = 0;
266		while (m) {
267			if (m->m_pkthdr.len > fsize) {
268				/*
269				 * Split off the tail segment from the
270				 * datagram, copying our tags over.
271				 */
272				mtail = m_split(m, fsize, M_NOWAIT);
273				m_tag_copy_chain(mtail, m, M_NOWAIT);
274			} else {
275				mtail = NULL;
276			}
277
278			/*
279			 * Add our encapsulation header to this
280			 * fragment and hand it off to the link.
281			 */
282			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
283			if (!m) {
284				error = ENOBUFS;
285				goto bad;
286			}
287			enc = mtod(m, union fw_encap *);
288			if (foff == 0) {
289				enc->firstfrag.lf = FW_ENCAP_FIRST;
290				enc->firstfrag.reserved1 = 0;
291				enc->firstfrag.reserved2 = 0;
292				enc->firstfrag.datagram_size = dsize - 1;
293				enc->firstfrag.ether_type = type;
294				enc->firstfrag.dgl = dgl;
295			} else {
296				if (mtail)
297					enc->nextfrag.lf = FW_ENCAP_NEXT;
298				else
299					enc->nextfrag.lf = FW_ENCAP_LAST;
300				enc->nextfrag.reserved1 = 0;
301				enc->nextfrag.reserved2 = 0;
302				enc->nextfrag.reserved3 = 0;
303				enc->nextfrag.datagram_size = dsize - 1;
304				enc->nextfrag.fragment_offset = foff;
305				enc->nextfrag.dgl = dgl;
306			}
307			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
308
309			/*
310			 * Byte swap the encapsulation header manually.
311			 */
312			enc->ul[0] = htonl(enc->ul[0]);
313			enc->ul[1] = htonl(enc->ul[1]);
314
315			error = (ifp->if_transmit)(ifp, m);
316			if (error) {
317				if (mtail)
318					m_freem(mtail);
319				return (ENOBUFS);
320			}
321
322			m = mtail;
323		}
324
325		return (0);
326	}
327
328bad:
329	if (m)
330		m_freem(m);
331	return (error);
332}
333
334static struct mbuf *
335firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
336{
337	union fw_encap *enc;
338	struct fw_reass *r;
339	struct mbuf *mf, *mprev;
340	int dsize;
341	int fstart, fend, start, end, islast;
342	uint32_t id;
343
344	/*
345	 * Find an existing reassembly buffer or create a new one.
346	 */
347	enc = mtod(m, union fw_encap *);
348	id = enc->firstfrag.dgl | (src << 16);
349	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
350		if (r->fr_id == id)
351			break;
352	if (!r) {
353		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
354		if (!r) {
355			m_freem(m);
356			return 0;
357		}
358		r->fr_id = id;
359		r->fr_frags = 0;
360		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
361	}
362
363	/*
364	 * If this fragment overlaps any other fragment, we must discard
365	 * the partial reassembly and start again.
366	 */
367	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
368		fstart = 0;
369	else
370		fstart = enc->nextfrag.fragment_offset;
371	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
372	dsize = enc->nextfrag.datagram_size;
373	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
374
375	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
376		enc = mtod(mf, union fw_encap *);
377		if (enc->nextfrag.datagram_size != dsize) {
378			/*
379			 * This fragment must be from a different
380			 * packet.
381			 */
382			goto bad;
383		}
384		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
385			start = 0;
386		else
387			start = enc->nextfrag.fragment_offset;
388		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
389		if ((fstart < end && fend > start) ||
390		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
391			/*
392			 * Overlap - discard reassembly buffer and start
393			 * again with this fragment.
394			 */
395			goto bad;
396		}
397	}
398
399	/*
400	 * Find where to put this fragment in the list.
401	 */
402	for (mf = r->fr_frags, mprev = NULL; mf;
403	    mprev = mf, mf = mf->m_nextpkt) {
404		enc = mtod(mf, union fw_encap *);
405		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
406			start = 0;
407		else
408			start = enc->nextfrag.fragment_offset;
409		if (start >= fend)
410			break;
411	}
412
413	/*
414	 * If this is a last fragment and we are not adding at the end
415	 * of the list, discard the buffer.
416	 */
417	if (islast && mprev && mprev->m_nextpkt)
418		goto bad;
419
420	if (mprev) {
421		m->m_nextpkt = mprev->m_nextpkt;
422		mprev->m_nextpkt = m;
423
424		/*
425		 * Coalesce forwards and see if we can make a whole
426		 * datagram.
427		 */
428		enc = mtod(mprev, union fw_encap *);
429		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
430			start = 0;
431		else
432			start = enc->nextfrag.fragment_offset;
433		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
434		while (end == fstart) {
435			/*
436			 * Strip off the encap header from m and
437			 * append it to mprev, freeing m.
438			 */
439			m_adj(m, 2*sizeof(uint32_t));
440			mprev->m_nextpkt = m->m_nextpkt;
441			mprev->m_pkthdr.len += m->m_pkthdr.len;
442			m_cat(mprev, m);
443
444			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
445				/*
446				 * We have assembled a complete packet
447				 * we must be finished. Make sure we have
448				 * merged the whole chain.
449				 */
450				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
451				free(r, M_TEMP);
452				m = mprev->m_nextpkt;
453				while (m) {
454					mf = m->m_nextpkt;
455					m_freem(m);
456					m = mf;
457				}
458				mprev->m_nextpkt = NULL;
459
460				return (mprev);
461			}
462
463			/*
464			 * See if we can continue merging forwards.
465			 */
466			end = fend;
467			m = mprev->m_nextpkt;
468			if (m) {
469				enc = mtod(m, union fw_encap *);
470				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
471					fstart = 0;
472				else
473					fstart = enc->nextfrag.fragment_offset;
474				fend = fstart + m->m_pkthdr.len
475				    - 2*sizeof(uint32_t);
476			} else {
477				break;
478			}
479		}
480	} else {
481		m->m_nextpkt = 0;
482		r->fr_frags = m;
483	}
484
485	return (0);
486
487bad:
488	while (r->fr_frags) {
489		mf = r->fr_frags;
490		r->fr_frags = mf->m_nextpkt;
491		m_freem(mf);
492	}
493	m->m_nextpkt = 0;
494	r->fr_frags = m;
495
496	return (0);
497}
498
499void
500firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
501{
502	struct fw_com *fc = IFP2FWC(ifp);
503	union fw_encap *enc;
504	int type, isr;
505
506	/*
507	 * The caller has already stripped off the packet header
508	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
509	 * appropriately. We de-encapsulate the IP packet and pass it
510	 * up the line after handling link-level fragmentation.
511	 */
512	if (m->m_pkthdr.len < sizeof(uint32_t)) {
513		if_printf(ifp, "discarding frame without "
514		    "encapsulation header (len %u pkt len %u)\n",
515		    m->m_len, m->m_pkthdr.len);
516	}
517
518	m = m_pullup(m, sizeof(uint32_t));
519	if (m == NULL)
520		return;
521	enc = mtod(m, union fw_encap *);
522
523	/*
524	 * Byte swap the encapsulation header manually.
525	 */
526	enc->ul[0] = ntohl(enc->ul[0]);
527
528	if (enc->unfrag.lf != 0) {
529		m = m_pullup(m, 2*sizeof(uint32_t));
530		if (!m)
531			return;
532		enc = mtod(m, union fw_encap *);
533		enc->ul[1] = ntohl(enc->ul[1]);
534		m = firewire_input_fragment(fc, m, src);
535		if (!m)
536			return;
537		enc = mtod(m, union fw_encap *);
538		type = enc->firstfrag.ether_type;
539		m_adj(m, 2*sizeof(uint32_t));
540	} else {
541		type = enc->unfrag.ether_type;
542		m_adj(m, sizeof(uint32_t));
543	}
544
545	if (m->m_pkthdr.rcvif == NULL) {
546		if_printf(ifp, "discard frame w/o interface pointer\n");
547		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
548		m_freem(m);
549		return;
550	}
551#ifdef DIAGNOSTIC
552	if (m->m_pkthdr.rcvif != ifp) {
553		if_printf(ifp, "Warning, frame marked as received on %s\n",
554			m->m_pkthdr.rcvif->if_xname);
555	}
556#endif
557
558#ifdef MAC
559	/*
560	 * Tag the mbuf with an appropriate MAC label before any other
561	 * consumers can get to it.
562	 */
563	mac_ifnet_create_mbuf(ifp, m);
564#endif
565
566	/*
567	 * Give bpf a chance at the packet. The link-level driver
568	 * should have left us a tag with the EUID of the sender.
569	 */
570	if (bpf_peers_present(ifp->if_bpf)) {
571		struct fw_bpfhdr h;
572		struct m_tag *mtag;
573
574		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
575		if (mtag)
576			bcopy(mtag + 1, h.firewire_shost, 8);
577		else
578			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
579		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
580		h.firewire_type = htons(type);
581		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
582	}
583
584	if (ifp->if_flags & IFF_MONITOR) {
585		/*
586		 * Interface marked for monitoring; discard packet.
587		 */
588		m_freem(m);
589		return;
590	}
591
592	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
593
594	/* Discard packet if interface is not up */
595	if ((ifp->if_flags & IFF_UP) == 0) {
596		m_freem(m);
597		return;
598	}
599
600	if (m->m_flags & (M_BCAST|M_MCAST))
601		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
602
603	switch (type) {
604#ifdef INET
605	case ETHERTYPE_IP:
606		isr = NETISR_IP;
607		break;
608
609	case ETHERTYPE_ARP:
610	{
611		struct arphdr *ah;
612		ah = mtod(m, struct arphdr *);
613
614		/*
615		 * Adjust the arp packet to insert an empty tha slot.
616		 */
617		m->m_len += ah->ar_hln;
618		m->m_pkthdr.len += ah->ar_hln;
619		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
620		isr = NETISR_ARP;
621		break;
622	}
623#endif
624
625#ifdef INET6
626	case ETHERTYPE_IPV6:
627		isr = NETISR_IPV6;
628		break;
629#endif
630
631	default:
632		m_freem(m);
633		return;
634	}
635
636	M_SETFIB(m, ifp->if_fib);
637	netisr_dispatch(isr, m);
638}
639
640int
641firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
642{
643	struct ifaddr *ifa = (struct ifaddr *) data;
644	struct ifreq *ifr = (struct ifreq *) data;
645	int error = 0;
646
647	switch (command) {
648	case SIOCSIFADDR:
649		ifp->if_flags |= IFF_UP;
650
651		switch (ifa->ifa_addr->sa_family) {
652#ifdef INET
653		case AF_INET:
654			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
655			arp_ifinit(ifp, ifa);
656			break;
657#endif
658		default:
659			ifp->if_init(ifp->if_softc);
660			break;
661		}
662		break;
663
664	case SIOCGIFADDR:
665		{
666			struct sockaddr *sa;
667
668			sa = (struct sockaddr *) & ifr->ifr_data;
669			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
670			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
671		}
672		break;
673
674	case SIOCSIFMTU:
675		/*
676		 * Set the interface MTU.
677		 */
678		if (ifr->ifr_mtu > 1500) {
679			error = EINVAL;
680		} else {
681			ifp->if_mtu = ifr->ifr_mtu;
682		}
683		break;
684	default:
685		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
686		break;
687	}
688	return (error);
689}
690
691static int
692firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
693    struct sockaddr *sa)
694{
695#ifdef INET
696	struct sockaddr_in *sin;
697#endif
698#ifdef INET6
699	struct sockaddr_in6 *sin6;
700#endif
701
702	switch(sa->sa_family) {
703	case AF_LINK:
704		/*
705		 * No mapping needed.
706		 */
707		*llsa = NULL;
708		return 0;
709
710#ifdef INET
711	case AF_INET:
712		sin = (struct sockaddr_in *)sa;
713		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
714			return EADDRNOTAVAIL;
715		*llsa = NULL;
716		return 0;
717#endif
718#ifdef INET6
719	case AF_INET6:
720		sin6 = (struct sockaddr_in6 *)sa;
721		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
722			/*
723			 * An IP6 address of 0 means listen to all
724			 * of the Ethernet multicast address used for IP6.
725			 * (This is used for multicast routers.)
726			 */
727			ifp->if_flags |= IFF_ALLMULTI;
728			*llsa = NULL;
729			return 0;
730		}
731		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
732			return EADDRNOTAVAIL;
733		*llsa = NULL;
734		return 0;
735#endif
736
737	default:
738		/*
739		 * Well, the text isn't quite right, but it's the name
740		 * that counts...
741		 */
742		return EAFNOSUPPORT;
743	}
744}
745
746void
747firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
748{
749	struct fw_com *fc = IFP2FWC(ifp);
750	struct ifaddr *ifa;
751	struct sockaddr_dl *sdl;
752	static const char* speeds[] = {
753		"S100", "S200", "S400", "S800",
754		"S1600", "S3200"
755	};
756
757	fc->fc_speed = llc->sspd;
758	STAILQ_INIT(&fc->fc_frags);
759
760	ifp->if_addrlen = sizeof(struct fw_hwaddr);
761	ifp->if_hdrlen = 0;
762	if_attach(ifp);
763	ifp->if_mtu = 1500;	/* XXX */
764	ifp->if_output = firewire_output;
765	ifp->if_resolvemulti = firewire_resolvemulti;
766	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
767
768	ifa = ifp->if_addr;
769	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
770	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
771	sdl->sdl_type = IFT_IEEE1394;
772	sdl->sdl_alen = ifp->if_addrlen;
773	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
774
775	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
776	    sizeof(struct fw_hwaddr));
777
778	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
779	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
780	    ntohs(llc->sender_unicast_FIFO_hi),
781	    ntohl(llc->sender_unicast_FIFO_lo),
782	    speeds[llc->sspd],
783	    (2 << llc->sender_max_rec));
784}
785
786void
787firewire_ifdetach(struct ifnet *ifp)
788{
789	bpfdetach(ifp);
790	if_detach(ifp);
791}
792
793void
794firewire_busreset(struct ifnet *ifp)
795{
796	struct fw_com *fc = IFP2FWC(ifp);
797	struct fw_reass *r;
798	struct mbuf *m;
799
800	/*
801	 * Discard any partial datagrams since the host ids may have changed.
802	 */
803	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
804		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
805		while (r->fr_frags) {
806			m = r->fr_frags;
807			r->fr_frags = m->m_nextpkt;
808			m_freem(m);
809		}
810		free(r, M_TEMP);
811	}
812}
813
814static void *
815firewire_alloc(u_char type, struct ifnet *ifp)
816{
817	struct fw_com	*fc;
818
819	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
820	fc->fc_ifp = ifp;
821
822	return (fc);
823}
824
825static void
826firewire_free(void *com, u_char type)
827{
828
829	free(com, M_FWCOM);
830}
831
832static int
833firewire_modevent(module_t mod, int type, void *data)
834{
835
836	switch (type) {
837	case MOD_LOAD:
838		if_register_com_alloc(IFT_IEEE1394,
839		    firewire_alloc, firewire_free);
840		break;
841	case MOD_UNLOAD:
842		if_deregister_com_alloc(IFT_IEEE1394);
843		break;
844	default:
845		return (EOPNOTSUPP);
846	}
847
848	return (0);
849}
850
851static moduledata_t firewire_mod = {
852	"if_firewire",
853	firewire_modevent,
854	0
855};
856
857DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
858MODULE_VERSION(if_firewire, 1);
859