1/*-
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: stable/11/sys/net/if_fwsubr.c 369819 2021-05-17 10:01:37Z avatar $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/module.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/netisr.h>
48#include <net/route.h>
49#include <net/if_llc.h>
50#include <net/if_dl.h>
51#include <net/if_types.h>
52#include <net/bpf.h>
53#include <net/firewire.h>
54#include <net/if_llatbl.h>
55
56#if defined(INET) || defined(INET6)
57#include <netinet/in.h>
58#include <netinet/in_var.h>
59#include <netinet/if_ether.h>
60#endif
61#ifdef INET6
62#include <netinet6/nd6.h>
63#endif
64
65#include <security/mac/mac_framework.h>
66
67static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68
69struct fw_hwaddr firewire_broadcastaddr = {
70	0xffffffff,
71	0xffffffff,
72	0xff,
73	0xff,
74	0xffff,
75	0xffffffff
76};
77
78static int
79firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
80    struct route *ro)
81{
82	struct fw_com *fc = IFP2FWC(ifp);
83	int error, type;
84	struct m_tag *mtag;
85	union fw_encap *enc;
86	struct fw_hwaddr *destfw;
87	uint8_t speed;
88	uint16_t psize, fsize, dsize;
89	struct mbuf *mtail;
90	int unicast, dgl, foff;
91	static int next_dgl;
92#if defined(INET) || defined(INET6)
93	int is_gw = 0;
94#endif
95
96#ifdef MAC
97	error = mac_ifnet_check_transmit(ifp, m);
98	if (error)
99		goto bad;
100#endif
101
102	if (!((ifp->if_flags & IFF_UP) &&
103	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
104		error = ENETDOWN;
105		goto bad;
106	}
107
108#if defined(INET) || defined(INET6)
109	if (ro != NULL)
110		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
111#endif
112	/*
113	 * For unicast, we make a tag to store the lladdr of the
114	 * destination. This might not be the first time we have seen
115	 * the packet (for instance, the arp code might be trying to
116	 * re-send it after receiving an arp reply) so we only
117	 * allocate a tag if there isn't one there already. For
118	 * multicast, we will eventually use a different tag to store
119	 * the channel number.
120	 */
121	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
122	if (unicast) {
123		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
124		if (!mtag) {
125			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
126			    sizeof (struct fw_hwaddr), M_NOWAIT);
127			if (!mtag) {
128				error = ENOMEM;
129				goto bad;
130			}
131			m_tag_prepend(m, mtag);
132		}
133		destfw = (struct fw_hwaddr *)(mtag + 1);
134	} else {
135		destfw = NULL;
136	}
137
138	switch (dst->sa_family) {
139#ifdef INET
140	case AF_INET:
141		/*
142		 * Only bother with arp for unicast. Allocation of
143		 * channels etc. for firewire is quite different and
144		 * doesn't fit into the arp model.
145		 */
146		if (unicast) {
147			error = arpresolve(ifp, is_gw, m, dst,
148			    (u_char *) destfw, NULL, NULL);
149			if (error)
150				return (error == EWOULDBLOCK ? 0 : error);
151		}
152		type = ETHERTYPE_IP;
153		break;
154
155	case AF_ARP:
156	{
157		struct arphdr *ah;
158		ah = mtod(m, struct arphdr *);
159		ah->ar_hrd = htons(ARPHRD_IEEE1394);
160		type = ETHERTYPE_ARP;
161		if (unicast)
162			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
163
164		/*
165		 * The standard arp code leaves a hole for the target
166		 * hardware address which we need to close up.
167		 */
168		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
169		m_adj(m, -ah->ar_hln);
170		break;
171	}
172#endif
173
174#ifdef INET6
175	case AF_INET6:
176		if (unicast) {
177			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
178			    (u_char *) destfw, NULL, NULL);
179			if (error)
180				return (error == EWOULDBLOCK ? 0 : error);
181		}
182		type = ETHERTYPE_IPV6;
183		break;
184#endif
185
186	default:
187		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
188		error = EAFNOSUPPORT;
189		goto bad;
190	}
191
192	/*
193	 * Let BPF tap off a copy before we encapsulate.
194	 */
195	if (bpf_peers_present(ifp->if_bpf)) {
196		struct fw_bpfhdr h;
197		if (unicast)
198			bcopy(destfw, h.firewire_dhost, 8);
199		else
200			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
201		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
202		h.firewire_type = htons(type);
203		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
204	}
205
206	/*
207	 * Punt on MCAP for now and send all multicast packets on the
208	 * broadcast channel.
209	 */
210	if (m->m_flags & M_MCAST)
211		m->m_flags |= M_BCAST;
212
213	/*
214	 * Figure out what speed to use and what the largest supported
215	 * packet size is. For unicast, this is the minimum of what we
216	 * can speak and what they can hear. For broadcast, lets be
217	 * conservative and use S100. We could possibly improve that
218	 * by examining the bus manager's speed map or similar. We
219	 * also reduce the packet size for broadcast to account for
220	 * the GASP header.
221	 */
222	if (unicast) {
223		speed = min(fc->fc_speed, destfw->sspd);
224		psize = min(512 << speed, 2 << destfw->sender_max_rec);
225	} else {
226		speed = 0;
227		psize = 512 - 2*sizeof(uint32_t);
228	}
229
230	/*
231	 * Next, we encapsulate, possibly fragmenting the original
232	 * datagram if it won't fit into a single packet.
233	 */
234	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
235		/*
236		 * No fragmentation is necessary.
237		 */
238		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
239		if (!m) {
240			error = ENOBUFS;
241			goto bad;
242		}
243		enc = mtod(m, union fw_encap *);
244		enc->unfrag.ether_type = type;
245		enc->unfrag.lf = FW_ENCAP_UNFRAG;
246		enc->unfrag.reserved = 0;
247
248		/*
249		 * Byte swap the encapsulation header manually.
250		 */
251		enc->ul[0] = htonl(enc->ul[0]);
252
253		error = (ifp->if_transmit)(ifp, m);
254		return (error);
255	} else {
256		/*
257		 * Fragment the datagram, making sure to leave enough
258		 * space for the encapsulation header in each packet.
259		 */
260		fsize = psize - 2*sizeof(uint32_t);
261		dgl = next_dgl++;
262		dsize = m->m_pkthdr.len;
263		foff = 0;
264		while (m) {
265			if (m->m_pkthdr.len > fsize) {
266				/*
267				 * Split off the tail segment from the
268				 * datagram, copying our tags over.
269				 */
270				mtail = m_split(m, fsize, M_NOWAIT);
271				m_tag_copy_chain(mtail, m, M_NOWAIT);
272			} else {
273				mtail = NULL;
274			}
275
276			/*
277			 * Add our encapsulation header to this
278			 * fragment and hand it off to the link.
279			 */
280			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
281			if (!m) {
282				error = ENOBUFS;
283				goto bad;
284			}
285			enc = mtod(m, union fw_encap *);
286			if (foff == 0) {
287				enc->firstfrag.lf = FW_ENCAP_FIRST;
288				enc->firstfrag.reserved1 = 0;
289				enc->firstfrag.reserved2 = 0;
290				enc->firstfrag.datagram_size = dsize - 1;
291				enc->firstfrag.ether_type = type;
292				enc->firstfrag.dgl = dgl;
293			} else {
294				if (mtail)
295					enc->nextfrag.lf = FW_ENCAP_NEXT;
296				else
297					enc->nextfrag.lf = FW_ENCAP_LAST;
298				enc->nextfrag.reserved1 = 0;
299				enc->nextfrag.reserved2 = 0;
300				enc->nextfrag.reserved3 = 0;
301				enc->nextfrag.datagram_size = dsize - 1;
302				enc->nextfrag.fragment_offset = foff;
303				enc->nextfrag.dgl = dgl;
304			}
305			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
306
307			/*
308			 * Byte swap the encapsulation header manually.
309			 */
310			enc->ul[0] = htonl(enc->ul[0]);
311			enc->ul[1] = htonl(enc->ul[1]);
312
313			error = (ifp->if_transmit)(ifp, m);
314			if (error) {
315				if (mtail)
316					m_freem(mtail);
317				return (ENOBUFS);
318			}
319
320			m = mtail;
321		}
322
323		return (0);
324	}
325
326bad:
327	if (m)
328		m_freem(m);
329	return (error);
330}
331
332static struct mbuf *
333firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
334{
335	union fw_encap *enc;
336	struct fw_reass *r;
337	struct mbuf *mf, *mprev;
338	int dsize;
339	int fstart, fend, start, end, islast;
340	uint32_t id;
341
342	/*
343	 * Find an existing reassembly buffer or create a new one.
344	 */
345	enc = mtod(m, union fw_encap *);
346	id = enc->firstfrag.dgl | (src << 16);
347	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
348		if (r->fr_id == id)
349			break;
350	if (!r) {
351		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
352		if (!r) {
353			m_freem(m);
354			return 0;
355		}
356		r->fr_id = id;
357		r->fr_frags = 0;
358		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
359	}
360
361	/*
362	 * If this fragment overlaps any other fragment, we must discard
363	 * the partial reassembly and start again.
364	 */
365	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
366		fstart = 0;
367	else
368		fstart = enc->nextfrag.fragment_offset;
369	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
370	dsize = enc->nextfrag.datagram_size;
371	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
372
373	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
374		enc = mtod(mf, union fw_encap *);
375		if (enc->nextfrag.datagram_size != dsize) {
376			/*
377			 * This fragment must be from a different
378			 * packet.
379			 */
380			goto bad;
381		}
382		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
383			start = 0;
384		else
385			start = enc->nextfrag.fragment_offset;
386		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
387		if ((fstart < end && fend > start) ||
388		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
389			/*
390			 * Overlap - discard reassembly buffer and start
391			 * again with this fragment.
392			 */
393			goto bad;
394		}
395	}
396
397	/*
398	 * Find where to put this fragment in the list.
399	 */
400	for (mf = r->fr_frags, mprev = NULL; mf;
401	    mprev = mf, mf = mf->m_nextpkt) {
402		enc = mtod(mf, union fw_encap *);
403		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
404			start = 0;
405		else
406			start = enc->nextfrag.fragment_offset;
407		if (start >= fend)
408			break;
409	}
410
411	/*
412	 * If this is a last fragment and we are not adding at the end
413	 * of the list, discard the buffer.
414	 */
415	if (islast && mprev && mprev->m_nextpkt)
416		goto bad;
417
418	if (mprev) {
419		m->m_nextpkt = mprev->m_nextpkt;
420		mprev->m_nextpkt = m;
421
422		/*
423		 * Coalesce forwards and see if we can make a whole
424		 * datagram.
425		 */
426		enc = mtod(mprev, union fw_encap *);
427		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
428			start = 0;
429		else
430			start = enc->nextfrag.fragment_offset;
431		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
432		while (end == fstart) {
433			/*
434			 * Strip off the encap header from m and
435			 * append it to mprev, freeing m.
436			 */
437			m_adj(m, 2*sizeof(uint32_t));
438			mprev->m_nextpkt = m->m_nextpkt;
439			mprev->m_pkthdr.len += m->m_pkthdr.len;
440			m_cat(mprev, m);
441
442			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
443				/*
444				 * We have assembled a complete packet
445				 * we must be finished. Make sure we have
446				 * merged the whole chain.
447				 */
448				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
449				free(r, M_TEMP);
450				m = mprev->m_nextpkt;
451				while (m) {
452					mf = m->m_nextpkt;
453					m_freem(m);
454					m = mf;
455				}
456				mprev->m_nextpkt = NULL;
457
458				return (mprev);
459			}
460
461			/*
462			 * See if we can continue merging forwards.
463			 */
464			end = fend;
465			m = mprev->m_nextpkt;
466			if (m) {
467				enc = mtod(m, union fw_encap *);
468				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
469					fstart = 0;
470				else
471					fstart = enc->nextfrag.fragment_offset;
472				fend = fstart + m->m_pkthdr.len
473				    - 2*sizeof(uint32_t);
474			} else {
475				break;
476			}
477		}
478	} else {
479		m->m_nextpkt = 0;
480		r->fr_frags = m;
481	}
482
483	return (0);
484
485bad:
486	while (r->fr_frags) {
487		mf = r->fr_frags;
488		r->fr_frags = mf->m_nextpkt;
489		m_freem(mf);
490	}
491	m->m_nextpkt = 0;
492	r->fr_frags = m;
493
494	return (0);
495}
496
497void
498firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
499{
500	struct fw_com *fc = IFP2FWC(ifp);
501	union fw_encap *enc;
502	int type, isr;
503
504	/*
505	 * The caller has already stripped off the packet header
506	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
507	 * appropriately. We de-encapsulate the IP packet and pass it
508	 * up the line after handling link-level fragmentation.
509	 */
510	if (m->m_pkthdr.len < sizeof(uint32_t)) {
511		if_printf(ifp, "discarding frame without "
512		    "encapsulation header (len %u pkt len %u)\n",
513		    m->m_len, m->m_pkthdr.len);
514	}
515
516	m = m_pullup(m, sizeof(uint32_t));
517	if (m == NULL)
518		return;
519	enc = mtod(m, union fw_encap *);
520
521	/*
522	 * Byte swap the encapsulation header manually.
523	 */
524	enc->ul[0] = ntohl(enc->ul[0]);
525
526	if (enc->unfrag.lf != 0) {
527		m = m_pullup(m, 2*sizeof(uint32_t));
528		if (!m)
529			return;
530		enc = mtod(m, union fw_encap *);
531		enc->ul[1] = ntohl(enc->ul[1]);
532		m = firewire_input_fragment(fc, m, src);
533		if (!m)
534			return;
535		enc = mtod(m, union fw_encap *);
536		type = enc->firstfrag.ether_type;
537		m_adj(m, 2*sizeof(uint32_t));
538	} else {
539		type = enc->unfrag.ether_type;
540		m_adj(m, sizeof(uint32_t));
541	}
542
543	if (m->m_pkthdr.rcvif == NULL) {
544		if_printf(ifp, "discard frame w/o interface pointer\n");
545		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
546		m_freem(m);
547		return;
548	}
549#ifdef DIAGNOSTIC
550	if (m->m_pkthdr.rcvif != ifp) {
551		if_printf(ifp, "Warning, frame marked as received on %s\n",
552			m->m_pkthdr.rcvif->if_xname);
553	}
554#endif
555
556#ifdef MAC
557	/*
558	 * Tag the mbuf with an appropriate MAC label before any other
559	 * consumers can get to it.
560	 */
561	mac_ifnet_create_mbuf(ifp, m);
562#endif
563
564	/*
565	 * Give bpf a chance at the packet. The link-level driver
566	 * should have left us a tag with the EUID of the sender.
567	 */
568	if (bpf_peers_present(ifp->if_bpf)) {
569		struct fw_bpfhdr h;
570		struct m_tag *mtag;
571
572		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
573		if (mtag)
574			bcopy(mtag + 1, h.firewire_shost, 8);
575		else
576			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
577		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
578		h.firewire_type = htons(type);
579		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
580	}
581
582	if (ifp->if_flags & IFF_MONITOR) {
583		/*
584		 * Interface marked for monitoring; discard packet.
585		 */
586		m_freem(m);
587		return;
588	}
589
590	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
591
592	/* Discard packet if interface is not up */
593	if ((ifp->if_flags & IFF_UP) == 0) {
594		m_freem(m);
595		return;
596	}
597
598	if (m->m_flags & (M_BCAST|M_MCAST))
599		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
600
601	switch (type) {
602#ifdef INET
603	case ETHERTYPE_IP:
604		isr = NETISR_IP;
605		break;
606
607	case ETHERTYPE_ARP:
608	{
609		struct arphdr *ah;
610		ah = mtod(m, struct arphdr *);
611
612		/*
613		 * Adjust the arp packet to insert an empty tha slot.
614		 */
615		m->m_len += ah->ar_hln;
616		m->m_pkthdr.len += ah->ar_hln;
617		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
618		isr = NETISR_ARP;
619		break;
620	}
621#endif
622
623#ifdef INET6
624	case ETHERTYPE_IPV6:
625		isr = NETISR_IPV6;
626		break;
627#endif
628
629	default:
630		m_freem(m);
631		return;
632	}
633
634	M_SETFIB(m, ifp->if_fib);
635	CURVNET_SET_QUIET(ifp->if_vnet);
636	netisr_dispatch(isr, m);
637	CURVNET_RESTORE();
638}
639
640int
641firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
642{
643	struct ifaddr *ifa = (struct ifaddr *) data;
644	struct ifreq *ifr = (struct ifreq *) data;
645	int error = 0;
646
647	switch (command) {
648	case SIOCSIFADDR:
649		ifp->if_flags |= IFF_UP;
650
651		switch (ifa->ifa_addr->sa_family) {
652#ifdef INET
653		case AF_INET:
654			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
655			arp_ifinit(ifp, ifa);
656			break;
657#endif
658		default:
659			ifp->if_init(ifp->if_softc);
660			break;
661		}
662		break;
663
664	case SIOCGIFADDR:
665		bcopy(&IFP2FWC(ifp)->fc_hwaddr, &ifr->ifr_addr.sa_data[0],
666		    sizeof(struct fw_hwaddr));
667		break;
668
669	case SIOCSIFMTU:
670		/*
671		 * Set the interface MTU.
672		 */
673		if (ifr->ifr_mtu > 1500) {
674			error = EINVAL;
675		} else {
676			ifp->if_mtu = ifr->ifr_mtu;
677		}
678		break;
679	default:
680		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
681		break;
682	}
683	return (error);
684}
685
686static int
687firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
688    struct sockaddr *sa)
689{
690#ifdef INET
691	struct sockaddr_in *sin;
692#endif
693#ifdef INET6
694	struct sockaddr_in6 *sin6;
695#endif
696
697	switch(sa->sa_family) {
698	case AF_LINK:
699		/*
700		 * No mapping needed.
701		 */
702		*llsa = NULL;
703		return 0;
704
705#ifdef INET
706	case AF_INET:
707		sin = (struct sockaddr_in *)sa;
708		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
709			return EADDRNOTAVAIL;
710		*llsa = NULL;
711		return 0;
712#endif
713#ifdef INET6
714	case AF_INET6:
715		sin6 = (struct sockaddr_in6 *)sa;
716		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
717			/*
718			 * An IP6 address of 0 means listen to all
719			 * of the Ethernet multicast address used for IP6.
720			 * (This is used for multicast routers.)
721			 */
722			ifp->if_flags |= IFF_ALLMULTI;
723			*llsa = NULL;
724			return 0;
725		}
726		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
727			return EADDRNOTAVAIL;
728		*llsa = NULL;
729		return 0;
730#endif
731
732	default:
733		/*
734		 * Well, the text isn't quite right, but it's the name
735		 * that counts...
736		 */
737		return EAFNOSUPPORT;
738	}
739}
740
741void
742firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
743{
744	struct fw_com *fc = IFP2FWC(ifp);
745	struct ifaddr *ifa;
746	struct sockaddr_dl *sdl;
747	static const char* speeds[] = {
748		"S100", "S200", "S400", "S800",
749		"S1600", "S3200"
750	};
751
752	fc->fc_speed = llc->sspd;
753	STAILQ_INIT(&fc->fc_frags);
754
755	ifp->if_addrlen = sizeof(struct fw_hwaddr);
756	ifp->if_hdrlen = 0;
757	if_attach(ifp);
758	ifp->if_mtu = 1500;	/* XXX */
759	ifp->if_output = firewire_output;
760	ifp->if_resolvemulti = firewire_resolvemulti;
761	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
762
763	ifa = ifp->if_addr;
764	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
765	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
766	sdl->sdl_type = IFT_IEEE1394;
767	sdl->sdl_alen = ifp->if_addrlen;
768	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
769
770	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
771	    sizeof(struct fw_hwaddr));
772
773	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
774	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
775	    ntohs(llc->sender_unicast_FIFO_hi),
776	    ntohl(llc->sender_unicast_FIFO_lo),
777	    speeds[llc->sspd],
778	    (2 << llc->sender_max_rec));
779}
780
781void
782firewire_ifdetach(struct ifnet *ifp)
783{
784	bpfdetach(ifp);
785	if_detach(ifp);
786}
787
788void
789firewire_busreset(struct ifnet *ifp)
790{
791	struct fw_com *fc = IFP2FWC(ifp);
792	struct fw_reass *r;
793	struct mbuf *m;
794
795	/*
796	 * Discard any partial datagrams since the host ids may have changed.
797	 */
798	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
799		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
800		while (r->fr_frags) {
801			m = r->fr_frags;
802			r->fr_frags = m->m_nextpkt;
803			m_freem(m);
804		}
805		free(r, M_TEMP);
806	}
807}
808
809static void *
810firewire_alloc(u_char type, struct ifnet *ifp)
811{
812	struct fw_com	*fc;
813
814	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
815	fc->fc_ifp = ifp;
816
817	return (fc);
818}
819
820static void
821firewire_free(void *com, u_char type)
822{
823
824	free(com, M_FWCOM);
825}
826
827static int
828firewire_modevent(module_t mod, int type, void *data)
829{
830
831	switch (type) {
832	case MOD_LOAD:
833		if_register_com_alloc(IFT_IEEE1394,
834		    firewire_alloc, firewire_free);
835		break;
836	case MOD_UNLOAD:
837		if_deregister_com_alloc(IFT_IEEE1394);
838		break;
839	default:
840		return (EOPNOTSUPP);
841	}
842
843	return (0);
844}
845
846static moduledata_t firewire_mod = {
847	"if_firewire",
848	firewire_modevent,
849	0
850};
851
852DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
853MODULE_VERSION(if_firewire, 1);
854