if_fwsubr.c revision 287861
1/*-
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/net/if_fwsubr.c 287861 2015-09-16 14:26:28Z melifaro $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/module.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/netisr.h>
48#include <net/route.h>
49#include <net/if_llc.h>
50#include <net/if_dl.h>
51#include <net/if_types.h>
52#include <net/bpf.h>
53#include <net/firewire.h>
54#include <net/if_llatbl.h>
55
56#if defined(INET) || defined(INET6)
57#include <netinet/in.h>
58#include <netinet/in_var.h>
59#include <netinet/if_ether.h>
60#endif
61#ifdef INET6
62#include <netinet6/nd6.h>
63#endif
64
65#include <security/mac/mac_framework.h>
66
67static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68
69struct fw_hwaddr firewire_broadcastaddr = {
70	0xffffffff,
71	0xffffffff,
72	0xff,
73	0xff,
74	0xffff,
75	0xffffffff
76};
77
78static int
79firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
80    struct route *ro)
81{
82	struct fw_com *fc = IFP2FWC(ifp);
83	int error, type;
84	struct m_tag *mtag;
85	union fw_encap *enc;
86	struct fw_hwaddr *destfw;
87	uint8_t speed;
88	uint16_t psize, fsize, dsize;
89	struct mbuf *mtail;
90	int unicast, dgl, foff;
91	static int next_dgl;
92#if defined(INET) || defined(INET6)
93	int is_gw = 0;
94#endif
95
96#ifdef MAC
97	error = mac_ifnet_check_transmit(ifp, m);
98	if (error)
99		goto bad;
100#endif
101
102	if (!((ifp->if_flags & IFF_UP) &&
103	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
104		error = ENETDOWN;
105		goto bad;
106	}
107
108#if defined(INET) || defined(INET6)
109	if (ro != NULL && ro->ro_rt != NULL &&
110	    (ro->ro_rt->rt_flags & RTF_GATEWAY) != 0)
111		is_gw = 1;
112#endif
113	/*
114	 * For unicast, we make a tag to store the lladdr of the
115	 * destination. This might not be the first time we have seen
116	 * the packet (for instance, the arp code might be trying to
117	 * re-send it after receiving an arp reply) so we only
118	 * allocate a tag if there isn't one there already. For
119	 * multicast, we will eventually use a different tag to store
120	 * the channel number.
121	 */
122	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
123	if (unicast) {
124		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
125		if (!mtag) {
126			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
127			    sizeof (struct fw_hwaddr), M_NOWAIT);
128			if (!mtag) {
129				error = ENOMEM;
130				goto bad;
131			}
132			m_tag_prepend(m, mtag);
133		}
134		destfw = (struct fw_hwaddr *)(mtag + 1);
135	} else {
136		destfw = 0;
137	}
138
139	switch (dst->sa_family) {
140#ifdef INET
141	case AF_INET:
142		/*
143		 * Only bother with arp for unicast. Allocation of
144		 * channels etc. for firewire is quite different and
145		 * doesn't fit into the arp model.
146		 */
147		if (unicast) {
148			is_gw = 0;
149			if (ro != NULL && ro->ro_rt != NULL &&
150			    (ro->ro_rt->rt_flags & RTF_GATEWAY) != 0)
151				is_gw = 1;
152			error = arpresolve(ifp, is_gw, m, dst, (u_char *) destfw, NULL);
153			if (error)
154				return (error == EWOULDBLOCK ? 0 : error);
155		}
156		type = ETHERTYPE_IP;
157		break;
158
159	case AF_ARP:
160	{
161		struct arphdr *ah;
162		ah = mtod(m, struct arphdr *);
163		ah->ar_hrd = htons(ARPHRD_IEEE1394);
164		type = ETHERTYPE_ARP;
165		if (unicast)
166			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
167
168		/*
169		 * The standard arp code leaves a hole for the target
170		 * hardware address which we need to close up.
171		 */
172		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
173		m_adj(m, -ah->ar_hln);
174		break;
175	}
176#endif
177
178#ifdef INET6
179	case AF_INET6:
180		if (unicast) {
181			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
182			    (u_char *) destfw, NULL);
183			if (error)
184				return (error == EWOULDBLOCK ? 0 : error);
185		}
186		type = ETHERTYPE_IPV6;
187		break;
188#endif
189
190	default:
191		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
192		error = EAFNOSUPPORT;
193		goto bad;
194	}
195
196	/*
197	 * Let BPF tap off a copy before we encapsulate.
198	 */
199	if (bpf_peers_present(ifp->if_bpf)) {
200		struct fw_bpfhdr h;
201		if (unicast)
202			bcopy(destfw, h.firewire_dhost, 8);
203		else
204			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
205		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
206		h.firewire_type = htons(type);
207		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
208	}
209
210	/*
211	 * Punt on MCAP for now and send all multicast packets on the
212	 * broadcast channel.
213	 */
214	if (m->m_flags & M_MCAST)
215		m->m_flags |= M_BCAST;
216
217	/*
218	 * Figure out what speed to use and what the largest supported
219	 * packet size is. For unicast, this is the minimum of what we
220	 * can speak and what they can hear. For broadcast, lets be
221	 * conservative and use S100. We could possibly improve that
222	 * by examining the bus manager's speed map or similar. We
223	 * also reduce the packet size for broadcast to account for
224	 * the GASP header.
225	 */
226	if (unicast) {
227		speed = min(fc->fc_speed, destfw->sspd);
228		psize = min(512 << speed, 2 << destfw->sender_max_rec);
229	} else {
230		speed = 0;
231		psize = 512 - 2*sizeof(uint32_t);
232	}
233
234	/*
235	 * Next, we encapsulate, possibly fragmenting the original
236	 * datagram if it won't fit into a single packet.
237	 */
238	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
239		/*
240		 * No fragmentation is necessary.
241		 */
242		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
243		if (!m) {
244			error = ENOBUFS;
245			goto bad;
246		}
247		enc = mtod(m, union fw_encap *);
248		enc->unfrag.ether_type = type;
249		enc->unfrag.lf = FW_ENCAP_UNFRAG;
250		enc->unfrag.reserved = 0;
251
252		/*
253		 * Byte swap the encapsulation header manually.
254		 */
255		enc->ul[0] = htonl(enc->ul[0]);
256
257		error = (ifp->if_transmit)(ifp, m);
258		return (error);
259	} else {
260		/*
261		 * Fragment the datagram, making sure to leave enough
262		 * space for the encapsulation header in each packet.
263		 */
264		fsize = psize - 2*sizeof(uint32_t);
265		dgl = next_dgl++;
266		dsize = m->m_pkthdr.len;
267		foff = 0;
268		while (m) {
269			if (m->m_pkthdr.len > fsize) {
270				/*
271				 * Split off the tail segment from the
272				 * datagram, copying our tags over.
273				 */
274				mtail = m_split(m, fsize, M_NOWAIT);
275				m_tag_copy_chain(mtail, m, M_NOWAIT);
276			} else {
277				mtail = 0;
278			}
279
280			/*
281			 * Add our encapsulation header to this
282			 * fragment and hand it off to the link.
283			 */
284			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
285			if (!m) {
286				error = ENOBUFS;
287				goto bad;
288			}
289			enc = mtod(m, union fw_encap *);
290			if (foff == 0) {
291				enc->firstfrag.lf = FW_ENCAP_FIRST;
292				enc->firstfrag.reserved1 = 0;
293				enc->firstfrag.reserved2 = 0;
294				enc->firstfrag.datagram_size = dsize - 1;
295				enc->firstfrag.ether_type = type;
296				enc->firstfrag.dgl = dgl;
297			} else {
298				if (mtail)
299					enc->nextfrag.lf = FW_ENCAP_NEXT;
300				else
301					enc->nextfrag.lf = FW_ENCAP_LAST;
302				enc->nextfrag.reserved1 = 0;
303				enc->nextfrag.reserved2 = 0;
304				enc->nextfrag.reserved3 = 0;
305				enc->nextfrag.datagram_size = dsize - 1;
306				enc->nextfrag.fragment_offset = foff;
307				enc->nextfrag.dgl = dgl;
308			}
309			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
310
311			/*
312			 * Byte swap the encapsulation header manually.
313			 */
314			enc->ul[0] = htonl(enc->ul[0]);
315			enc->ul[1] = htonl(enc->ul[1]);
316
317			error = (ifp->if_transmit)(ifp, m);
318			if (error) {
319				if (mtail)
320					m_freem(mtail);
321				return (ENOBUFS);
322			}
323
324			m = mtail;
325		}
326
327		return (0);
328	}
329
330bad:
331	if (m)
332		m_freem(m);
333	return (error);
334}
335
336static struct mbuf *
337firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
338{
339	union fw_encap *enc;
340	struct fw_reass *r;
341	struct mbuf *mf, *mprev;
342	int dsize;
343	int fstart, fend, start, end, islast;
344	uint32_t id;
345
346	/*
347	 * Find an existing reassembly buffer or create a new one.
348	 */
349	enc = mtod(m, union fw_encap *);
350	id = enc->firstfrag.dgl | (src << 16);
351	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
352		if (r->fr_id == id)
353			break;
354	if (!r) {
355		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
356		if (!r) {
357			m_freem(m);
358			return 0;
359		}
360		r->fr_id = id;
361		r->fr_frags = 0;
362		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
363	}
364
365	/*
366	 * If this fragment overlaps any other fragment, we must discard
367	 * the partial reassembly and start again.
368	 */
369	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
370		fstart = 0;
371	else
372		fstart = enc->nextfrag.fragment_offset;
373	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
374	dsize = enc->nextfrag.datagram_size;
375	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
376
377	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
378		enc = mtod(mf, union fw_encap *);
379		if (enc->nextfrag.datagram_size != dsize) {
380			/*
381			 * This fragment must be from a different
382			 * packet.
383			 */
384			goto bad;
385		}
386		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
387			start = 0;
388		else
389			start = enc->nextfrag.fragment_offset;
390		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
391		if ((fstart < end && fend > start) ||
392		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
393			/*
394			 * Overlap - discard reassembly buffer and start
395			 * again with this fragment.
396			 */
397			goto bad;
398		}
399	}
400
401	/*
402	 * Find where to put this fragment in the list.
403	 */
404	for (mf = r->fr_frags, mprev = NULL; mf;
405	    mprev = mf, mf = mf->m_nextpkt) {
406		enc = mtod(mf, union fw_encap *);
407		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
408			start = 0;
409		else
410			start = enc->nextfrag.fragment_offset;
411		if (start >= fend)
412			break;
413	}
414
415	/*
416	 * If this is a last fragment and we are not adding at the end
417	 * of the list, discard the buffer.
418	 */
419	if (islast && mprev && mprev->m_nextpkt)
420		goto bad;
421
422	if (mprev) {
423		m->m_nextpkt = mprev->m_nextpkt;
424		mprev->m_nextpkt = m;
425
426		/*
427		 * Coalesce forwards and see if we can make a whole
428		 * datagram.
429		 */
430		enc = mtod(mprev, union fw_encap *);
431		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
432			start = 0;
433		else
434			start = enc->nextfrag.fragment_offset;
435		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
436		while (end == fstart) {
437			/*
438			 * Strip off the encap header from m and
439			 * append it to mprev, freeing m.
440			 */
441			m_adj(m, 2*sizeof(uint32_t));
442			mprev->m_nextpkt = m->m_nextpkt;
443			mprev->m_pkthdr.len += m->m_pkthdr.len;
444			m_cat(mprev, m);
445
446			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
447				/*
448				 * We have assembled a complete packet
449				 * we must be finished. Make sure we have
450				 * merged the whole chain.
451				 */
452				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
453				free(r, M_TEMP);
454				m = mprev->m_nextpkt;
455				while (m) {
456					mf = m->m_nextpkt;
457					m_freem(m);
458					m = mf;
459				}
460				mprev->m_nextpkt = NULL;
461
462				return (mprev);
463			}
464
465			/*
466			 * See if we can continue merging forwards.
467			 */
468			end = fend;
469			m = mprev->m_nextpkt;
470			if (m) {
471				enc = mtod(m, union fw_encap *);
472				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
473					fstart = 0;
474				else
475					fstart = enc->nextfrag.fragment_offset;
476				fend = fstart + m->m_pkthdr.len
477				    - 2*sizeof(uint32_t);
478			} else {
479				break;
480			}
481		}
482	} else {
483		m->m_nextpkt = 0;
484		r->fr_frags = m;
485	}
486
487	return (0);
488
489bad:
490	while (r->fr_frags) {
491		mf = r->fr_frags;
492		r->fr_frags = mf->m_nextpkt;
493		m_freem(mf);
494	}
495	m->m_nextpkt = 0;
496	r->fr_frags = m;
497
498	return (0);
499}
500
501void
502firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
503{
504	struct fw_com *fc = IFP2FWC(ifp);
505	union fw_encap *enc;
506	int type, isr;
507
508	/*
509	 * The caller has already stripped off the packet header
510	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
511	 * appropriately. We de-encapsulate the IP packet and pass it
512	 * up the line after handling link-level fragmentation.
513	 */
514	if (m->m_pkthdr.len < sizeof(uint32_t)) {
515		if_printf(ifp, "discarding frame without "
516		    "encapsulation header (len %u pkt len %u)\n",
517		    m->m_len, m->m_pkthdr.len);
518	}
519
520	m = m_pullup(m, sizeof(uint32_t));
521	if (m == NULL)
522		return;
523	enc = mtod(m, union fw_encap *);
524
525	/*
526	 * Byte swap the encapsulation header manually.
527	 */
528	enc->ul[0] = ntohl(enc->ul[0]);
529
530	if (enc->unfrag.lf != 0) {
531		m = m_pullup(m, 2*sizeof(uint32_t));
532		if (!m)
533			return;
534		enc = mtod(m, union fw_encap *);
535		enc->ul[1] = ntohl(enc->ul[1]);
536		m = firewire_input_fragment(fc, m, src);
537		if (!m)
538			return;
539		enc = mtod(m, union fw_encap *);
540		type = enc->firstfrag.ether_type;
541		m_adj(m, 2*sizeof(uint32_t));
542	} else {
543		type = enc->unfrag.ether_type;
544		m_adj(m, sizeof(uint32_t));
545	}
546
547	if (m->m_pkthdr.rcvif == NULL) {
548		if_printf(ifp, "discard frame w/o interface pointer\n");
549		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
550		m_freem(m);
551		return;
552	}
553#ifdef DIAGNOSTIC
554	if (m->m_pkthdr.rcvif != ifp) {
555		if_printf(ifp, "Warning, frame marked as received on %s\n",
556			m->m_pkthdr.rcvif->if_xname);
557	}
558#endif
559
560#ifdef MAC
561	/*
562	 * Tag the mbuf with an appropriate MAC label before any other
563	 * consumers can get to it.
564	 */
565	mac_ifnet_create_mbuf(ifp, m);
566#endif
567
568	/*
569	 * Give bpf a chance at the packet. The link-level driver
570	 * should have left us a tag with the EUID of the sender.
571	 */
572	if (bpf_peers_present(ifp->if_bpf)) {
573		struct fw_bpfhdr h;
574		struct m_tag *mtag;
575
576		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
577		if (mtag)
578			bcopy(mtag + 1, h.firewire_shost, 8);
579		else
580			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
581		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
582		h.firewire_type = htons(type);
583		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
584	}
585
586	if (ifp->if_flags & IFF_MONITOR) {
587		/*
588		 * Interface marked for monitoring; discard packet.
589		 */
590		m_freem(m);
591		return;
592	}
593
594	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
595
596	/* Discard packet if interface is not up */
597	if ((ifp->if_flags & IFF_UP) == 0) {
598		m_freem(m);
599		return;
600	}
601
602	if (m->m_flags & (M_BCAST|M_MCAST))
603		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
604
605	switch (type) {
606#ifdef INET
607	case ETHERTYPE_IP:
608		if ((m = ip_fastforward(m)) == NULL)
609			return;
610		isr = NETISR_IP;
611		break;
612
613	case ETHERTYPE_ARP:
614	{
615		struct arphdr *ah;
616		ah = mtod(m, struct arphdr *);
617
618		/*
619		 * Adjust the arp packet to insert an empty tha slot.
620		 */
621		m->m_len += ah->ar_hln;
622		m->m_pkthdr.len += ah->ar_hln;
623		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
624		isr = NETISR_ARP;
625		break;
626	}
627#endif
628
629#ifdef INET6
630	case ETHERTYPE_IPV6:
631		isr = NETISR_IPV6;
632		break;
633#endif
634
635	default:
636		m_freem(m);
637		return;
638	}
639
640	M_SETFIB(m, ifp->if_fib);
641	netisr_dispatch(isr, m);
642}
643
644int
645firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
646{
647	struct ifaddr *ifa = (struct ifaddr *) data;
648	struct ifreq *ifr = (struct ifreq *) data;
649	int error = 0;
650
651	switch (command) {
652	case SIOCSIFADDR:
653		ifp->if_flags |= IFF_UP;
654
655		switch (ifa->ifa_addr->sa_family) {
656#ifdef INET
657		case AF_INET:
658			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
659			arp_ifinit(ifp, ifa);
660			break;
661#endif
662		default:
663			ifp->if_init(ifp->if_softc);
664			break;
665		}
666		break;
667
668	case SIOCGIFADDR:
669		{
670			struct sockaddr *sa;
671
672			sa = (struct sockaddr *) & ifr->ifr_data;
673			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
674			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
675		}
676		break;
677
678	case SIOCSIFMTU:
679		/*
680		 * Set the interface MTU.
681		 */
682		if (ifr->ifr_mtu > 1500) {
683			error = EINVAL;
684		} else {
685			ifp->if_mtu = ifr->ifr_mtu;
686		}
687		break;
688	default:
689		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
690		break;
691	}
692	return (error);
693}
694
695static int
696firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
697    struct sockaddr *sa)
698{
699#ifdef INET
700	struct sockaddr_in *sin;
701#endif
702#ifdef INET6
703	struct sockaddr_in6 *sin6;
704#endif
705
706	switch(sa->sa_family) {
707	case AF_LINK:
708		/*
709		 * No mapping needed.
710		 */
711		*llsa = 0;
712		return 0;
713
714#ifdef INET
715	case AF_INET:
716		sin = (struct sockaddr_in *)sa;
717		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
718			return EADDRNOTAVAIL;
719		*llsa = 0;
720		return 0;
721#endif
722#ifdef INET6
723	case AF_INET6:
724		sin6 = (struct sockaddr_in6 *)sa;
725		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
726			/*
727			 * An IP6 address of 0 means listen to all
728			 * of the Ethernet multicast address used for IP6.
729			 * (This is used for multicast routers.)
730			 */
731			ifp->if_flags |= IFF_ALLMULTI;
732			*llsa = 0;
733			return 0;
734		}
735		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
736			return EADDRNOTAVAIL;
737		*llsa = 0;
738		return 0;
739#endif
740
741	default:
742		/*
743		 * Well, the text isn't quite right, but it's the name
744		 * that counts...
745		 */
746		return EAFNOSUPPORT;
747	}
748}
749
750void
751firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
752{
753	struct fw_com *fc = IFP2FWC(ifp);
754	struct ifaddr *ifa;
755	struct sockaddr_dl *sdl;
756	static const char* speeds[] = {
757		"S100", "S200", "S400", "S800",
758		"S1600", "S3200"
759	};
760
761	fc->fc_speed = llc->sspd;
762	STAILQ_INIT(&fc->fc_frags);
763
764	ifp->if_addrlen = sizeof(struct fw_hwaddr);
765	ifp->if_hdrlen = 0;
766	if_attach(ifp);
767	ifp->if_mtu = 1500;	/* XXX */
768	ifp->if_output = firewire_output;
769	ifp->if_resolvemulti = firewire_resolvemulti;
770	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
771
772	ifa = ifp->if_addr;
773	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
774	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
775	sdl->sdl_type = IFT_IEEE1394;
776	sdl->sdl_alen = ifp->if_addrlen;
777	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
778
779	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
780	    sizeof(struct fw_hwaddr));
781
782	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
783	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
784	    ntohs(llc->sender_unicast_FIFO_hi),
785	    ntohl(llc->sender_unicast_FIFO_lo),
786	    speeds[llc->sspd],
787	    (2 << llc->sender_max_rec));
788}
789
790void
791firewire_ifdetach(struct ifnet *ifp)
792{
793	bpfdetach(ifp);
794	if_detach(ifp);
795}
796
797void
798firewire_busreset(struct ifnet *ifp)
799{
800	struct fw_com *fc = IFP2FWC(ifp);
801	struct fw_reass *r;
802	struct mbuf *m;
803
804	/*
805	 * Discard any partial datagrams since the host ids may have changed.
806	 */
807	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
808		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
809		while (r->fr_frags) {
810			m = r->fr_frags;
811			r->fr_frags = m->m_nextpkt;
812			m_freem(m);
813		}
814		free(r, M_TEMP);
815	}
816}
817
818static void *
819firewire_alloc(u_char type, struct ifnet *ifp)
820{
821	struct fw_com	*fc;
822
823	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
824	fc->fc_ifp = ifp;
825
826	return (fc);
827}
828
829static void
830firewire_free(void *com, u_char type)
831{
832
833	free(com, M_FWCOM);
834}
835
836static int
837firewire_modevent(module_t mod, int type, void *data)
838{
839
840	switch (type) {
841	case MOD_LOAD:
842		if_register_com_alloc(IFT_IEEE1394,
843		    firewire_alloc, firewire_free);
844		break;
845	case MOD_UNLOAD:
846		if_deregister_com_alloc(IFT_IEEE1394);
847		break;
848	default:
849		return (EOPNOTSUPP);
850	}
851
852	return (0);
853}
854
855static moduledata_t firewire_mod = {
856	"if_firewire",
857	firewire_modevent,
858	0
859};
860
861DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
862MODULE_VERSION(if_firewire, 1);
863