if_fwsubr.c revision 147256
1/*-
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/net/if_fwsubr.c 147256 2005-06-10 16:49:24Z brooks $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/route.h>
50#include <net/if_llc.h>
51#include <net/if_dl.h>
52#include <net/if_types.h>
53#include <net/bpf.h>
54#include <net/firewire.h>
55
56#if defined(INET) || defined(INET6)
57#include <netinet/in.h>
58#include <netinet/in_var.h>
59#include <netinet/if_ether.h>
60#endif
61#ifdef INET6
62#include <netinet6/nd6.h>
63#endif
64
65#define IFP2FC(IFP) ((struct fw_com *)IFP)
66
67MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68
69struct fw_hwaddr firewire_broadcastaddr = {
70	0xffffffff,
71	0xffffffff,
72	0xff,
73	0xff,
74	0xffff,
75	0xffffffff
76};
77
78static int
79firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
80    struct rtentry *rt0)
81{
82	struct fw_com *fc = IFP2FC(ifp);
83	int error, type;
84	struct rtentry *rt;
85	struct m_tag *mtag;
86	union fw_encap *enc;
87	struct fw_hwaddr *destfw;
88	uint8_t speed;
89	uint16_t psize, fsize, dsize;
90	struct mbuf *mtail;
91	int unicast, dgl, foff;
92	static int next_dgl;
93
94#ifdef MAC
95	error = mac_check_ifnet_transmit(ifp, m);
96	if (error)
97		goto bad;
98#endif
99
100	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
101		error = ENETDOWN;
102		goto bad;
103	}
104
105	error = rt_check(&rt, &rt0, dst);
106	if (error)
107		goto bad;
108
109	/*
110	 * For unicast, we make a tag to store the lladdr of the
111	 * destination. This might not be the first time we have seen
112	 * the packet (for instance, the arp code might be trying to
113	 * re-send it after receiving an arp reply) so we only
114	 * allocate a tag if there isn't one there already. For
115	 * multicast, we will eventually use a different tag to store
116	 * the channel number.
117	 */
118	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
119	if (unicast) {
120		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
121		if (!mtag) {
122			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
123			    sizeof (struct fw_hwaddr), M_NOWAIT);
124			if (!mtag) {
125				error = ENOMEM;
126				goto bad;
127			}
128			m_tag_prepend(m, mtag);
129		}
130		destfw = (struct fw_hwaddr *)(mtag + 1);
131	} else {
132		destfw = 0;
133	}
134
135	switch (dst->sa_family) {
136#ifdef AF_INET
137	case AF_INET:
138		/*
139		 * Only bother with arp for unicast. Allocation of
140		 * channels etc. for firewire is quite different and
141		 * doesn't fit into the arp model.
142		 */
143		if (unicast) {
144			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
145			if (error)
146				return (error == EWOULDBLOCK ? 0 : error);
147		}
148		type = ETHERTYPE_IP;
149		break;
150
151	case AF_ARP:
152	{
153		struct arphdr *ah;
154		ah = mtod(m, struct arphdr *);
155		ah->ar_hrd = htons(ARPHRD_IEEE1394);
156		type = ETHERTYPE_ARP;
157		if (unicast)
158			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
159
160		/*
161		 * The standard arp code leaves a hole for the target
162		 * hardware address which we need to close up.
163		 */
164		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
165		m_adj(m, -ah->ar_hln);
166		break;
167	}
168#endif
169
170#ifdef INET6
171	case AF_INET6:
172		if (unicast) {
173			error = nd6_storelladdr(fc->fc_ifp, rt, m, dst,
174			    (u_char *) destfw);
175			if (error)
176				return (error);
177		}
178		type = ETHERTYPE_IPV6;
179		break;
180#endif
181
182	default:
183		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
184		error = EAFNOSUPPORT;
185		goto bad;
186	}
187
188	/*
189	 * Let BPF tap off a copy before we encapsulate.
190	 */
191	if (ifp->if_bpf) {
192		struct fw_bpfhdr h;
193		if (unicast)
194			bcopy(destfw, h.firewire_dhost, 8);
195		else
196			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
197		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
198		h.firewire_type = htons(type);
199		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
200	}
201
202	/*
203	 * Punt on MCAP for now and send all multicast packets on the
204	 * broadcast channel.
205	 */
206	if (m->m_flags & M_MCAST)
207		m->m_flags |= M_BCAST;
208
209	/*
210	 * Figure out what speed to use and what the largest supported
211	 * packet size is. For unicast, this is the minimum of what we
212	 * can speak and what they can hear. For broadcast, lets be
213	 * conservative and use S100. We could possibly improve that
214	 * by examining the bus manager's speed map or similar. We
215	 * also reduce the packet size for broadcast to account for
216	 * the GASP header.
217	 */
218	if (unicast) {
219		speed = min(fc->fc_speed, destfw->sspd);
220		psize = min(512 << speed, 2 << destfw->sender_max_rec);
221	} else {
222		speed = 0;
223		psize = 512 - 2*sizeof(uint32_t);
224	}
225
226	/*
227	 * Next, we encapsulate, possibly fragmenting the original
228	 * datagram if it won't fit into a single packet.
229	 */
230	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
231		/*
232		 * No fragmentation is necessary.
233		 */
234		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
235		if (!m) {
236			error = ENOBUFS;
237			goto bad;
238		}
239		enc = mtod(m, union fw_encap *);
240		enc->unfrag.ether_type = type;
241		enc->unfrag.lf = FW_ENCAP_UNFRAG;
242		enc->unfrag.reserved = 0;
243
244		/*
245		 * Byte swap the encapsulation header manually.
246		 */
247		enc->ul[0] = htonl(enc->ul[0]);
248
249		IFQ_HANDOFF(ifp, m, error);
250		return (error);
251	} else {
252		/*
253		 * Fragment the datagram, making sure to leave enough
254		 * space for the encapsulation header in each packet.
255		 */
256		fsize = psize - 2*sizeof(uint32_t);
257		dgl = next_dgl++;
258		dsize = m->m_pkthdr.len;
259		foff = 0;
260		while (m) {
261			if (m->m_pkthdr.len > fsize) {
262				/*
263				 * Split off the tail segment from the
264				 * datagram, copying our tags over.
265				 */
266				mtail = m_split(m, fsize, M_DONTWAIT);
267				m_tag_copy_chain(mtail, m, M_NOWAIT);
268			} else {
269				mtail = 0;
270			}
271
272			/*
273			 * Add our encapsulation header to this
274			 * fragment and hand it off to the link.
275			 */
276			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
277			if (!m) {
278				error = ENOBUFS;
279				goto bad;
280			}
281			enc = mtod(m, union fw_encap *);
282			if (foff == 0) {
283				enc->firstfrag.lf = FW_ENCAP_FIRST;
284				enc->firstfrag.reserved1 = 0;
285				enc->firstfrag.reserved2 = 0;
286				enc->firstfrag.datagram_size = dsize - 1;
287				enc->firstfrag.ether_type = type;
288				enc->firstfrag.dgl = dgl;
289			} else {
290				if (mtail)
291					enc->nextfrag.lf = FW_ENCAP_NEXT;
292				else
293					enc->nextfrag.lf = FW_ENCAP_LAST;
294				enc->nextfrag.reserved1 = 0;
295				enc->nextfrag.reserved2 = 0;
296				enc->nextfrag.reserved3 = 0;
297				enc->nextfrag.datagram_size = dsize - 1;
298				enc->nextfrag.fragment_offset = foff;
299				enc->nextfrag.dgl = dgl;
300			}
301			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
302
303			/*
304			 * Byte swap the encapsulation header manually.
305			 */
306			enc->ul[0] = htonl(enc->ul[0]);
307			enc->ul[1] = htonl(enc->ul[1]);
308
309			IFQ_HANDOFF(ifp, m, error);
310			if (error) {
311				if (mtail)
312					m_freem(mtail);
313				return (ENOBUFS);
314			}
315
316			m = mtail;
317		}
318
319		return (0);
320	}
321
322bad:
323	if (m)
324		m_freem(m);
325	return (error);
326}
327
328static struct mbuf *
329firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
330{
331	union fw_encap *enc;
332	struct fw_reass *r;
333	struct mbuf *mf, *mprev;
334	int dsize;
335	int fstart, fend, start, end, islast;
336	uint32_t id;
337
338	GIANT_REQUIRED;
339
340	/*
341	 * Find an existing reassembly buffer or create a new one.
342	 */
343	enc = mtod(m, union fw_encap *);
344	id = enc->firstfrag.dgl | (src << 16);
345	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
346		if (r->fr_id == id)
347			break;
348	if (!r) {
349		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
350		if (!r) {
351			m_freem(m);
352			return 0;
353		}
354		r->fr_id = id;
355		r->fr_frags = 0;
356		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
357	}
358
359	/*
360	 * If this fragment overlaps any other fragment, we must discard
361	 * the partial reassembly and start again.
362	 */
363	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
364		fstart = 0;
365	else
366		fstart = enc->nextfrag.fragment_offset;
367	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
368	dsize = enc->nextfrag.datagram_size;
369	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
370
371	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
372		enc = mtod(mf, union fw_encap *);
373		if (enc->nextfrag.datagram_size != dsize) {
374			/*
375			 * This fragment must be from a different
376			 * packet.
377			 */
378			goto bad;
379		}
380		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
381			start = 0;
382		else
383			start = enc->nextfrag.fragment_offset;
384		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
385		if ((fstart < end && fend > start) ||
386		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
387			/*
388			 * Overlap - discard reassembly buffer and start
389			 * again with this fragment.
390			 */
391			goto bad;
392		}
393	}
394
395	/*
396	 * Find where to put this fragment in the list.
397	 */
398	for (mf = r->fr_frags, mprev = NULL; mf;
399	    mprev = mf, mf = mf->m_nextpkt) {
400		enc = mtod(mf, union fw_encap *);
401		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
402			start = 0;
403		else
404			start = enc->nextfrag.fragment_offset;
405		if (start >= fend)
406			break;
407	}
408
409	/*
410	 * If this is a last fragment and we are not adding at the end
411	 * of the list, discard the buffer.
412	 */
413	if (islast && mprev && mprev->m_nextpkt)
414		goto bad;
415
416	if (mprev) {
417		m->m_nextpkt = mprev->m_nextpkt;
418		mprev->m_nextpkt = m;
419
420		/*
421		 * Coalesce forwards and see if we can make a whole
422		 * datagram.
423		 */
424		enc = mtod(mprev, union fw_encap *);
425		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
426			start = 0;
427		else
428			start = enc->nextfrag.fragment_offset;
429		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
430		while (end == fstart) {
431			/*
432			 * Strip off the encap header from m and
433			 * append it to mprev, freeing m.
434			 */
435			m_adj(m, 2*sizeof(uint32_t));
436			mprev->m_nextpkt = m->m_nextpkt;
437			mprev->m_pkthdr.len += m->m_pkthdr.len;
438			m_cat(mprev, m);
439
440			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
441				/*
442				 * We have assembled a complete packet
443				 * we must be finished. Make sure we have
444				 * merged the whole chain.
445				 */
446				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
447				free(r, M_TEMP);
448				m = mprev->m_nextpkt;
449				while (m) {
450					mf = m->m_nextpkt;
451					m_freem(m);
452					m = mf;
453				}
454				mprev->m_nextpkt = NULL;
455
456				return (mprev);
457			}
458
459			/*
460			 * See if we can continue merging forwards.
461			 */
462			end = fend;
463			m = mprev->m_nextpkt;
464			if (m) {
465				enc = mtod(m, union fw_encap *);
466				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
467					fstart = 0;
468				else
469					fstart = enc->nextfrag.fragment_offset;
470				fend = fstart + m->m_pkthdr.len
471				    - 2*sizeof(uint32_t);
472			} else {
473				break;
474			}
475		}
476	} else {
477		m->m_nextpkt = 0;
478		r->fr_frags = m;
479	}
480
481	return (0);
482
483bad:
484	while (r->fr_frags) {
485		mf = r->fr_frags;
486		r->fr_frags = mf->m_nextpkt;
487		m_freem(mf);
488	}
489	m->m_nextpkt = 0;
490	r->fr_frags = m;
491
492	return (0);
493}
494
495void
496firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
497{
498	struct fw_com *fc = IFP2FC(ifp);
499	union fw_encap *enc;
500	int type, isr;
501
502	GIANT_REQUIRED;
503
504	/*
505	 * The caller has already stripped off the packet header
506	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
507	 * appropriately. We de-encapsulate the IP packet and pass it
508	 * up the line after handling link-level fragmentation.
509	 */
510	if (m->m_pkthdr.len < sizeof(uint32_t)) {
511		if_printf(ifp, "discarding frame without "
512		    "encapsulation header (len %u pkt len %u)\n",
513		    m->m_len, m->m_pkthdr.len);
514	}
515
516	m = m_pullup(m, sizeof(uint32_t));
517	enc = mtod(m, union fw_encap *);
518
519	/*
520	 * Byte swap the encapsulation header manually.
521	 */
522	enc->ul[0] = htonl(enc->ul[0]);
523
524	if (enc->unfrag.lf != 0) {
525		m = m_pullup(m, 2*sizeof(uint32_t));
526		if (!m)
527			return;
528		enc = mtod(m, union fw_encap *);
529		enc->ul[1] = htonl(enc->ul[1]);
530		m = firewire_input_fragment(fc, m, src);
531		if (!m)
532			return;
533		enc = mtod(m, union fw_encap *);
534		type = enc->firstfrag.ether_type;
535		m_adj(m, 2*sizeof(uint32_t));
536	} else {
537		type = enc->unfrag.ether_type;
538		m_adj(m, sizeof(uint32_t));
539	}
540
541	if (m->m_pkthdr.rcvif == NULL) {
542		if_printf(ifp, "discard frame w/o interface pointer\n");
543		ifp->if_ierrors++;
544		m_freem(m);
545		return;
546	}
547#ifdef DIAGNOSTIC
548	if (m->m_pkthdr.rcvif != ifp) {
549		if_printf(ifp, "Warning, frame marked as received on %s\n",
550			m->m_pkthdr.rcvif->if_xname);
551	}
552#endif
553
554#ifdef MAC
555	/*
556	 * Tag the mbuf with an appropriate MAC label before any other
557	 * consumers can get to it.
558	 */
559	mac_create_mbuf_from_ifnet(ifp, m);
560#endif
561
562	/*
563	 * Give bpf a chance at the packet. The link-level driver
564	 * should have left us a tag with the EUID of the sender.
565	 */
566	if (ifp->if_bpf) {
567		struct fw_bpfhdr h;
568		struct m_tag *mtag;
569
570		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
571		if (mtag)
572			bcopy(mtag + 1, h.firewire_shost, 8);
573		else
574			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
575		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
576		h.firewire_type = htons(type);
577		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
578	}
579
580	if (ifp->if_flags & IFF_MONITOR) {
581		/*
582		 * Interface marked for monitoring; discard packet.
583		 */
584		m_freem(m);
585		return;
586	}
587
588	ifp->if_ibytes += m->m_pkthdr.len;
589
590	/* Discard packet if interface is not up */
591	if ((ifp->if_flags & IFF_UP) == 0) {
592		m_freem(m);
593		return;
594	}
595
596	if (m->m_flags & (M_BCAST|M_MCAST))
597		ifp->if_imcasts++;
598
599	switch (type) {
600#ifdef INET
601	case ETHERTYPE_IP:
602		if (ip_fastforward(m))
603			return;
604		isr = NETISR_IP;
605		break;
606
607	case ETHERTYPE_ARP:
608	{
609		struct arphdr *ah;
610		ah = mtod(m, struct arphdr *);
611
612		/*
613		 * Adjust the arp packet to insert an empty tha slot.
614		 */
615		m->m_len += ah->ar_hln;
616		m->m_pkthdr.len += ah->ar_hln;
617		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
618		isr = NETISR_ARP;
619		break;
620	}
621#endif
622
623#ifdef INET6
624	case ETHERTYPE_IPV6:
625		isr = NETISR_IPV6;
626		break;
627#endif
628
629	default:
630		m_freem(m);
631		return;
632	}
633
634	netisr_dispatch(isr, m);
635}
636
637int
638firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
639{
640	struct ifaddr *ifa = (struct ifaddr *) data;
641	struct ifreq *ifr = (struct ifreq *) data;
642	int error = 0;
643
644	switch (command) {
645	case SIOCSIFADDR:
646		ifp->if_flags |= IFF_UP;
647
648		switch (ifa->ifa_addr->sa_family) {
649#ifdef INET
650		case AF_INET:
651			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
652			arp_ifinit(ifp, ifa);
653			break;
654#endif
655		default:
656			ifp->if_init(ifp->if_softc);
657			break;
658		}
659		break;
660
661	case SIOCGIFADDR:
662		{
663			struct sockaddr *sa;
664
665			sa = (struct sockaddr *) & ifr->ifr_data;
666			bcopy(&IFP2FC(ifp)->fc_hwaddr,
667			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
668		}
669		break;
670
671	case SIOCSIFMTU:
672		/*
673		 * Set the interface MTU.
674		 */
675		if (ifr->ifr_mtu > 1500) {
676			error = EINVAL;
677		} else {
678			ifp->if_mtu = ifr->ifr_mtu;
679		}
680		break;
681	default:
682		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
683		break;
684	}
685	return (error);
686}
687
688static int
689firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
690    struct sockaddr *sa)
691{
692#ifdef INET
693	struct sockaddr_in *sin;
694#endif
695#ifdef INET6
696	struct sockaddr_in6 *sin6;
697#endif
698
699	switch(sa->sa_family) {
700	case AF_LINK:
701		/*
702		 * No mapping needed.
703		 */
704		*llsa = 0;
705		return 0;
706
707#ifdef INET
708	case AF_INET:
709		sin = (struct sockaddr_in *)sa;
710		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
711			return EADDRNOTAVAIL;
712		*llsa = 0;
713		return 0;
714#endif
715#ifdef INET6
716	case AF_INET6:
717		sin6 = (struct sockaddr_in6 *)sa;
718		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
719			/*
720			 * An IP6 address of 0 means listen to all
721			 * of the Ethernet multicast address used for IP6.
722			 * (This is used for multicast routers.)
723			 */
724			ifp->if_flags |= IFF_ALLMULTI;
725			*llsa = 0;
726			return 0;
727		}
728		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
729			return EADDRNOTAVAIL;
730		*llsa = 0;
731		return 0;
732#endif
733
734	default:
735		/*
736		 * Well, the text isn't quite right, but it's the name
737		 * that counts...
738		 */
739		return EAFNOSUPPORT;
740	}
741}
742
743void
744firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
745{
746	struct fw_com *fc = IFP2FC(ifp);
747	struct ifaddr *ifa;
748	struct sockaddr_dl *sdl;
749	static const char* speeds[] = {
750		"S100", "S200", "S400", "S800",
751		"S1600", "S3200"
752	};
753
754	fc->fc_speed = llc->sspd;
755	STAILQ_INIT(&fc->fc_frags);
756
757	ifp->if_addrlen = sizeof(struct fw_hwaddr);
758	ifp->if_hdrlen = 0;
759	if_attach(ifp);
760	ifp->if_mtu = 1500;	/* XXX */
761	ifp->if_output = firewire_output;
762	ifp->if_resolvemulti = firewire_resolvemulti;
763	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
764
765	ifa = ifaddr_byindex(ifp->if_index);
766	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
767	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
768	sdl->sdl_type = IFT_IEEE1394;
769	sdl->sdl_alen = ifp->if_addrlen;
770	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
771
772	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
773	    sizeof(struct fw_hwaddr));
774
775	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
776	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
777	    ntohs(llc->sender_unicast_FIFO_hi),
778	    ntohl(llc->sender_unicast_FIFO_lo),
779	    speeds[llc->sspd],
780	    (2 << llc->sender_max_rec));
781}
782
783void
784firewire_ifdetach(struct ifnet *ifp)
785{
786	bpfdetach(ifp);
787	if_detach(ifp);
788}
789
790void
791firewire_busreset(struct ifnet *ifp)
792{
793	struct fw_com *fc = IFP2FC(ifp);
794	struct fw_reass *r;
795	struct mbuf *m;
796
797	/*
798	 * Discard any partial datagrams since the host ids may have changed.
799	 */
800	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
801		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
802		while (r->fr_frags) {
803			m = r->fr_frags;
804			r->fr_frags = m->m_nextpkt;
805			m_freem(m);
806		}
807		free(r, M_TEMP);
808	}
809}
810
811static void *
812firewire_alloc(u_char type, struct ifnet *ifp)
813{
814	struct fw_com	*fc;
815
816	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
817	fc->fc_ifp = ifp;
818
819	return (fc);
820}
821
822static void
823firewire_free(void *com, u_char type)
824{
825
826	free(com, M_FWCOM);
827}
828
829static int
830firewire_modevent(module_t mod, int type, void *data)
831{
832
833	switch (type) {
834	case MOD_LOAD:
835		if_register_com_alloc(IFT_IEEE1394,
836		    firewire_alloc, firewire_free);
837		break;
838	case MOD_UNLOAD:
839		if_deregister_com_alloc(IFT_IEEE1394);
840		break;
841	default:
842		return (EOPNOTSUPP);
843	}
844
845	return (0);
846}
847
848static moduledata_t firewire_mod = {
849	"firewire",
850	firewire_modevent,
851	0
852};
853
854DECLARE_MODULE(firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
855MODULE_VERSION(firewire, 1);
856