if_fwsubr.c revision 144114
1/*-
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/net/if_fwsubr.c 144114 2005-03-25 16:05:42Z gallatin $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45
46#include <net/if.h>
47#include <net/netisr.h>
48#include <net/route.h>
49#include <net/if_llc.h>
50#include <net/if_dl.h>
51#include <net/if_types.h>
52#include <net/bpf.h>
53#include <net/firewire.h>
54
55#if defined(INET) || defined(INET6)
56#include <netinet/in.h>
57#include <netinet/in_var.h>
58#include <netinet/if_ether.h>
59#endif
60#ifdef INET6
61#include <netinet6/nd6.h>
62#endif
63
64#define IFP2FC(IFP) ((struct fw_com *)IFP)
65
66struct fw_hwaddr firewire_broadcastaddr = {
67	0xffffffff,
68	0xffffffff,
69	0xff,
70	0xff,
71	0xffff,
72	0xffffffff
73};
74
75static int
76firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
77    struct rtentry *rt0)
78{
79	struct fw_com *fc = (struct fw_com *) ifp;
80	int error, type;
81	struct rtentry *rt;
82	struct m_tag *mtag;
83	union fw_encap *enc;
84	struct fw_hwaddr *destfw;
85	uint8_t speed;
86	uint16_t psize, fsize, dsize;
87	struct mbuf *mtail;
88	int unicast, dgl, foff;
89	static int next_dgl;
90
91#ifdef MAC
92	error = mac_check_ifnet_transmit(ifp, m);
93	if (error)
94		goto bad;
95#endif
96
97	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
98		error = ENETDOWN;
99		goto bad;
100	}
101
102	error = rt_check(&rt, &rt0, dst);
103	if (error)
104		goto bad;
105
106	/*
107	 * For unicast, we make a tag to store the lladdr of the
108	 * destination. This might not be the first time we have seen
109	 * the packet (for instance, the arp code might be trying to
110	 * re-send it after receiving an arp reply) so we only
111	 * allocate a tag if there isn't one there already. For
112	 * multicast, we will eventually use a different tag to store
113	 * the channel number.
114	 */
115	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
116	if (unicast) {
117		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
118		if (!mtag) {
119			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
120			    sizeof (struct fw_hwaddr), M_NOWAIT);
121			if (!mtag) {
122				error = ENOMEM;
123				goto bad;
124			}
125			m_tag_prepend(m, mtag);
126		}
127		destfw = (struct fw_hwaddr *)(mtag + 1);
128	} else {
129		destfw = 0;
130	}
131
132	switch (dst->sa_family) {
133#ifdef AF_INET
134	case AF_INET:
135		/*
136		 * Only bother with arp for unicast. Allocation of
137		 * channels etc. for firewire is quite different and
138		 * doesn't fit into the arp model.
139		 */
140		if (unicast) {
141			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
142			if (error)
143				return (error == EWOULDBLOCK ? 0 : error);
144		}
145		type = ETHERTYPE_IP;
146		break;
147
148	case AF_ARP:
149	{
150		struct arphdr *ah;
151		ah = mtod(m, struct arphdr *);
152		ah->ar_hrd = htons(ARPHRD_IEEE1394);
153		type = ETHERTYPE_ARP;
154		if (unicast)
155			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
156
157		/*
158		 * The standard arp code leaves a hole for the target
159		 * hardware address which we need to close up.
160		 */
161		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
162		m_adj(m, -ah->ar_hln);
163		break;
164	}
165#endif
166
167#ifdef INET6
168	case AF_INET6:
169		if (unicast) {
170			error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
171			    (u_char *) destfw);
172			if (error)
173				return (error);
174		}
175		type = ETHERTYPE_IPV6;
176		break;
177#endif
178
179	default:
180		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
181		error = EAFNOSUPPORT;
182		goto bad;
183	}
184
185	/*
186	 * Let BPF tap off a copy before we encapsulate.
187	 */
188	if (ifp->if_bpf) {
189		struct fw_bpfhdr h;
190		if (unicast)
191			bcopy(destfw, h.firewire_dhost, 8);
192		else
193			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
194		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
195		h.firewire_type = htons(type);
196		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
197	}
198
199	/*
200	 * Punt on MCAP for now and send all multicast packets on the
201	 * broadcast channel.
202	 */
203	if (m->m_flags & M_MCAST)
204		m->m_flags |= M_BCAST;
205
206	/*
207	 * Figure out what speed to use and what the largest supported
208	 * packet size is. For unicast, this is the minimum of what we
209	 * can speak and what they can hear. For broadcast, lets be
210	 * conservative and use S100. We could possibly improve that
211	 * by examining the bus manager's speed map or similar. We
212	 * also reduce the packet size for broadcast to account for
213	 * the GASP header.
214	 */
215	if (unicast) {
216		speed = min(fc->fc_speed, destfw->sspd);
217		psize = min(512 << speed, 2 << destfw->sender_max_rec);
218	} else {
219		speed = 0;
220		psize = 512 - 2*sizeof(uint32_t);
221	}
222
223	/*
224	 * Next, we encapsulate, possibly fragmenting the original
225	 * datagram if it won't fit into a single packet.
226	 */
227	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
228		/*
229		 * No fragmentation is necessary.
230		 */
231		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
232		if (!m) {
233			error = ENOBUFS;
234			goto bad;
235		}
236		enc = mtod(m, union fw_encap *);
237		enc->unfrag.ether_type = type;
238		enc->unfrag.lf = FW_ENCAP_UNFRAG;
239		enc->unfrag.reserved = 0;
240
241		/*
242		 * Byte swap the encapsulation header manually.
243		 */
244		enc->ul[0] = htonl(enc->ul[0]);
245
246		IFQ_HANDOFF(ifp, m, error);
247		return (error);
248	} else {
249		/*
250		 * Fragment the datagram, making sure to leave enough
251		 * space for the encapsulation header in each packet.
252		 */
253		fsize = psize - 2*sizeof(uint32_t);
254		dgl = next_dgl++;
255		dsize = m->m_pkthdr.len;
256		foff = 0;
257		while (m) {
258			if (m->m_pkthdr.len > fsize) {
259				/*
260				 * Split off the tail segment from the
261				 * datagram, copying our tags over.
262				 */
263				mtail = m_split(m, fsize, M_DONTWAIT);
264				m_tag_copy_chain(mtail, m, M_NOWAIT);
265			} else {
266				mtail = 0;
267			}
268
269			/*
270			 * Add our encapsulation header to this
271			 * fragment and hand it off to the link.
272			 */
273			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
274			if (!m) {
275				error = ENOBUFS;
276				goto bad;
277			}
278			enc = mtod(m, union fw_encap *);
279			if (foff == 0) {
280				enc->firstfrag.lf = FW_ENCAP_FIRST;
281				enc->firstfrag.reserved1 = 0;
282				enc->firstfrag.reserved2 = 0;
283				enc->firstfrag.datagram_size = dsize - 1;
284				enc->firstfrag.ether_type = type;
285				enc->firstfrag.dgl = dgl;
286			} else {
287				if (mtail)
288					enc->nextfrag.lf = FW_ENCAP_NEXT;
289				else
290					enc->nextfrag.lf = FW_ENCAP_LAST;
291				enc->nextfrag.reserved1 = 0;
292				enc->nextfrag.reserved2 = 0;
293				enc->nextfrag.reserved3 = 0;
294				enc->nextfrag.datagram_size = dsize - 1;
295				enc->nextfrag.fragment_offset = foff;
296				enc->nextfrag.dgl = dgl;
297			}
298			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
299
300			/*
301			 * Byte swap the encapsulation header manually.
302			 */
303			enc->ul[0] = htonl(enc->ul[0]);
304			enc->ul[1] = htonl(enc->ul[1]);
305
306			IFQ_HANDOFF(ifp, m, error);
307			if (error) {
308				if (mtail)
309					m_freem(mtail);
310				return (ENOBUFS);
311			}
312
313			m = mtail;
314		}
315
316		return (0);
317	}
318
319bad:
320	if (m)
321		m_freem(m);
322	return (error);
323}
324
325static struct mbuf *
326firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
327{
328	union fw_encap *enc;
329	struct fw_reass *r;
330	struct mbuf *mf, *mprev;
331	int dsize;
332	int fstart, fend, start, end, islast;
333	uint32_t id;
334
335	GIANT_REQUIRED;
336
337	/*
338	 * Find an existing reassembly buffer or create a new one.
339	 */
340	enc = mtod(m, union fw_encap *);
341	id = enc->firstfrag.dgl | (src << 16);
342	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
343		if (r->fr_id == id)
344			break;
345	if (!r) {
346		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
347		if (!r) {
348			m_freem(m);
349			return 0;
350		}
351		r->fr_id = id;
352		r->fr_frags = 0;
353		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
354	}
355
356	/*
357	 * If this fragment overlaps any other fragment, we must discard
358	 * the partial reassembly and start again.
359	 */
360	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
361		fstart = 0;
362	else
363		fstart = enc->nextfrag.fragment_offset;
364	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
365	dsize = enc->nextfrag.datagram_size;
366	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
367
368	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
369		enc = mtod(mf, union fw_encap *);
370		if (enc->nextfrag.datagram_size != dsize) {
371			/*
372			 * This fragment must be from a different
373			 * packet.
374			 */
375			goto bad;
376		}
377		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
378			start = 0;
379		else
380			start = enc->nextfrag.fragment_offset;
381		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
382		if ((fstart < end && fend > start) ||
383		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
384			/*
385			 * Overlap - discard reassembly buffer and start
386			 * again with this fragment.
387			 */
388			goto bad;
389		}
390	}
391
392	/*
393	 * Find where to put this fragment in the list.
394	 */
395	for (mf = r->fr_frags, mprev = NULL; mf;
396	    mprev = mf, mf = mf->m_nextpkt) {
397		enc = mtod(mf, union fw_encap *);
398		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
399			start = 0;
400		else
401			start = enc->nextfrag.fragment_offset;
402		if (start >= fend)
403			break;
404	}
405
406	/*
407	 * If this is a last fragment and we are not adding at the end
408	 * of the list, discard the buffer.
409	 */
410	if (islast && mprev && mprev->m_nextpkt)
411		goto bad;
412
413	if (mprev) {
414		m->m_nextpkt = mprev->m_nextpkt;
415		mprev->m_nextpkt = m;
416
417		/*
418		 * Coalesce forwards and see if we can make a whole
419		 * datagram.
420		 */
421		enc = mtod(mprev, union fw_encap *);
422		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
423			start = 0;
424		else
425			start = enc->nextfrag.fragment_offset;
426		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
427		while (end == fstart) {
428			/*
429			 * Strip off the encap header from m and
430			 * append it to mprev, freeing m.
431			 */
432			m_adj(m, 2*sizeof(uint32_t));
433			mprev->m_nextpkt = m->m_nextpkt;
434			mprev->m_pkthdr.len += m->m_pkthdr.len;
435			m_cat(mprev, m);
436
437			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
438				/*
439				 * We have assembled a complete packet
440				 * we must be finished. Make sure we have
441				 * merged the whole chain.
442				 */
443				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
444				free(r, M_TEMP);
445				m = mprev->m_nextpkt;
446				while (m) {
447					mf = m->m_nextpkt;
448					m_freem(m);
449					m = mf;
450				}
451				mprev->m_nextpkt = NULL;
452
453				return (mprev);
454			}
455
456			/*
457			 * See if we can continue merging forwards.
458			 */
459			end = fend;
460			m = mprev->m_nextpkt;
461			if (m) {
462				enc = mtod(m, union fw_encap *);
463				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
464					fstart = 0;
465				else
466					fstart = enc->nextfrag.fragment_offset;
467				fend = fstart + m->m_pkthdr.len
468				    - 2*sizeof(uint32_t);
469			} else {
470				break;
471			}
472		}
473	} else {
474		m->m_nextpkt = 0;
475		r->fr_frags = m;
476	}
477
478	return (0);
479
480bad:
481	while (r->fr_frags) {
482		mf = r->fr_frags;
483		r->fr_frags = mf->m_nextpkt;
484		m_freem(mf);
485	}
486	m->m_nextpkt = 0;
487	r->fr_frags = m;
488
489	return (0);
490}
491
492void
493firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
494{
495	struct fw_com *fc = (struct fw_com *) ifp;
496	union fw_encap *enc;
497	int type, isr;
498
499	GIANT_REQUIRED;
500
501	/*
502	 * The caller has already stripped off the packet header
503	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
504	 * appropriately. We de-encapsulate the IP packet and pass it
505	 * up the line after handling link-level fragmentation.
506	 */
507	if (m->m_pkthdr.len < sizeof(uint32_t)) {
508		if_printf(ifp, "discarding frame without "
509		    "encapsulation header (len %u pkt len %u)\n",
510		    m->m_len, m->m_pkthdr.len);
511	}
512
513	m = m_pullup(m, sizeof(uint32_t));
514	enc = mtod(m, union fw_encap *);
515
516	/*
517	 * Byte swap the encapsulation header manually.
518	 */
519	enc->ul[0] = htonl(enc->ul[0]);
520
521	if (enc->unfrag.lf != 0) {
522		m = m_pullup(m, 2*sizeof(uint32_t));
523		if (!m)
524			return;
525		enc = mtod(m, union fw_encap *);
526		enc->ul[1] = htonl(enc->ul[1]);
527		m = firewire_input_fragment(fc, m, src);
528		if (!m)
529			return;
530		enc = mtod(m, union fw_encap *);
531		type = enc->firstfrag.ether_type;
532		m_adj(m, 2*sizeof(uint32_t));
533	} else {
534		type = enc->unfrag.ether_type;
535		m_adj(m, sizeof(uint32_t));
536	}
537
538	if (m->m_pkthdr.rcvif == NULL) {
539		if_printf(ifp, "discard frame w/o interface pointer\n");
540		ifp->if_ierrors++;
541		m_freem(m);
542		return;
543	}
544#ifdef DIAGNOSTIC
545	if (m->m_pkthdr.rcvif != ifp) {
546		if_printf(ifp, "Warning, frame marked as received on %s\n",
547			m->m_pkthdr.rcvif->if_xname);
548	}
549#endif
550
551#ifdef MAC
552	/*
553	 * Tag the mbuf with an appropriate MAC label before any other
554	 * consumers can get to it.
555	 */
556	mac_create_mbuf_from_ifnet(ifp, m);
557#endif
558
559	/*
560	 * Give bpf a chance at the packet. The link-level driver
561	 * should have left us a tag with the EUID of the sender.
562	 */
563	if (ifp->if_bpf) {
564		struct fw_bpfhdr h;
565		struct m_tag *mtag;
566
567		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
568		if (mtag)
569			bcopy(mtag + 1, h.firewire_shost, 8);
570		else
571			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
572		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
573		h.firewire_type = htons(type);
574		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
575	}
576
577	if (ifp->if_flags & IFF_MONITOR) {
578		/*
579		 * Interface marked for monitoring; discard packet.
580		 */
581		m_freem(m);
582		return;
583	}
584
585	ifp->if_ibytes += m->m_pkthdr.len;
586
587	/* Discard packet if interface is not up */
588	if ((ifp->if_flags & IFF_UP) == 0) {
589		m_freem(m);
590		return;
591	}
592
593	if (m->m_flags & (M_BCAST|M_MCAST))
594		ifp->if_imcasts++;
595
596	switch (type) {
597#ifdef INET
598	case ETHERTYPE_IP:
599		if (ip_fastforward(m))
600			return;
601		isr = NETISR_IP;
602		break;
603
604	case ETHERTYPE_ARP:
605	{
606		struct arphdr *ah;
607		ah = mtod(m, struct arphdr *);
608
609		/*
610		 * Adjust the arp packet to insert an empty tha slot.
611		 */
612		m->m_len += ah->ar_hln;
613		m->m_pkthdr.len += ah->ar_hln;
614		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
615		isr = NETISR_ARP;
616		break;
617	}
618#endif
619
620#ifdef INET6
621	case ETHERTYPE_IPV6:
622		isr = NETISR_IPV6;
623		break;
624#endif
625
626	default:
627		m_freem(m);
628		return;
629	}
630
631	netisr_dispatch(isr, m);
632}
633
634int
635firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
636{
637	struct ifaddr *ifa = (struct ifaddr *) data;
638	struct ifreq *ifr = (struct ifreq *) data;
639	int error = 0;
640
641	switch (command) {
642	case SIOCSIFADDR:
643		ifp->if_flags |= IFF_UP;
644
645		switch (ifa->ifa_addr->sa_family) {
646#ifdef INET
647		case AF_INET:
648			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
649			arp_ifinit(ifp, ifa);
650			break;
651#endif
652		default:
653			ifp->if_init(ifp->if_softc);
654			break;
655		}
656		break;
657
658	case SIOCGIFADDR:
659		{
660			struct sockaddr *sa;
661
662			sa = (struct sockaddr *) & ifr->ifr_data;
663			bcopy(&IFP2FC(ifp)->fc_hwaddr,
664			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
665		}
666		break;
667
668	case SIOCSIFMTU:
669		/*
670		 * Set the interface MTU.
671		 */
672		if (ifr->ifr_mtu > 1500) {
673			error = EINVAL;
674		} else {
675			ifp->if_mtu = ifr->ifr_mtu;
676		}
677		break;
678	default:
679		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
680		break;
681	}
682	return (error);
683}
684
685static int
686firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
687    struct sockaddr *sa)
688{
689#ifdef INET
690	struct sockaddr_in *sin;
691#endif
692#ifdef INET6
693	struct sockaddr_in6 *sin6;
694#endif
695
696	switch(sa->sa_family) {
697	case AF_LINK:
698		/*
699		 * No mapping needed.
700		 */
701		*llsa = 0;
702		return 0;
703
704#ifdef INET
705	case AF_INET:
706		sin = (struct sockaddr_in *)sa;
707		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
708			return EADDRNOTAVAIL;
709		*llsa = 0;
710		return 0;
711#endif
712#ifdef INET6
713	case AF_INET6:
714		sin6 = (struct sockaddr_in6 *)sa;
715		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
716			/*
717			 * An IP6 address of 0 means listen to all
718			 * of the Ethernet multicast address used for IP6.
719			 * (This is used for multicast routers.)
720			 */
721			ifp->if_flags |= IFF_ALLMULTI;
722			*llsa = 0;
723			return 0;
724		}
725		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
726			return EADDRNOTAVAIL;
727		*llsa = 0;
728		return 0;
729#endif
730
731	default:
732		/*
733		 * Well, the text isn't quite right, but it's the name
734		 * that counts...
735		 */
736		return EAFNOSUPPORT;
737	}
738}
739
740void
741firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
742{
743	struct fw_com *fc = (struct fw_com *) ifp;
744	struct ifaddr *ifa;
745	struct sockaddr_dl *sdl;
746	static const char* speeds[] = {
747		"S100", "S200", "S400", "S800",
748		"S1600", "S3200"
749	};
750
751	fc->fc_speed = llc->sspd;
752	STAILQ_INIT(&fc->fc_frags);
753
754	ifp->if_type = IFT_IEEE1394;
755	ifp->if_addrlen = sizeof(struct fw_hwaddr);
756	ifp->if_hdrlen = 0;
757	if_attach(ifp);
758	ifp->if_mtu = 1500;	/* XXX */
759	ifp->if_output = firewire_output;
760	ifp->if_resolvemulti = firewire_resolvemulti;
761	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
762
763	ifa = ifaddr_byindex(ifp->if_index);
764	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
765	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
766	sdl->sdl_type = IFT_IEEE1394;
767	sdl->sdl_alen = ifp->if_addrlen;
768	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
769
770	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
771	    sizeof(struct fw_hwaddr));
772
773	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
774	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
775	    ntohs(llc->sender_unicast_FIFO_hi),
776	    ntohl(llc->sender_unicast_FIFO_lo),
777	    speeds[llc->sspd],
778	    (2 << llc->sender_max_rec));
779}
780
781void
782firewire_ifdetach(struct ifnet *ifp)
783{
784	bpfdetach(ifp);
785	if_detach(ifp);
786}
787
788void
789firewire_busreset(struct ifnet *ifp)
790{
791	struct fw_com *fc = (struct fw_com *) ifp;
792	struct fw_reass *r;
793	struct mbuf *m;
794
795	/*
796	 * Discard any partial datagrams since the host ids may have changed.
797	 */
798	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
799		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
800		while (r->fr_frags) {
801			m = r->fr_frags;
802			r->fr_frags = m->m_nextpkt;
803			m_freem(m);
804		}
805		free(r, M_TEMP);
806	}
807}
808