if_fwsubr.c revision 130429
1/*
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/net/if_fwsubr.c 130429 2004-06-13 19:55:16Z dfr $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/socket.h>
42#include <sys/sockio.h>
43
44#include <net/if.h>
45#include <net/netisr.h>
46#include <net/route.h>
47#include <net/if_llc.h>
48#include <net/if_dl.h>
49#include <net/if_types.h>
50#include <net/bpf.h>
51#include <net/firewire.h>
52
53#if defined(INET) || defined(INET6)
54#include <netinet/in.h>
55#include <netinet/in_var.h>
56#include <netinet/if_ether.h>
57#include <netinet/ip_fw.h>
58#include <netinet/ip_dummynet.h>
59#endif
60#ifdef INET6
61#include <netinet6/nd6.h>
62#endif
63
64#define IFP2FC(IFP) ((struct fw_com *)IFP)
65
66struct fw_hwaddr firewire_broadcastaddr = {
67	0xffffffff,
68	0xffffffff,
69	0xff,
70	0xff,
71	0xffff,
72	0xffffffff
73};
74
75static int
76firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
77    struct rtentry *rt0)
78{
79	struct fw_com *fc = (struct fw_com *) ifp;
80	int error, type;
81	struct rtentry *rt;
82	struct m_tag *mtag;
83	union fw_encap *enc;
84	struct fw_hwaddr *destfw;
85	uint8_t speed;
86	uint16_t psize, fsize, dsize;
87	struct mbuf *mtail;
88	int unicast, dgl, foff;
89	static int next_dgl;
90
91	GIANT_REQUIRED;
92
93#ifdef MAC
94	error = mac_check_ifnet_transmit(ifp, m);
95	if (error)
96		goto bad;
97#endif
98
99	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
100		error = ENETDOWN;
101		goto bad;
102	}
103
104	error = rt_check(&rt, &rt0, dst);
105	if (error)
106		goto bad;
107
108	/*
109	 * For unicast, we make a tag to store the lladdr of the
110	 * destination. This might not be the first time we have seen
111	 * the packet (for instance, the arp code might be trying to
112	 * re-send it after receiving an arp reply) so we only
113	 * allocate a tag if there isn't one there already. For
114	 * multicast, we will eventually use a different tag to store
115	 * the channel number.
116	 */
117	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
118	if (unicast) {
119		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
120		if (!mtag) {
121			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
122			    sizeof (struct fw_hwaddr), M_NOWAIT);
123			if (!mtag) {
124				error = ENOMEM;
125				goto bad;
126			}
127			m_tag_prepend(m, mtag);
128		}
129		destfw = (struct fw_hwaddr *)(mtag + 1);
130	} else {
131		destfw = 0;
132	}
133
134	switch (dst->sa_family) {
135#ifdef AF_INET
136	case AF_INET:
137		/*
138		 * Only bother with arp for unicast. Allocation of
139		 * channels etc. for firewire is quite different and
140		 * doesn't fit into the arp model.
141		 */
142		if (unicast) {
143			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
144			if (error)
145				return (error == EWOULDBLOCK ? 0 : error);
146		}
147		type = ETHERTYPE_IP;
148		break;
149
150	case AF_ARP:
151	{
152		struct arphdr *ah;
153		ah = mtod(m, struct arphdr *);
154		ah->ar_hrd = htons(ARPHRD_IEEE1394);
155		type = ETHERTYPE_ARP;
156		if (unicast)
157			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
158
159		/*
160		 * The standard arp code leaves a hole for the target
161		 * hardware address which we need to close up.
162		 */
163		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
164		m_adj(m, -ah->ar_hln);
165		break;
166	}
167#endif
168
169#ifdef INET6
170	case AF_INET6:
171		if (unicast) {
172			error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
173			    (u_char *) destfw);
174			if (error)
175				return (error);
176		}
177		type = ETHERTYPE_IPV6;
178		break;
179#endif
180
181	default:
182		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
183		error = EAFNOSUPPORT;
184		goto bad;
185	}
186
187	/*
188	 * Let BPF tap off a copy before we encapsulate.
189	 */
190	if (ifp->if_bpf) {
191		struct fw_bpfhdr h;
192		if (unicast)
193			bcopy(destfw, h.firewire_dhost, 8);
194		else
195			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
196		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
197		h.firewire_type = htons(type);
198		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
199	}
200
201	/*
202	 * Punt on MCAP for now and send all multicast packets on the
203	 * broadcast channel.
204	 */
205	if (m->m_flags & M_MCAST)
206		m->m_flags |= M_BCAST;
207
208	/*
209	 * Figure out what speed to use and what the largest supported
210	 * packet size is. For unicast, this is the minimum of what we
211	 * can speak and what they can hear. For broadcast, lets be
212	 * conservative and use S100. We could possibly improve that
213	 * by examining the bus manager's speed map or similar. We
214	 * also reduce the packet size for broadcast to account for
215	 * the GASP header.
216	 */
217	if (unicast) {
218		speed = min(fc->fc_speed, destfw->sspd);
219		psize = min(512 << speed, 2 << destfw->sender_max_rec);
220	} else {
221		speed = 0;
222		psize = 512 - 2*sizeof(uint32_t);
223	}
224
225	/*
226	 * Next, we encapsulate, possibly fragmenting the original
227	 * datagram if it won't fit into a single packet.
228	 */
229	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
230		/*
231		 * No fragmentation is necessary.
232		 */
233		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
234		if (!m) {
235			error = ENOBUFS;
236			goto bad;
237		}
238		enc = mtod(m, union fw_encap *);
239		enc->unfrag.ether_type = type;
240		enc->unfrag.lf = FW_ENCAP_UNFRAG;
241
242		/*
243		 * Byte swap the encapsulation header manually.
244		 */
245		enc->ul[0] = htonl(enc->ul[0]);
246
247		return (IF_HANDOFF(&ifp->if_snd, m, ifp) ? 0 : ENOBUFS);
248	} else {
249		/*
250		 * Fragment the datagram, making sure to leave enough
251		 * space for the encapsulation header in each packet.
252		 */
253		fsize = psize - 2*sizeof(uint32_t);
254		dgl = next_dgl++;
255		dsize = m->m_pkthdr.len;
256		foff = 0;
257		while (m) {
258			if (m->m_pkthdr.len > fsize) {
259				/*
260				 * Split off the tail segment from the
261				 * datagram, copying our tags over.
262				 */
263				mtail = m_split(m, fsize, M_DONTWAIT);
264				m_tag_copy_chain(mtail, m, M_NOWAIT);
265			} else {
266				mtail = 0;
267			}
268
269			/*
270			 * Add our encapsulation header to this
271			 * fragment and hand it off to the link.
272			 */
273			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
274			if (!m) {
275				error = ENOBUFS;
276				goto bad;
277			}
278			enc = mtod(m, union fw_encap *);
279			if (foff == 0) {
280				enc->firstfrag.lf = FW_ENCAP_FIRST;
281				enc->firstfrag.datagram_size = dsize - 1;
282				enc->firstfrag.ether_type = type;
283				enc->firstfrag.dgl = dgl;
284			} else {
285				if (mtail)
286					enc->nextfrag.lf = FW_ENCAP_NEXT;
287				else
288					enc->nextfrag.lf = FW_ENCAP_LAST;
289				enc->nextfrag.datagram_size = dsize - 1;
290				enc->nextfrag.fragment_offset = foff;
291				enc->nextfrag.dgl = dgl;
292			}
293			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
294
295			/*
296			 * Byte swap the encapsulation header manually.
297			 */
298			enc->ul[0] = htonl(enc->ul[0]);
299			enc->ul[1] = htonl(enc->ul[1]);
300
301			if (!IF_HANDOFF(&ifp->if_snd, m, ifp)) {
302				if (mtail)
303					m_freem(mtail);
304				return (ENOBUFS);
305			}
306
307			m = mtail;
308		}
309
310		return (0);
311	}
312
313bad:
314	if (m)
315		m_freem(m);
316	return (error);
317}
318
319static struct mbuf *
320firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
321{
322	union fw_encap *enc;
323	struct fw_reass *r;
324	struct mbuf *mf, *mprev;
325	int dsize;
326	int fstart, fend, start, end, islast;
327	uint32_t id;
328
329	GIANT_REQUIRED;
330
331	/*
332	 * Find an existing reassembly buffer or create a new one.
333	 */
334	enc = mtod(m, union fw_encap *);
335	id = enc->firstfrag.dgl | (src << 16);
336	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
337		if (r->fr_id == id)
338			break;
339	if (!r) {
340		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
341		if (!r) {
342			m_freem(m);
343			return 0;
344		}
345		r->fr_id = id;
346		r->fr_frags = 0;
347		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
348	}
349
350	/*
351	 * If this fragment overlaps any other fragment, we must discard
352	 * the partial reassembly and start again.
353	 */
354	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
355		fstart = 0;
356	else
357		fstart = enc->nextfrag.fragment_offset;
358	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
359	dsize = enc->nextfrag.datagram_size;
360	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
361
362	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
363		enc = mtod(mf, union fw_encap *);
364		if (enc->nextfrag.datagram_size != dsize) {
365			/*
366			 * This fragment must be from a different
367			 * packet.
368			 */
369			goto bad;
370		}
371		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
372			start = 0;
373		else
374			start = enc->nextfrag.fragment_offset;
375		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
376		if ((fstart < end && fend > start) ||
377		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
378			/*
379			 * Overlap - discard reassembly buffer and start
380			 * again with this fragment.
381			 */
382			goto bad;
383		}
384	}
385
386	/*
387	 * Find where to put this fragment in the list.
388	 */
389	for (mf = r->fr_frags, mprev = NULL; mf;
390	    mprev = mf, mf = mf->m_nextpkt) {
391		enc = mtod(mf, union fw_encap *);
392		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
393			start = 0;
394		else
395			start = enc->nextfrag.fragment_offset;
396		if (start >= fend)
397			break;
398	}
399
400	/*
401	 * If this is a last fragment and we are not adding at the end
402	 * of the list, discard the buffer.
403	 */
404	if (islast && mprev && mprev->m_nextpkt)
405		goto bad;
406
407	if (mprev) {
408		m->m_nextpkt = mprev->m_nextpkt;
409		mprev->m_nextpkt = m;
410
411		/*
412		 * Coalesce forwards and see if we can make a whole
413		 * datagram.
414		 */
415		enc = mtod(mprev, union fw_encap *);
416		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
417			start = 0;
418		else
419			start = enc->nextfrag.fragment_offset;
420		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
421		while (end == fstart) {
422			/*
423			 * Strip off the encap header from m and
424			 * append it to mprev, freeing m.
425			 */
426			m_adj(m, 2*sizeof(uint32_t));
427			mprev->m_nextpkt = m->m_nextpkt;
428			mprev->m_pkthdr.len += m->m_pkthdr.len;
429			m_cat(mprev, m);
430
431			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
432				/*
433				 * We have assembled a complete packet
434				 * we must be finished. Make sure we have
435				 * merged the whole chain.
436				 */
437				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
438				free(r, M_TEMP);
439				m = mprev->m_nextpkt;
440				while (m) {
441					mf = m->m_nextpkt;
442					m_freem(m);
443					m = mf;
444				}
445				mprev->m_nextpkt = NULL;
446
447				return (mprev);
448			}
449
450			/*
451			 * See if we can continue merging forwards.
452			 */
453			end = fend;
454			m = mprev->m_nextpkt;
455			if (m) {
456				enc = mtod(m, union fw_encap *);
457				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
458					fstart = 0;
459				else
460					fstart = enc->nextfrag.fragment_offset;
461				fend = fstart + m->m_pkthdr.len
462				    - 2*sizeof(uint32_t);
463			} else {
464				break;
465			}
466		}
467	} else {
468		m->m_nextpkt = 0;
469		r->fr_frags = m;
470	}
471
472	return (0);
473
474bad:
475	while (r->fr_frags) {
476		mf = r->fr_frags;
477		r->fr_frags = mf->m_nextpkt;
478		m_freem(mf);
479	}
480	m->m_nextpkt = 0;
481	r->fr_frags = m;
482
483	return (0);
484}
485
486void
487firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
488{
489	struct fw_com *fc = (struct fw_com *) ifp;
490	union fw_encap *enc;
491	int type, isr;
492
493	GIANT_REQUIRED;
494
495	/*
496	 * The caller has already stripped off the packet header
497	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
498	 * appropriately. We de-encapsulate the IP packet and pass it
499	 * up the line after handling link-level fragmentation.
500	 */
501	if (m->m_pkthdr.len < sizeof(uint32_t)) {
502		if_printf(ifp, "discarding frame without "
503		    "encapsulation header (len %u pkt len %u)\n",
504		    m->m_len, m->m_pkthdr.len);
505	}
506
507	m = m_pullup(m, sizeof(uint32_t));
508	enc = mtod(m, union fw_encap *);
509
510	/*
511	 * Byte swap the encapsulation header manually.
512	 */
513	enc->ul[0] = htonl(enc->ul[0]);
514
515	if (enc->unfrag.lf != 0) {
516		m = m_pullup(m, 2*sizeof(uint32_t));
517		if (!m)
518			return;
519		enc = mtod(m, union fw_encap *);
520		enc->ul[1] = htonl(enc->ul[1]);
521		m = firewire_input_fragment(fc, m, src);
522		if (!m)
523			return;
524		enc = mtod(m, union fw_encap *);
525		type = enc->firstfrag.ether_type;
526		m_adj(m, 2*sizeof(uint32_t));
527	} else {
528		type = enc->unfrag.ether_type;
529		m_adj(m, sizeof(uint32_t));
530	}
531
532	if (m->m_pkthdr.rcvif == NULL) {
533		if_printf(ifp, "discard frame w/o interface pointer\n");
534		ifp->if_ierrors++;
535		m_freem(m);
536		return;
537	}
538#ifdef DIAGNOSTIC
539	if (m->m_pkthdr.rcvif != ifp) {
540		if_printf(ifp, "Warning, frame marked as received on %s\n",
541			m->m_pkthdr.rcvif->if_xname);
542	}
543#endif
544
545#ifdef MAC
546	/*
547	 * Tag the mbuf with an appropriate MAC label before any other
548	 * consumers can get to it.
549	 */
550	mac_create_mbuf_from_ifnet(ifp, m);
551#endif
552
553	/*
554	 * Give bpf a chance at the packet. The link-level driver
555	 * should have left us a tag with the EUID of the sender.
556	 */
557	if (ifp->if_bpf) {
558		struct fw_bpfhdr h;
559		struct m_tag *mtag;
560
561		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
562		if (mtag)
563			bcopy(mtag + 1, h.firewire_shost, 8);
564		else
565			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
566		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
567		h.firewire_type = htons(type);
568		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
569	}
570
571	if (ifp->if_flags & IFF_MONITOR) {
572		/*
573		 * Interface marked for monitoring; discard packet.
574		 */
575		m_freem(m);
576		return;
577	}
578
579	ifp->if_ibytes += m->m_pkthdr.len;
580
581	/* Discard packet if interface is not up */
582	if ((ifp->if_flags & IFF_UP) == 0) {
583		m_freem(m);
584		return;
585	}
586
587	if (m->m_flags & (M_BCAST|M_MCAST))
588		ifp->if_imcasts++;
589
590	switch (type) {
591#ifdef INET
592	case ETHERTYPE_IP:
593		if (ip_fastforward(m))
594			return;
595		isr = NETISR_IP;
596		break;
597
598	case ETHERTYPE_ARP:
599	{
600		struct arphdr *ah;
601		ah = mtod(m, struct arphdr *);
602
603		/*
604		 * Adjust the arp packet to insert an empty tha slot.
605		 */
606		m->m_len += ah->ar_hln;
607		m->m_pkthdr.len += ah->ar_hln;
608		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
609		isr = NETISR_ARP;
610		break;
611	}
612#endif
613
614#ifdef INET6
615	case ETHERTYPE_IPV6:
616		isr = NETISR_IPV6;
617		break;
618#endif
619
620	default:
621		m_freem(m);
622		return;
623	}
624
625	netisr_dispatch(isr, m);
626}
627
628int
629firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
630{
631	struct ifaddr *ifa = (struct ifaddr *) data;
632	struct ifreq *ifr = (struct ifreq *) data;
633	int error = 0;
634
635	switch (command) {
636	case SIOCSIFADDR:
637		ifp->if_flags |= IFF_UP;
638
639		switch (ifa->ifa_addr->sa_family) {
640#ifdef INET
641		case AF_INET:
642			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
643			arp_ifinit(ifp, ifa);
644			break;
645#endif
646		default:
647			ifp->if_init(ifp->if_softc);
648			break;
649		}
650		break;
651
652	case SIOCGIFADDR:
653		{
654			struct sockaddr *sa;
655
656			sa = (struct sockaddr *) & ifr->ifr_data;
657			bcopy(&IFP2FC(ifp)->fc_hwaddr,
658			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
659		}
660		break;
661
662	case SIOCSIFMTU:
663		/*
664		 * Set the interface MTU.
665		 */
666		if (ifr->ifr_mtu > 1500) {
667			error = EINVAL;
668		} else {
669			ifp->if_mtu = ifr->ifr_mtu;
670		}
671		break;
672	default:
673		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
674		break;
675	}
676	return (error);
677}
678
679static int
680firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
681    struct sockaddr *sa)
682{
683#ifdef INET
684	struct sockaddr_in *sin;
685#endif
686#ifdef INET6
687	struct sockaddr_in6 *sin6;
688#endif
689
690	switch(sa->sa_family) {
691	case AF_LINK:
692		/*
693		 * No mapping needed.
694		 */
695		*llsa = 0;
696		return 0;
697
698#ifdef INET
699	case AF_INET:
700		sin = (struct sockaddr_in *)sa;
701		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
702			return EADDRNOTAVAIL;
703		*llsa = 0;
704		return 0;
705#endif
706#ifdef INET6
707	case AF_INET6:
708		sin6 = (struct sockaddr_in6 *)sa;
709		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
710			/*
711			 * An IP6 address of 0 means listen to all
712			 * of the Ethernet multicast address used for IP6.
713			 * (This is used for multicast routers.)
714			 */
715			ifp->if_flags |= IFF_ALLMULTI;
716			*llsa = 0;
717			return 0;
718		}
719		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
720			return EADDRNOTAVAIL;
721		*llsa = 0;
722		return 0;
723#endif
724
725	default:
726		/*
727		 * Well, the text isn't quite right, but it's the name
728		 * that counts...
729		 */
730		return EAFNOSUPPORT;
731	}
732}
733
734void
735firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
736{
737	struct fw_com *fc = (struct fw_com *) ifp;
738	struct ifaddr *ifa;
739	struct sockaddr_dl *sdl;
740	static const char* speeds[] = {
741		"S100", "S200", "S400", "S800",
742		"S1600", "S3200"
743	};
744
745	fc->fc_speed = llc->sspd;
746	STAILQ_INIT(&fc->fc_frags);
747
748	ifp->if_type = IFT_IEEE1394;
749	ifp->if_addrlen = sizeof(struct fw_hwaddr);
750	ifp->if_hdrlen = 0;
751	if_attach(ifp);
752	ifp->if_mtu = 1500;	/* XXX */
753	ifp->if_output = firewire_output;
754	ifp->if_resolvemulti = firewire_resolvemulti;
755	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
756
757	ifa = ifaddr_byindex(ifp->if_index);
758	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
759	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
760	sdl->sdl_type = IFT_IEEE1394;
761	sdl->sdl_alen = ifp->if_addrlen;
762	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
763
764	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
765	    sizeof(struct fw_hwaddr));
766
767	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
768	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
769	    ntohs(llc->sender_unicast_FIFO_hi),
770	    ntohl(llc->sender_unicast_FIFO_lo),
771	    speeds[llc->sspd],
772	    (2 << llc->sender_max_rec));
773}
774
775void
776firewire_ifdetach(struct ifnet *ifp)
777{
778	bpfdetach(ifp);
779	if_detach(ifp);
780}
781
782void
783firewire_busreset(struct ifnet *ifp)
784{
785	struct fw_com *fc = (struct fw_com *) ifp;
786	struct fw_reass *r;
787	struct mbuf *m;
788
789	/*
790	 * Discard any partial datagrams since the host ids may have changed.
791	 */
792	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
793		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
794		while (r->fr_frags) {
795			m = r->fr_frags;
796			r->fr_frags = m->m_nextpkt;
797			m_freem(m);
798		}
799		free(r, M_TEMP);
800	}
801}
802