if_fwsubr.c revision 130425
1/*
2 * Copyright (c) 2004 Doug Rabson
3 * Copyright (c) 1982, 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD: head/sys/net/if_fwsubr.c 130425 2004-06-13 19:15:44Z dfr $
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/socket.h>
42#include <sys/sockio.h>
43
44#include <net/if.h>
45#include <net/netisr.h>
46#include <net/route.h>
47#include <net/if_llc.h>
48#include <net/if_dl.h>
49#include <net/if_types.h>
50#include <net/bpf.h>
51#include <net/firewire.h>
52
53#if defined(INET) || defined(INET6)
54#include <netinet/in.h>
55#include <netinet/in_var.h>
56#include <netinet/if_ether.h>
57#include <netinet/ip_fw.h>
58#include <netinet/ip_dummynet.h>
59#endif
60#ifdef INET6
61#include <netinet6/nd6.h>
62#endif
63
64#define IFP2FC(IFP) ((struct fw_com *)IFP)
65
66struct fw_hwaddr firewire_broadcastaddr = {
67	0xffffffff,
68	0xffffffff,
69	0xff,
70	0xff,
71	0xffff,
72	0xffffffff
73};
74
75static int
76firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
77    struct rtentry *rt0)
78{
79	struct fw_com *fc = (struct fw_com *) ifp;
80	int error, type;
81	struct rtentry *rt;
82	struct m_tag *mtag;
83	union fw_encap *enc;
84	struct fw_hwaddr *destfw;
85	uint8_t speed;
86	uint16_t psize, fsize, dsize;
87	struct mbuf *mtail;
88	int unicast, dgl, foff;
89	static int next_dgl;
90
91	GIANT_REQUIRED;
92
93	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
94		error = ENETDOWN;
95		goto bad;
96	}
97
98	error = rt_check(&rt, &rt0, dst);
99	if (error)
100		goto bad;
101
102	/*
103	 * For unicast, we make a tag to store the lladdr of the
104	 * destination. This might not be the first time we have seen
105	 * the packet (for instance, the arp code might be trying to
106	 * re-send it after receiving an arp reply) so we only
107	 * allocate a tag if there isn't one there already. For
108	 * multicast, we will eventually use a different tag to store
109	 * the channel number.
110	 */
111	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
112	if (unicast) {
113		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
114		if (!mtag) {
115			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
116			    sizeof (struct fw_hwaddr), M_NOWAIT);
117			if (!mtag) {
118				error = ENOMEM;
119				goto bad;
120			}
121			m_tag_prepend(m, mtag);
122		}
123		destfw = (struct fw_hwaddr *)(mtag + 1);
124	} else {
125		destfw = 0;
126	}
127
128	switch (dst->sa_family) {
129#ifdef AF_INET
130	case AF_INET:
131		/*
132		 * Only bother with arp for unicast. Allocation of
133		 * channels etc. for firewire is quite different and
134		 * doesn't fit into the arp model.
135		 */
136		if (unicast) {
137			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
138			if (error)
139				return (error == EWOULDBLOCK ? 0 : error);
140		}
141		type = ETHERTYPE_IP;
142		break;
143
144	case AF_ARP:
145	{
146		struct arphdr *ah;
147		ah = mtod(m, struct arphdr *);
148		ah->ar_hrd = htons(ARPHRD_IEEE1394);
149		type = ETHERTYPE_ARP;
150		if (unicast)
151			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
152
153		/*
154		 * The standard arp code leaves a hole for the target
155		 * hardware address which we need to close up.
156		 */
157		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
158		m_adj(m, -ah->ar_hln);
159		break;
160	}
161#endif
162
163#ifdef INET6
164	case AF_INET6:
165		if (unicast) {
166			error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
167			    (u_char *) destfw);
168			if (error)
169				return (error);
170		}
171		type = ETHERTYPE_IPV6;
172		break;
173#endif
174
175	default:
176		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
177		error = EAFNOSUPPORT;
178		goto bad;
179	}
180
181	/*
182	 * Let BPF tap off a copy before we encapsulate.
183	 */
184	if (ifp->if_bpf) {
185		struct fw_bpfhdr h;
186		if (unicast)
187			bcopy(destfw, h.firewire_dhost, 8);
188		else
189			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
190		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
191		h.firewire_type = htons(type);
192		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
193	}
194
195	/*
196	 * Punt on MCAP for now and send all multicast packets on the
197	 * broadcast channel.
198	 */
199	if (m->m_flags & M_MCAST)
200		m->m_flags |= M_BCAST;
201
202	/*
203	 * Figure out what speed to use and what the largest supported
204	 * packet size is. For unicast, this is the minimum of what we
205	 * can speak and what they can hear. For broadcast, lets be
206	 * conservative and use S100. We could possibly improve that
207	 * by examining the bus manager's speed map or similar. We
208	 * also reduce the packet size for broadcast to account for
209	 * the GASP header.
210	 */
211	if (unicast) {
212		speed = min(fc->fc_speed, destfw->sspd);
213		psize = min(512 << speed, 2 << destfw->sender_max_rec);
214	} else {
215		speed = 0;
216		psize = 512 - 2*sizeof(uint32_t);
217	}
218
219	/*
220	 * Next, we encapsulate, possibly fragmenting the original
221	 * datagram if it won't fit into a single packet.
222	 */
223	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
224		/*
225		 * No fragmentation is necessary.
226		 */
227		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
228		if (!m) {
229			error = ENOBUFS;
230			goto bad;
231		}
232		enc = mtod(m, union fw_encap *);
233		enc->unfrag.ether_type = type;
234		enc->unfrag.lf = FW_ENCAP_UNFRAG;
235
236		/*
237		 * Byte swap the encapsulation header manually.
238		 */
239		enc->ul[0] = htonl(enc->ul[0]);
240
241		return (IF_HANDOFF(&ifp->if_snd, m, ifp) ? 0 : ENOBUFS);
242	} else {
243		/*
244		 * Fragment the datagram, making sure to leave enough
245		 * space for the encapsulation header in each packet.
246		 */
247		fsize = psize - 2*sizeof(uint32_t);
248		dgl = next_dgl++;
249		dsize = m->m_pkthdr.len;
250		foff = 0;
251		while (m) {
252			if (m->m_pkthdr.len > fsize) {
253				/*
254				 * Split off the tail segment from the
255				 * datagram, copying our tags over.
256				 */
257				mtail = m_split(m, fsize, M_DONTWAIT);
258				m_tag_copy_chain(mtail, m, M_NOWAIT);
259			} else {
260				mtail = 0;
261			}
262
263			/*
264			 * Add our encapsulation header to this
265			 * fragment and hand it off to the link.
266			 */
267			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
268			if (!m) {
269				error = ENOBUFS;
270				goto bad;
271			}
272			enc = mtod(m, union fw_encap *);
273			if (foff == 0) {
274				enc->firstfrag.lf = FW_ENCAP_FIRST;
275				enc->firstfrag.datagram_size = dsize - 1;
276				enc->firstfrag.ether_type = type;
277				enc->firstfrag.dgl = dgl;
278			} else {
279				if (mtail)
280					enc->nextfrag.lf = FW_ENCAP_NEXT;
281				else
282					enc->nextfrag.lf = FW_ENCAP_LAST;
283				enc->nextfrag.datagram_size = dsize - 1;
284				enc->nextfrag.fragment_offset = foff;
285				enc->nextfrag.dgl = dgl;
286			}
287			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
288
289			/*
290			 * Byte swap the encapsulation header manually.
291			 */
292			enc->ul[0] = htonl(enc->ul[0]);
293			enc->ul[1] = htonl(enc->ul[1]);
294
295			if (!IF_HANDOFF(&ifp->if_snd, m, ifp)) {
296				if (mtail)
297					m_freem(mtail);
298				return (ENOBUFS);
299			}
300
301			m = mtail;
302		}
303
304		return (0);
305	}
306
307bad:
308	if (m)
309		m_freem(m);
310	return (error);
311}
312
313static struct mbuf *
314firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
315{
316	union fw_encap *enc;
317	struct fw_reass *r;
318	struct mbuf *mf, *mprev;
319	int dsize;
320	int fstart, fend, start, end, islast;
321	uint32_t id;
322
323	GIANT_REQUIRED;
324
325	/*
326	 * Find an existing reassembly buffer or create a new one.
327	 */
328	enc = mtod(m, union fw_encap *);
329	id = enc->firstfrag.dgl | (src << 16);
330	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
331		if (r->fr_id == id)
332			break;
333	if (!r) {
334		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
335		if (!r) {
336			m_freem(m);
337			return 0;
338		}
339		r->fr_id = id;
340		r->fr_frags = 0;
341		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
342	}
343
344	/*
345	 * If this fragment overlaps any other fragment, we must discard
346	 * the partial reassembly and start again.
347	 */
348	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
349		fstart = 0;
350	else
351		fstart = enc->nextfrag.fragment_offset;
352	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
353	dsize = enc->nextfrag.datagram_size;
354	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
355
356	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
357		enc = mtod(mf, union fw_encap *);
358		if (enc->nextfrag.datagram_size != dsize) {
359			/*
360			 * This fragment must be from a different
361			 * packet.
362			 */
363			goto bad;
364		}
365		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
366			start = 0;
367		else
368			start = enc->nextfrag.fragment_offset;
369		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
370		if ((fstart < end && fend > start) ||
371		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
372			/*
373			 * Overlap - discard reassembly buffer and start
374			 * again with this fragment.
375			 */
376			goto bad;
377		}
378	}
379
380	/*
381	 * Find where to put this fragment in the list.
382	 */
383	for (mf = r->fr_frags, mprev = NULL; mf;
384	    mprev = mf, mf = mf->m_nextpkt) {
385		enc = mtod(mf, union fw_encap *);
386		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
387			start = 0;
388		else
389			start = enc->nextfrag.fragment_offset;
390		if (start >= fend)
391			break;
392	}
393
394	/*
395	 * If this is a last fragment and we are not adding at the end
396	 * of the list, discard the buffer.
397	 */
398	if (islast && mprev && mprev->m_nextpkt)
399		goto bad;
400
401	if (mprev) {
402		m->m_nextpkt = mprev->m_nextpkt;
403		mprev->m_nextpkt = m;
404
405		/*
406		 * Coalesce forwards and see if we can make a whole
407		 * datagram.
408		 */
409		enc = mtod(mprev, union fw_encap *);
410		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
411			start = 0;
412		else
413			start = enc->nextfrag.fragment_offset;
414		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
415		while (end == fstart) {
416			/*
417			 * Strip off the encap header from m and
418			 * append it to mprev, freeing m.
419			 */
420			m_adj(m, 2*sizeof(uint32_t));
421			mprev->m_nextpkt = m->m_nextpkt;
422			mprev->m_pkthdr.len += m->m_pkthdr.len;
423			m_cat(mprev, m);
424
425			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
426				/*
427				 * We have assembled a complete packet
428				 * we must be finished. Make sure we have
429				 * merged the whole chain.
430				 */
431				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
432				free(r, M_TEMP);
433				m = mprev->m_nextpkt;
434				while (m) {
435					mf = m->m_nextpkt;
436					m_freem(m);
437					m = mf;
438				}
439				mprev->m_nextpkt = NULL;
440
441				return (mprev);
442			}
443
444			/*
445			 * See if we can continue merging forwards.
446			 */
447			end = fend;
448			m = mprev->m_nextpkt;
449			if (m) {
450				enc = mtod(m, union fw_encap *);
451				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
452					fstart = 0;
453				else
454					fstart = enc->nextfrag.fragment_offset;
455				fend = fstart + m->m_pkthdr.len
456				    - 2*sizeof(uint32_t);
457			} else {
458				break;
459			}
460		}
461	} else {
462		m->m_nextpkt = 0;
463		r->fr_frags = m;
464	}
465
466	return (0);
467
468bad:
469	while (r->fr_frags) {
470		mf = r->fr_frags;
471		r->fr_frags = mf->m_nextpkt;
472		m_freem(mf);
473	}
474	m->m_nextpkt = 0;
475	r->fr_frags = m;
476
477	return (0);
478}
479
480void
481firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
482{
483	struct fw_com *fc = (struct fw_com *) ifp;
484	union fw_encap *enc;
485	int type, isr;
486
487	GIANT_REQUIRED;
488
489	/*
490	 * The caller has already stripped off the packet header
491	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
492	 * appropriately. We de-encapsulate the IP packet and pass it
493	 * up the line after handling link-level fragmentation.
494	 */
495	if (m->m_pkthdr.len < sizeof(uint32_t)) {
496		if_printf(ifp, "discarding frame without "
497		    "encapsulation header (len %u pkt len %u)\n",
498		    m->m_len, m->m_pkthdr.len);
499	}
500
501	m = m_pullup(m, sizeof(uint32_t));
502	enc = mtod(m, union fw_encap *);
503
504	/*
505	 * Byte swap the encapsulation header manually.
506	 */
507	enc->ul[0] = htonl(enc->ul[0]);
508
509	if (enc->unfrag.lf != 0) {
510		m = m_pullup(m, 2*sizeof(uint32_t));
511		if (!m)
512			return;
513		enc = mtod(m, union fw_encap *);
514		enc->ul[1] = htonl(enc->ul[1]);
515		m = firewire_input_fragment(fc, m, src);
516		if (!m)
517			return;
518		enc = mtod(m, union fw_encap *);
519		type = enc->firstfrag.ether_type;
520		m_adj(m, 2*sizeof(uint32_t));
521	} else {
522		type = enc->unfrag.ether_type;
523		m_adj(m, sizeof(uint32_t));
524	}
525
526	if (m->m_pkthdr.rcvif == NULL) {
527		if_printf(ifp, "discard frame w/o interface pointer\n");
528		ifp->if_ierrors++;
529		m_freem(m);
530		return;
531	}
532#ifdef DIAGNOSTIC
533	if (m->m_pkthdr.rcvif != ifp) {
534		if_printf(ifp, "Warning, frame marked as received on %s\n",
535			m->m_pkthdr.rcvif->if_xname);
536	}
537#endif
538
539#ifdef MAC
540	/*
541	 * Tag the mbuf with an appropriate MAC label before any other
542	 * consumers can get to it.
543	 */
544	mac_create_mbuf_from_ifnet(ifp, m);
545#endif
546
547	/*
548	 * Give bpf a chance at the packet. The link-level driver
549	 * should have left us a tag with the EUID of the sender.
550	 */
551	if (ifp->if_bpf) {
552		struct fw_bpfhdr h;
553		struct m_tag *mtag;
554
555		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
556		if (mtag)
557			bcopy(mtag + 1, h.firewire_shost, 8);
558		else
559			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
560		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
561		h.firewire_type = htons(type);
562		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
563	}
564
565	if (ifp->if_flags & IFF_MONITOR) {
566		/*
567		 * Interface marked for monitoring; discard packet.
568		 */
569		m_freem(m);
570		return;
571	}
572
573	ifp->if_ibytes += m->m_pkthdr.len;
574
575	/* Discard packet if interface is not up */
576	if ((ifp->if_flags & IFF_UP) == 0) {
577		m_freem(m);
578		return;
579	}
580
581	if (m->m_flags & (M_BCAST|M_MCAST))
582		ifp->if_imcasts++;
583
584	switch (type) {
585#ifdef INET
586	case ETHERTYPE_IP:
587		if (ip_fastforward(m))
588			return;
589		isr = NETISR_IP;
590		break;
591
592	case ETHERTYPE_ARP:
593	{
594		struct arphdr *ah;
595		ah = mtod(m, struct arphdr *);
596
597		/*
598		 * Adjust the arp packet to insert an empty tha slot.
599		 */
600		m->m_len += ah->ar_hln;
601		m->m_pkthdr.len += ah->ar_hln;
602		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
603		isr = NETISR_ARP;
604		break;
605	}
606#endif
607
608#ifdef INET6
609	case ETHERTYPE_IPV6:
610		isr = NETISR_IPV6;
611		break;
612#endif
613
614	default:
615		m_freem(m);
616		return;
617	}
618
619	netisr_dispatch(isr, m);
620}
621
622int
623firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
624{
625	struct ifaddr *ifa = (struct ifaddr *) data;
626	struct ifreq *ifr = (struct ifreq *) data;
627	int error = 0;
628
629	switch (command) {
630	case SIOCSIFADDR:
631		ifp->if_flags |= IFF_UP;
632
633		switch (ifa->ifa_addr->sa_family) {
634#ifdef INET
635		case AF_INET:
636			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
637			arp_ifinit(ifp, ifa);
638			break;
639#endif
640		default:
641			ifp->if_init(ifp->if_softc);
642			break;
643		}
644		break;
645
646	case SIOCGIFADDR:
647		{
648			struct sockaddr *sa;
649
650			sa = (struct sockaddr *) & ifr->ifr_data;
651			bcopy(&IFP2FC(ifp)->fc_hwaddr,
652			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
653		}
654		break;
655
656	case SIOCSIFMTU:
657		/*
658		 * Set the interface MTU.
659		 */
660		if (ifr->ifr_mtu > 1500) {
661			error = EINVAL;
662		} else {
663			ifp->if_mtu = ifr->ifr_mtu;
664		}
665		break;
666	default:
667		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
668		break;
669	}
670	return (error);
671}
672
673static int
674firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
675    struct sockaddr *sa)
676{
677#ifdef INET
678	struct sockaddr_in *sin;
679#endif
680#ifdef INET6
681	struct sockaddr_in6 *sin6;
682#endif
683
684	switch(sa->sa_family) {
685	case AF_LINK:
686		/*
687		 * No mapping needed.
688		 */
689		*llsa = 0;
690		return 0;
691
692#ifdef INET
693	case AF_INET:
694		sin = (struct sockaddr_in *)sa;
695		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
696			return EADDRNOTAVAIL;
697		*llsa = 0;
698		return 0;
699#endif
700#ifdef INET6
701	case AF_INET6:
702		sin6 = (struct sockaddr_in6 *)sa;
703		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
704			/*
705			 * An IP6 address of 0 means listen to all
706			 * of the Ethernet multicast address used for IP6.
707			 * (This is used for multicast routers.)
708			 */
709			ifp->if_flags |= IFF_ALLMULTI;
710			*llsa = 0;
711			return 0;
712		}
713		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
714			return EADDRNOTAVAIL;
715		*llsa = 0;
716		return 0;
717#endif
718
719	default:
720		/*
721		 * Well, the text isn't quite right, but it's the name
722		 * that counts...
723		 */
724		return EAFNOSUPPORT;
725	}
726}
727
728void
729firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
730{
731	struct fw_com *fc = (struct fw_com *) ifp;
732	struct ifaddr *ifa;
733	struct sockaddr_dl *sdl;
734	static const char* speeds[] = {
735		"S100", "S200", "S400", "S800",
736		"S1600", "S3200"
737	};
738
739	fc->fc_speed = llc->sspd;
740	STAILQ_INIT(&fc->fc_frags);
741
742	ifp->if_type = IFT_IEEE1394;
743	ifp->if_addrlen = sizeof(struct fw_hwaddr);
744	ifp->if_hdrlen = 0;
745	if_attach(ifp);
746	ifp->if_mtu = 1500;	/* XXX */
747	ifp->if_output = firewire_output;
748	ifp->if_resolvemulti = firewire_resolvemulti;
749	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
750
751	ifa = ifaddr_byindex(ifp->if_index);
752	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
753	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
754	sdl->sdl_type = IFT_IEEE1394;
755	sdl->sdl_alen = ifp->if_addrlen;
756	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
757
758	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
759	    sizeof(struct fw_hwaddr));
760
761	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
762	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
763	    ntohs(llc->sender_unicast_FIFO_hi),
764	    ntohl(llc->sender_unicast_FIFO_lo),
765	    speeds[llc->sspd],
766	    (2 << llc->sender_max_rec));
767}
768
769void
770firewire_ifdetach(struct ifnet *ifp)
771{
772	bpfdetach(ifp);
773	if_detach(ifp);
774}
775
776void
777firewire_busreset(struct ifnet *ifp)
778{
779	struct fw_com *fc = (struct fw_com *) ifp;
780	struct fw_reass *r;
781	struct mbuf *m;
782
783	/*
784	 * Discard any partial datagrams since the host ids may have changed.
785	 */
786	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
787		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
788		while (r->fr_frags) {
789			m = r->fr_frags;
790			r->fr_frags = m->m_nextpkt;
791			m_freem(m);
792		}
793		free(r, M_TEMP);
794	}
795}
796