1/*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets.  See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
12 *
13 * $FreeBSD: stable/11/sys/libkern/zlib.c 331643 2018-03-27 18:52:27Z dim $
14 */
15
16/*
17 *  ==FILEVERSION 971210==
18 *
19 * This marker is used by the Linux installation script to determine
20 * whether an up-to-date version of this file is already installed.
21 */
22
23#define NO_DUMMY_DECL
24#define NO_ZCFUNCS
25#define MY_ZCALLOC
26
27#if defined(__FreeBSD__) && defined(_KERNEL)
28#define	_tr_init		_zlib104_tr_init
29#define	_tr_align		_zlib104_tr_align
30#define	_tr_tally		_zlib104_tr_tally
31#define	_tr_flush_block		_zlib104_tr_flush_block
32#define	_tr_stored_block	_zlib104_tr_stored_block
33#define	inflate_fast		_zlib104_inflate_fast
34#define	inflate			_zlib104_inflate
35#define	zlibVersion		_zlib104_Version
36#endif
37
38
39/* +++ zutil.h */
40/*-
41 * zutil.h -- internal interface and configuration of the compression library
42 * Copyright (C) 1995-1996 Jean-loup Gailly.
43 * For conditions of distribution and use, see copyright notice in zlib.h
44 */
45
46/* WARNING: this file should *not* be used by applications. It is
47   part of the implementation of the compression library and is
48   subject to change. Applications should only use zlib.h.
49 */
50
51/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
52
53#ifndef _Z_UTIL_H
54#define _Z_UTIL_H
55
56#ifdef _KERNEL
57#include <sys/zlib.h>
58#else
59#include "zlib.h"
60#endif
61
62#ifdef _KERNEL
63/* Assume this is a *BSD or SVR4 kernel */
64#include <sys/types.h>
65#include <sys/time.h>
66#include <sys/systm.h>
67#include <sys/param.h>
68#include <sys/kernel.h>
69#include <sys/module.h>
70#  define HAVE_MEMCPY
71
72#else
73#if defined(__KERNEL__)
74/* Assume this is a Linux kernel */
75#include <linux/string.h>
76#define HAVE_MEMCPY
77
78#else /* not kernel */
79
80#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
81#   include <stddef.h>
82#   include <errno.h>
83#else
84    extern int errno;
85#endif
86#ifdef STDC
87#  include <string.h>
88#  include <stdlib.h>
89#endif
90#endif /* __KERNEL__ */
91#endif /* _KERNEL */
92
93#ifndef local
94#  define local static
95#endif
96/* compile with -Dlocal if your debugger can't find static symbols */
97
98typedef unsigned char  uch;
99typedef uch FAR uchf;
100typedef unsigned short ush;
101typedef ush FAR ushf;
102typedef unsigned long  ulg;
103
104static const char *z_errmsg[10]; /* indexed by 2-zlib_error */
105/* (size given to avoid silly warnings with Visual C++) */
106
107#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
108
109#define ERR_RETURN(strm,err) \
110  return (strm->msg = (const char*)ERR_MSG(err), (err))
111/* To be used only when the state is known to be valid */
112
113        /* common constants */
114
115#ifndef DEF_WBITS
116#  define DEF_WBITS MAX_WBITS
117#endif
118/* default windowBits for decompression. MAX_WBITS is for compression only */
119
120#if MAX_MEM_LEVEL >= 8
121#  define DEF_MEM_LEVEL 8
122#else
123#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
124#endif
125/* default memLevel */
126
127#define STORED_BLOCK 0
128#define STATIC_TREES 1
129#define DYN_TREES    2
130/* The three kinds of block type */
131
132#define MIN_MATCH  3
133#define MAX_MATCH  258
134/* The minimum and maximum match lengths */
135
136#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
137
138        /* target dependencies */
139
140#ifdef MSDOS
141#  define OS_CODE  0x00
142#  ifdef __TURBOC__
143#    include <alloc.h>
144#  else /* MSC or DJGPP */
145#    include <malloc.h>
146#  endif
147#endif
148
149#ifdef OS2
150#  define OS_CODE  0x06
151#endif
152
153#ifdef WIN32 /* Window 95 & Windows NT */
154#  define OS_CODE  0x0b
155#endif
156
157#if defined(VAXC) || defined(VMS)
158#  define OS_CODE  0x02
159#  define FOPEN(name, mode) \
160     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
161#endif
162
163#ifdef AMIGA
164#  define OS_CODE  0x01
165#endif
166
167#if defined(ATARI) || defined(atarist)
168#  define OS_CODE  0x05
169#endif
170
171#ifdef MACOS
172#  define OS_CODE  0x07
173#endif
174
175#ifdef __50SERIES /* Prime/PRIMOS */
176#  define OS_CODE  0x0F
177#endif
178
179#ifdef TOPS20
180#  define OS_CODE  0x0a
181#endif
182
183#if defined(_BEOS_) || defined(RISCOS)
184#  define fdopen(fd,mode) NULL /* No fdopen() */
185#endif
186
187        /* Common defaults */
188
189#ifndef OS_CODE
190#  define OS_CODE  0x03  /* assume Unix */
191#endif
192
193#ifndef FOPEN
194#  define FOPEN(name, mode) fopen((name), (mode))
195#endif
196
197         /* functions */
198
199#ifdef HAVE_STRERROR
200   extern char *strerror OF((int));
201#  define zstrerror(errnum) strerror(errnum)
202#else
203#  define zstrerror(errnum) ""
204#endif
205
206#if defined(pyr)
207#  define NO_MEMCPY
208#endif
209#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
210 /* Use our own functions for small and medium model with MSC <= 5.0.
211  * You may have to use the same strategy for Borland C (untested).
212  */
213#  define NO_MEMCPY
214#endif
215#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
216#  define HAVE_MEMCPY
217#endif
218#ifdef HAVE_MEMCPY
219#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
220#    define zmemcpy _fmemcpy
221#    define zmemcmp _fmemcmp
222#    define zmemzero(dest, len) _fmemset(dest, 0, len)
223#  else
224#    define zmemcpy memcpy
225#    define zmemcmp memcmp
226#    define zmemzero(dest, len) memset(dest, 0, len)
227#  endif
228#else
229   extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
230   extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
231   extern void zmemzero OF((Bytef* dest, uInt len));
232#endif
233
234/* Diagnostic functions */
235#ifdef DEBUG_ZLIB
236#  include <stdio.h>
237#  ifndef verbose
238#    define verbose 0
239#  endif
240   extern void z_error    OF((char *m));
241#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
242#  define Trace(x) fprintf x
243#  define Tracev(x) {if (verbose) fprintf x ;}
244#  define Tracevv(x) {if (verbose>1) fprintf x ;}
245#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
246#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
247#else
248#  define Assert(cond,msg)
249#  define Trace(x)
250#  define Tracev(x)
251#  define Tracevv(x)
252#  define Tracec(c,x)
253#  define Tracecv(c,x)
254#endif
255
256
257typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
258
259voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
260void   zcfree  OF((voidpf opaque, voidpf ptr));
261
262#define ZALLOC(strm, items, size) \
263           (*((strm)->zalloc))((strm)->opaque, (items), (size))
264#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
265#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
266
267#endif /* _Z_UTIL_H */
268/* --- zutil.h */
269
270/* +++ deflate.h */
271/* deflate.h -- internal compression state
272 * Copyright (C) 1995-1996 Jean-loup Gailly
273 * For conditions of distribution and use, see copyright notice in zlib.h
274 */
275
276/* WARNING: this file should *not* be used by applications. It is
277   part of the implementation of the compression library and is
278   subject to change. Applications should only use zlib.h.
279 */
280
281/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
282
283#ifndef _DEFLATE_H
284#define _DEFLATE_H
285
286/* #include "zutil.h" */
287
288/* ===========================================================================
289 * Internal compression state.
290 */
291
292#define LENGTH_CODES 29
293/* number of length codes, not counting the special END_BLOCK code */
294
295#define LITERALS  256
296/* number of literal bytes 0..255 */
297
298#define L_CODES (LITERALS+1+LENGTH_CODES)
299/* number of Literal or Length codes, including the END_BLOCK code */
300
301#define D_CODES   30
302/* number of distance codes */
303
304#define BL_CODES  19
305/* number of codes used to transfer the bit lengths */
306
307#define HEAP_SIZE (2*L_CODES+1)
308/* maximum heap size */
309
310#define MAX_BITS 15
311/* All codes must not exceed MAX_BITS bits */
312
313#define INIT_STATE    42
314#define BUSY_STATE   113
315#define FINISH_STATE 666
316/* Stream status */
317
318
319/* Data structure describing a single value and its code string. */
320typedef struct ct_data_s {
321    union {
322        ush  freq;       /* frequency count */
323        ush  code;       /* bit string */
324    } fc;
325    union {
326        ush  dad;        /* father node in Huffman tree */
327        ush  len;        /* length of bit string */
328    } dl;
329} FAR ct_data;
330
331#define Freq fc.freq
332#define Code fc.code
333#define Dad  dl.dad
334#define Len  dl.len
335
336typedef struct static_tree_desc_s  static_tree_desc;
337
338typedef struct tree_desc_s {
339    ct_data *dyn_tree;           /* the dynamic tree */
340    int     max_code;            /* largest code with non zero frequency */
341    static_tree_desc *stat_desc; /* the corresponding static tree */
342} FAR tree_desc;
343
344typedef ush Pos;
345typedef Pos FAR Posf;
346typedef unsigned IPos;
347
348/* A Pos is an index in the character window. We use short instead of int to
349 * save space in the various tables. IPos is used only for parameter passing.
350 */
351
352typedef struct deflate_state {
353    z_streamp strm;      /* pointer back to this zlib stream */
354    int   status;        /* as the name implies */
355    Bytef *pending_buf;  /* output still pending */
356    ulg   pending_buf_size; /* size of pending_buf */
357    Bytef *pending_out;  /* next pending byte to output to the stream */
358    int   pending;       /* nb of bytes in the pending buffer */
359    int   noheader;      /* suppress zlib header and adler32 */
360    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
361    Byte  method;        /* STORED (for zip only) or DEFLATED */
362    int   last_flush;    /* value of flush param for previous deflate call */
363
364                /* used by deflate.c: */
365
366    uInt  w_size;        /* LZ77 window size (32K by default) */
367    uInt  w_bits;        /* log2(w_size)  (8..16) */
368    uInt  w_mask;        /* w_size - 1 */
369
370    Bytef *window;
371    /* Sliding window. Input bytes are read into the second half of the window,
372     * and move to the first half later to keep a dictionary of at least wSize
373     * bytes. With this organization, matches are limited to a distance of
374     * wSize-MAX_MATCH bytes, but this ensures that IO is always
375     * performed with a length multiple of the block size. Also, it limits
376     * the window size to 64K, which is quite useful on MSDOS.
377     * To do: use the user input buffer as sliding window.
378     */
379
380    ulg window_size;
381    /* Actual size of window: 2*wSize, except when the user input buffer
382     * is directly used as sliding window.
383     */
384
385    Posf *prev;
386    /* Link to older string with same hash index. To limit the size of this
387     * array to 64K, this link is maintained only for the last 32K strings.
388     * An index in this array is thus a window index modulo 32K.
389     */
390
391    Posf *head; /* Heads of the hash chains or NIL. */
392
393    uInt  ins_h;          /* hash index of string to be inserted */
394    uInt  hash_size;      /* number of elements in hash table */
395    uInt  hash_bits;      /* log2(hash_size) */
396    uInt  hash_mask;      /* hash_size-1 */
397
398    uInt  hash_shift;
399    /* Number of bits by which ins_h must be shifted at each input
400     * step. It must be such that after MIN_MATCH steps, the oldest
401     * byte no longer takes part in the hash key, that is:
402     *   hash_shift * MIN_MATCH >= hash_bits
403     */
404
405    long block_start;
406    /* Window position at the beginning of the current output block. Gets
407     * negative when the window is moved backwards.
408     */
409
410    uInt match_length;           /* length of best match */
411    IPos prev_match;             /* previous match */
412    int match_available;         /* set if previous match exists */
413    uInt strstart;               /* start of string to insert */
414    uInt match_start;            /* start of matching string */
415    uInt lookahead;              /* number of valid bytes ahead in window */
416
417    uInt prev_length;
418    /* Length of the best match at previous step. Matches not greater than this
419     * are discarded. This is used in the lazy match evaluation.
420     */
421
422    uInt max_chain_length;
423    /* To speed up deflation, hash chains are never searched beyond this
424     * length.  A higher limit improves compression ratio but degrades the
425     * speed.
426     */
427
428    uInt max_lazy_match;
429    /* Attempt to find a better match only when the current match is strictly
430     * smaller than this value. This mechanism is used only for compression
431     * levels >= 4.
432     */
433#   define max_insert_length  max_lazy_match
434    /* Insert new strings in the hash table only if the match length is not
435     * greater than this length. This saves time but degrades compression.
436     * max_insert_length is used only for compression levels <= 3.
437     */
438
439    int level;    /* compression level (1..9) */
440    int strategy; /* favor or force Huffman coding*/
441
442    uInt good_match;
443    /* Use a faster search when the previous match is longer than this */
444
445    int nice_match; /* Stop searching when current match exceeds this */
446
447                /* used by trees.c: */
448    /* Didn't use ct_data typedef below to supress compiler warning */
449    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
450    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
451    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
452
453    struct tree_desc_s l_desc;               /* desc. for literal tree */
454    struct tree_desc_s d_desc;               /* desc. for distance tree */
455    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
456
457    ush bl_count[MAX_BITS+1];
458    /* number of codes at each bit length for an optimal tree */
459
460    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
461    int heap_len;               /* number of elements in the heap */
462    int heap_max;               /* element of largest frequency */
463    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
464     * The same heap array is used to build all trees.
465     */
466
467    uch depth[2*L_CODES+1];
468    /* Depth of each subtree used as tie breaker for trees of equal frequency
469     */
470
471    uchf *l_buf;          /* buffer for literals or lengths */
472
473    uInt  lit_bufsize;
474    /* Size of match buffer for literals/lengths.  There are 4 reasons for
475     * limiting lit_bufsize to 64K:
476     *   - frequencies can be kept in 16 bit counters
477     *   - if compression is not successful for the first block, all input
478     *     data is still in the window so we can still emit a stored block even
479     *     when input comes from standard input.  (This can also be done for
480     *     all blocks if lit_bufsize is not greater than 32K.)
481     *   - if compression is not successful for a file smaller than 64K, we can
482     *     even emit a stored file instead of a stored block (saving 5 bytes).
483     *     This is applicable only for zip (not gzip or zlib).
484     *   - creating new Huffman trees less frequently may not provide fast
485     *     adaptation to changes in the input data statistics. (Take for
486     *     example a binary file with poorly compressible code followed by
487     *     a highly compressible string table.) Smaller buffer sizes give
488     *     fast adaptation but have of course the overhead of transmitting
489     *     trees more frequently.
490     *   - I can't count above 4
491     */
492
493    uInt last_lit;      /* running index in l_buf */
494
495    ushf *d_buf;
496    /* Buffer for distances. To simplify the code, d_buf and l_buf have
497     * the same number of elements. To use different lengths, an extra flag
498     * array would be necessary.
499     */
500
501    ulg opt_len;        /* bit length of current block with optimal trees */
502    ulg static_len;     /* bit length of current block with static trees */
503    ulg compressed_len; /* total bit length of compressed file */
504    uInt matches;       /* number of string matches in current block */
505    int last_eob_len;   /* bit length of EOB code for last block */
506
507#ifdef DEBUG_ZLIB
508    ulg bits_sent;      /* bit length of the compressed data */
509#endif
510
511    ush bi_buf;
512    /* Output buffer. bits are inserted starting at the bottom (least
513     * significant bits).
514     */
515    int bi_valid;
516    /* Number of valid bits in bi_buf.  All bits above the last valid bit
517     * are always zero.
518     */
519
520} FAR deflate_state;
521
522/* Output a byte on the stream.
523 * IN assertion: there is enough room in pending_buf.
524 */
525#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
526
527
528#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
529/* Minimum amount of lookahead, except at the end of the input file.
530 * See deflate.c for comments about the MIN_MATCH+1.
531 */
532
533#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
534/* In order to simplify the code, particularly on 16 bit machines, match
535 * distances are limited to MAX_DIST instead of WSIZE.
536 */
537
538        /* in trees.c */
539void _tr_init         OF((deflate_state *s));
540int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
541ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
542			  int eof));
543void _tr_align        OF((deflate_state *s));
544void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
545                          int eof));
546void _tr_stored_type_only OF((deflate_state *));
547
548#endif
549/* --- deflate.h */
550
551/* +++ deflate.c */
552/* deflate.c -- compress data using the deflation algorithm
553 * Copyright (C) 1995-1996 Jean-loup Gailly.
554 * For conditions of distribution and use, see copyright notice in zlib.h
555 */
556
557/*
558 *  ALGORITHM
559 *
560 *      The "deflation" process depends on being able to identify portions
561 *      of the input text which are identical to earlier input (within a
562 *      sliding window trailing behind the input currently being processed).
563 *
564 *      The most straightforward technique turns out to be the fastest for
565 *      most input files: try all possible matches and select the longest.
566 *      The key feature of this algorithm is that insertions into the string
567 *      dictionary are very simple and thus fast, and deletions are avoided
568 *      completely. Insertions are performed at each input character, whereas
569 *      string matches are performed only when the previous match ends. So it
570 *      is preferable to spend more time in matches to allow very fast string
571 *      insertions and avoid deletions. The matching algorithm for small
572 *      strings is inspired from that of Rabin & Karp. A brute force approach
573 *      is used to find longer strings when a small match has been found.
574 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
575 *      (by Leonid Broukhis).
576 *         A previous version of this file used a more sophisticated algorithm
577 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
578 *      time, but has a larger average cost, uses more memory and is patented.
579 *      However the F&G algorithm may be faster for some highly redundant
580 *      files if the parameter max_chain_length (described below) is too large.
581 *
582 *  ACKNOWLEDGEMENTS
583 *
584 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
585 *      I found it in 'freeze' written by Leonid Broukhis.
586 *      Thanks to many people for bug reports and testing.
587 *
588 *  REFERENCES
589 *
590 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
591 *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
592 *
593 *      A description of the Rabin and Karp algorithm is given in the book
594 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
595 *
596 *      Fiala,E.R., and Greene,D.H.
597 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
598 *
599 */
600
601/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
602
603/* #include "deflate.h" */
604
605char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
606/*
607  If you use the zlib library in a product, an acknowledgment is welcome
608  in the documentation of your product. If for some reason you cannot
609  include such an acknowledgment, I would appreciate that you keep this
610  copyright string in the executable of your product.
611 */
612
613/* ===========================================================================
614 *  Function prototypes.
615 */
616typedef enum {
617    need_more,      /* block not completed, need more input or more output */
618    block_done,     /* block flush performed */
619    finish_started, /* finish started, need only more output at next deflate */
620    finish_done     /* finish done, accept no more input or output */
621} block_state;
622
623typedef block_state (*compress_func) OF((deflate_state *s, int flush));
624/* Compression function. Returns the block state after the call. */
625
626local void fill_window    OF((deflate_state *s));
627local block_state deflate_stored OF((deflate_state *s, int flush));
628local block_state deflate_fast   OF((deflate_state *s, int flush));
629local block_state deflate_slow   OF((deflate_state *s, int flush));
630local void lm_init        OF((deflate_state *s));
631local void putShortMSB    OF((deflate_state *s, uInt b));
632local void flush_pending  OF((z_streamp strm));
633local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
634#ifdef ASMV
635      void match_init OF((void)); /* asm code initialization */
636      uInt longest_match  OF((deflate_state *s, IPos cur_match));
637#else
638local uInt longest_match  OF((deflate_state *s, IPos cur_match));
639#endif
640
641#ifdef DEBUG_ZLIB
642local  void check_match OF((deflate_state *s, IPos start, IPos match,
643                            int length));
644#endif
645
646/* ===========================================================================
647 * Local data
648 */
649
650#define NIL 0
651/* Tail of hash chains */
652
653#ifndef TOO_FAR
654#  define TOO_FAR 4096
655#endif
656/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
657
658#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
659/* Minimum amount of lookahead, except at the end of the input file.
660 * See deflate.c for comments about the MIN_MATCH+1.
661 */
662
663/* Values for max_lazy_match, good_match and max_chain_length, depending on
664 * the desired pack level (0..9). The values given below have been tuned to
665 * exclude worst case performance for pathological files. Better values may be
666 * found for specific files.
667 */
668typedef struct config_s {
669   ush good_length; /* reduce lazy search above this match length */
670   ush max_lazy;    /* do not perform lazy search above this match length */
671   ush nice_length; /* quit search above this match length */
672   ush max_chain;
673   compress_func func;
674} config;
675
676local config configuration_table[10] = {
677/*      good lazy nice chain */
678/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
679/* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
680/* 2 */ {4,    5, 16,    8, deflate_fast},
681/* 3 */ {4,    6, 32,   32, deflate_fast},
682
683/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
684/* 5 */ {8,   16, 32,   32, deflate_slow},
685/* 6 */ {8,   16, 128, 128, deflate_slow},
686/* 7 */ {8,   32, 128, 256, deflate_slow},
687/* 8 */ {32, 128, 258, 1024, deflate_slow},
688/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
689
690/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
691 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
692 * meaning.
693 */
694
695#define EQUAL 0
696/* result of memcmp for equal strings */
697
698#ifndef NO_DUMMY_DECL
699struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
700#endif
701
702/* ===========================================================================
703 * Update a hash value with the given input byte
704 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
705 *    input characters, so that a running hash key can be computed from the
706 *    previous key instead of complete recalculation each time.
707 */
708#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
709
710
711/* ===========================================================================
712 * Insert string str in the dictionary and set match_head to the previous head
713 * of the hash chain (the most recent string with same hash key). Return
714 * the previous length of the hash chain.
715 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
716 *    input characters and the first MIN_MATCH bytes of str are valid
717 *    (except for the last MIN_MATCH-1 bytes of the input file).
718 */
719#define INSERT_STRING(s, str, match_head) \
720   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
721    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
722    s->head[s->ins_h] = (Pos)(str))
723
724/* ===========================================================================
725 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
726 * prev[] will be initialized on the fly.
727 */
728#define CLEAR_HASH(s) \
729    s->head[s->hash_size-1] = NIL; \
730    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
731
732/* ========================================================================= */
733int deflateInit_(strm, level, version, stream_size)
734    z_streamp strm;
735    int level;
736    const char *version;
737    int stream_size;
738{
739    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
740			 Z_DEFAULT_STRATEGY, version, stream_size);
741    /* To do: ignore strm->next_in if we use it as window */
742}
743
744/* ========================================================================= */
745int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
746		  version, stream_size)
747    z_streamp strm;
748    int  level;
749    int  method;
750    int  windowBits;
751    int  memLevel;
752    int  strategy;
753    const char *version;
754    int stream_size;
755{
756    deflate_state *s;
757    int noheader = 0;
758    static char* my_version = ZLIB_VERSION;
759
760    ushf *overlay;
761    /* We overlay pending_buf and d_buf+l_buf. This works since the average
762     * output size for (length,distance) codes is <= 24 bits.
763     */
764
765    if (version == Z_NULL || version[0] != my_version[0] ||
766        stream_size != sizeof(z_stream)) {
767	return Z_VERSION_ERROR;
768    }
769    if (strm == Z_NULL) return Z_STREAM_ERROR;
770
771    strm->msg = Z_NULL;
772#ifndef NO_ZCFUNCS
773    if (strm->zalloc == Z_NULL) {
774	strm->zalloc = zcalloc;
775	strm->opaque = (voidpf)0;
776    }
777    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
778#endif
779
780    if (level == Z_DEFAULT_COMPRESSION) level = 6;
781
782    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
783        noheader = 1;
784        windowBits = -windowBits;
785    }
786    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
787        windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
788	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
789        return Z_STREAM_ERROR;
790    }
791    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
792    if (s == Z_NULL) return Z_MEM_ERROR;
793    strm->state = (struct internal_state FAR *)s;
794    s->strm = strm;
795
796    s->noheader = noheader;
797    s->w_bits = windowBits;
798    s->w_size = 1 << s->w_bits;
799    s->w_mask = s->w_size - 1;
800
801    s->hash_bits = memLevel + 7;
802    s->hash_size = 1 << s->hash_bits;
803    s->hash_mask = s->hash_size - 1;
804    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
805
806    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
807    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
808    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
809
810    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
811
812    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
813    s->pending_buf = (uchf *) overlay;
814    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
815
816    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
817        s->pending_buf == Z_NULL) {
818        strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
819        deflateEnd (strm);
820        return Z_MEM_ERROR;
821    }
822    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
823    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
824
825    s->level = level;
826    s->strategy = strategy;
827    s->method = (Byte)method;
828
829    return deflateReset(strm);
830}
831
832/* ========================================================================= */
833int deflateSetDictionary (strm, dictionary, dictLength)
834    z_streamp strm;
835    const Bytef *dictionary;
836    uInt  dictLength;
837{
838    deflate_state *s;
839    uInt length = dictLength;
840    uInt n;
841    IPos hash_head = 0;
842
843    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
844	return Z_STREAM_ERROR;
845
846    s = (deflate_state *) strm->state;
847    if (s->status != INIT_STATE) return Z_STREAM_ERROR;
848
849    strm->adler = adler32(strm->adler, dictionary, dictLength);
850
851    if (length < MIN_MATCH) return Z_OK;
852    if (length > MAX_DIST(s)) {
853	length = MAX_DIST(s);
854#ifndef USE_DICT_HEAD
855	dictionary += dictLength - length; /* use the tail of the dictionary */
856#endif
857    }
858    zmemcpy((charf *)s->window, dictionary, length);
859    s->strstart = length;
860    s->block_start = (long)length;
861
862    /* Insert all strings in the hash table (except for the last two bytes).
863     * s->lookahead stays null, so s->ins_h will be recomputed at the next
864     * call of fill_window.
865     */
866    s->ins_h = s->window[0];
867    UPDATE_HASH(s, s->ins_h, s->window[1]);
868    for (n = 0; n <= length - MIN_MATCH; n++) {
869	INSERT_STRING(s, n, hash_head);
870    }
871    if (hash_head) hash_head = 0;  /* to make compiler happy */
872    return Z_OK;
873}
874
875/* ========================================================================= */
876int deflateReset (strm)
877    z_streamp strm;
878{
879    deflate_state *s;
880
881    if (strm == Z_NULL || strm->state == Z_NULL ||
882        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
883
884    strm->total_in = strm->total_out = 0;
885    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
886    strm->data_type = Z_UNKNOWN;
887
888    s = (deflate_state *)strm->state;
889    s->pending = 0;
890    s->pending_out = s->pending_buf;
891
892    if (s->noheader < 0) {
893        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
894    }
895    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
896    strm->adler = 1;
897    s->last_flush = Z_NO_FLUSH;
898
899    _tr_init(s);
900    lm_init(s);
901
902    return Z_OK;
903}
904
905/* ========================================================================= */
906int deflateParams(strm, level, strategy)
907    z_streamp strm;
908    int level;
909    int strategy;
910{
911    deflate_state *s;
912    compress_func func;
913    int err = Z_OK;
914
915    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
916    s = (deflate_state *) strm->state;
917
918    if (level == Z_DEFAULT_COMPRESSION) {
919	level = 6;
920    }
921    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
922	return Z_STREAM_ERROR;
923    }
924    func = configuration_table[s->level].func;
925
926    if (func != configuration_table[level].func && strm->total_in != 0) {
927	/* Flush the last buffer: */
928	err = deflate(strm, Z_PARTIAL_FLUSH);
929    }
930    if (s->level != level) {
931	s->level = level;
932	s->max_lazy_match   = configuration_table[level].max_lazy;
933	s->good_match       = configuration_table[level].good_length;
934	s->nice_match       = configuration_table[level].nice_length;
935	s->max_chain_length = configuration_table[level].max_chain;
936    }
937    s->strategy = strategy;
938    return err;
939}
940
941/* =========================================================================
942 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
943 * IN assertion: the stream state is correct and there is enough room in
944 * pending_buf.
945 */
946local void putShortMSB (s, b)
947    deflate_state *s;
948    uInt b;
949{
950    put_byte(s, (Byte)(b >> 8));
951    put_byte(s, (Byte)(b & 0xff));
952}
953
954/* =========================================================================
955 * Flush as much pending output as possible. All deflate() output goes
956 * through this function so some applications may wish to modify it
957 * to avoid allocating a large strm->next_out buffer and copying into it.
958 * (See also read_buf()).
959 */
960local void flush_pending(strm)
961    z_streamp strm;
962{
963    deflate_state *s = (deflate_state *) strm->state;
964    unsigned len = s->pending;
965
966    if (len > strm->avail_out) len = strm->avail_out;
967    if (len == 0) return;
968
969    if (strm->next_out != Z_NULL) {
970	zmemcpy(strm->next_out, s->pending_out, len);
971	strm->next_out += len;
972    }
973    s->pending_out += len;
974    strm->total_out += len;
975    strm->avail_out  -= len;
976    s->pending -= len;
977    if (s->pending == 0) {
978        s->pending_out = s->pending_buf;
979    }
980}
981
982/* ========================================================================= */
983int deflate (strm, flush)
984    z_streamp strm;
985    int flush;
986{
987    int old_flush; /* value of flush param for previous deflate call */
988    deflate_state *s;
989
990    if (strm == Z_NULL || strm->state == Z_NULL ||
991	flush > Z_FINISH || flush < 0) {
992        return Z_STREAM_ERROR;
993    }
994    s = (deflate_state *) strm->state;
995
996    if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
997	(s->status == FINISH_STATE && flush != Z_FINISH)) {
998        ERR_RETURN(strm, Z_STREAM_ERROR);
999    }
1000    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1001
1002    s->strm = strm; /* just in case */
1003    old_flush = s->last_flush;
1004    s->last_flush = flush;
1005
1006    /* Write the zlib header */
1007    if (s->status == INIT_STATE) {
1008
1009        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1010        uInt level_flags = (s->level-1) >> 1;
1011
1012        if (level_flags > 3) level_flags = 3;
1013        header |= (level_flags << 6);
1014	if (s->strstart != 0) header |= PRESET_DICT;
1015        header += 31 - (header % 31);
1016
1017        s->status = BUSY_STATE;
1018        putShortMSB(s, header);
1019
1020	/* Save the adler32 of the preset dictionary: */
1021	if (s->strstart != 0) {
1022	    putShortMSB(s, (uInt)(strm->adler >> 16));
1023	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1024	}
1025	strm->adler = 1L;
1026    }
1027
1028    /* Flush as much pending output as possible */
1029    if (s->pending != 0) {
1030        flush_pending(strm);
1031        if (strm->avail_out == 0) {
1032	    /* Since avail_out is 0, deflate will be called again with
1033	     * more output space, but possibly with both pending and
1034	     * avail_in equal to zero. There won't be anything to do,
1035	     * but this is not an error situation so make sure we
1036	     * return OK instead of BUF_ERROR at next call of deflate:
1037             */
1038	    s->last_flush = -1;
1039	    return Z_OK;
1040	}
1041
1042    /* Make sure there is something to do and avoid duplicate consecutive
1043     * flushes. For repeated and useless calls with Z_FINISH, we keep
1044     * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1045     */
1046    } else if (strm->avail_in == 0 && flush <= old_flush &&
1047	       flush != Z_FINISH) {
1048        ERR_RETURN(strm, Z_BUF_ERROR);
1049    }
1050
1051    /* User must not provide more input after the first FINISH: */
1052    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1053        ERR_RETURN(strm, Z_BUF_ERROR);
1054    }
1055
1056    /* Start a new block or continue the current one.
1057     */
1058    if (strm->avail_in != 0 || s->lookahead != 0 ||
1059        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1060        block_state bstate;
1061
1062	bstate = (*(configuration_table[s->level].func))(s, flush);
1063
1064        if (bstate == finish_started || bstate == finish_done) {
1065            s->status = FINISH_STATE;
1066        }
1067        if (bstate == need_more || bstate == finish_started) {
1068	    if (strm->avail_out == 0) {
1069	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1070	    }
1071	    return Z_OK;
1072	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1073	     * of deflate should use the same flush parameter to make sure
1074	     * that the flush is complete. So we don't have to output an
1075	     * empty block here, this will be done at next call. This also
1076	     * ensures that for a very small output buffer, we emit at most
1077	     * one empty block.
1078	     */
1079	}
1080        if (bstate == block_done) {
1081            if (flush == Z_PARTIAL_FLUSH) {
1082                _tr_align(s);
1083	    } else if (flush == Z_PACKET_FLUSH) {
1084		/* Output just the 3-bit `stored' block type value,
1085		   but not a zero length. */
1086		_tr_stored_type_only(s);
1087            } else { /* FULL_FLUSH or SYNC_FLUSH */
1088                _tr_stored_block(s, (char*)0, 0L, 0);
1089                /* For a full flush, this empty block will be recognized
1090                 * as a special marker by inflate_sync().
1091                 */
1092                if (flush == Z_FULL_FLUSH) {
1093                    CLEAR_HASH(s);             /* forget history */
1094                }
1095            }
1096            flush_pending(strm);
1097	    if (strm->avail_out == 0) {
1098	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1099	      return Z_OK;
1100	    }
1101        }
1102    }
1103    Assert(strm->avail_out > 0, "bug2");
1104
1105    if (flush != Z_FINISH) return Z_OK;
1106    if (s->noheader) return Z_STREAM_END;
1107
1108    /* Write the zlib trailer (adler32) */
1109    putShortMSB(s, (uInt)(strm->adler >> 16));
1110    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1111    flush_pending(strm);
1112    /* If avail_out is zero, the application will call deflate again
1113     * to flush the rest.
1114     */
1115    s->noheader = -1; /* write the trailer only once! */
1116    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1117}
1118
1119/* ========================================================================= */
1120int deflateEnd (strm)
1121    z_streamp strm;
1122{
1123    int status;
1124    deflate_state *s;
1125
1126    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1127    s = (deflate_state *) strm->state;
1128
1129    status = s->status;
1130    if (status != INIT_STATE && status != BUSY_STATE &&
1131	status != FINISH_STATE) {
1132      return Z_STREAM_ERROR;
1133    }
1134
1135    /* Deallocate in reverse order of allocations: */
1136    TRY_FREE(strm, s->pending_buf);
1137    TRY_FREE(strm, s->head);
1138    TRY_FREE(strm, s->prev);
1139    TRY_FREE(strm, s->window);
1140
1141    ZFREE(strm, s);
1142    strm->state = Z_NULL;
1143
1144    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1145}
1146
1147/* =========================================================================
1148 * Copy the source state to the destination state.
1149 */
1150int deflateCopy (dest, source)
1151    z_streamp dest;
1152    z_streamp source;
1153{
1154    deflate_state *ds;
1155    deflate_state *ss;
1156    ushf *overlay;
1157
1158    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1159        return Z_STREAM_ERROR;
1160    ss = (deflate_state *) source->state;
1161
1162    zmemcpy(dest, source, sizeof(*dest));
1163
1164    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1165    if (ds == Z_NULL) return Z_MEM_ERROR;
1166    dest->state = (struct internal_state FAR *) ds;
1167    zmemcpy(ds, ss, sizeof(*ds));
1168    ds->strm = dest;
1169
1170    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1171    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1172    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1173    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1174    ds->pending_buf = (uchf *) overlay;
1175
1176    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1177        ds->pending_buf == Z_NULL) {
1178        deflateEnd (dest);
1179        return Z_MEM_ERROR;
1180    }
1181    /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1182    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1183    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1184    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1185    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1186
1187    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1188    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1189    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1190
1191    ds->l_desc.dyn_tree = ds->dyn_ltree;
1192    ds->d_desc.dyn_tree = ds->dyn_dtree;
1193    ds->bl_desc.dyn_tree = ds->bl_tree;
1194
1195    return Z_OK;
1196}
1197
1198/* ===========================================================================
1199 * Return the number of bytes of output which are immediately available
1200 * for output from the decompressor.
1201 */
1202int deflateOutputPending (strm)
1203    z_streamp strm;
1204{
1205    if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1206
1207    return ((deflate_state *)(strm->state))->pending;
1208}
1209
1210/* ===========================================================================
1211 * Read a new buffer from the current input stream, update the adler32
1212 * and total number of bytes read.  All deflate() input goes through
1213 * this function so some applications may wish to modify it to avoid
1214 * allocating a large strm->next_in buffer and copying from it.
1215 * (See also flush_pending()).
1216 */
1217local int read_buf(strm, buf, size)
1218    z_streamp strm;
1219    charf *buf;
1220    unsigned size;
1221{
1222    unsigned len = strm->avail_in;
1223
1224    if (len > size) len = size;
1225    if (len == 0) return 0;
1226
1227    strm->avail_in  -= len;
1228
1229    if (!((deflate_state *)(strm->state))->noheader) {
1230        strm->adler = adler32(strm->adler, strm->next_in, len);
1231    }
1232    zmemcpy(buf, strm->next_in, len);
1233    strm->next_in  += len;
1234    strm->total_in += len;
1235
1236    return (int)len;
1237}
1238
1239/* ===========================================================================
1240 * Initialize the "longest match" routines for a new zlib stream
1241 */
1242local void lm_init (s)
1243    deflate_state *s;
1244{
1245    s->window_size = (ulg)2L*s->w_size;
1246
1247    CLEAR_HASH(s);
1248
1249    /* Set the default configuration parameters:
1250     */
1251    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1252    s->good_match       = configuration_table[s->level].good_length;
1253    s->nice_match       = configuration_table[s->level].nice_length;
1254    s->max_chain_length = configuration_table[s->level].max_chain;
1255
1256    s->strstart = 0;
1257    s->block_start = 0L;
1258    s->lookahead = 0;
1259    s->match_length = s->prev_length = MIN_MATCH-1;
1260    s->match_available = 0;
1261    s->ins_h = 0;
1262#ifdef ASMV
1263    match_init(); /* initialize the asm code */
1264#endif
1265}
1266
1267/* ===========================================================================
1268 * Set match_start to the longest match starting at the given string and
1269 * return its length. Matches shorter or equal to prev_length are discarded,
1270 * in which case the result is equal to prev_length and match_start is
1271 * garbage.
1272 * IN assertions: cur_match is the head of the hash chain for the current
1273 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1274 * OUT assertion: the match length is not greater than s->lookahead.
1275 */
1276#ifndef ASMV
1277/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1278 * match.S. The code will be functionally equivalent.
1279 */
1280local uInt longest_match(s, cur_match)
1281    deflate_state *s;
1282    IPos cur_match;                             /* current match */
1283{
1284    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1285    Bytef *scan = s->window + s->strstart;      /* current string */
1286    Bytef *match;                               /* matched string */
1287    int len;                                    /* length of current match */
1288    int best_len = s->prev_length;              /* best match length so far */
1289    int nice_match = s->nice_match;             /* stop if match long enough */
1290    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1291        s->strstart - (IPos)MAX_DIST(s) : NIL;
1292    /* Stop when cur_match becomes <= limit. To simplify the code,
1293     * we prevent matches with the string of window index 0.
1294     */
1295    Posf *prev = s->prev;
1296    uInt wmask = s->w_mask;
1297
1298#ifdef UNALIGNED_OK
1299    /* Compare two bytes at a time. Note: this is not always beneficial.
1300     * Try with and without -DUNALIGNED_OK to check.
1301     */
1302    Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1303    ush scan_start = *(ushf*)scan;
1304    ush scan_end   = *(ushf*)(scan+best_len-1);
1305#else
1306    Bytef *strend = s->window + s->strstart + MAX_MATCH;
1307    Byte scan_end1  = scan[best_len-1];
1308    Byte scan_end   = scan[best_len];
1309#endif
1310
1311    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1312     * It is easy to get rid of this optimization if necessary.
1313     */
1314    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1315
1316    /* Do not waste too much time if we already have a good match: */
1317    if (s->prev_length >= s->good_match) {
1318        chain_length >>= 2;
1319    }
1320    /* Do not look for matches beyond the end of the input. This is necessary
1321     * to make deflate deterministic.
1322     */
1323    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1324
1325    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1326
1327    do {
1328        Assert(cur_match < s->strstart, "no future");
1329        match = s->window + cur_match;
1330
1331        /* Skip to next match if the match length cannot increase
1332         * or if the match length is less than 2:
1333         */
1334#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1335        /* This code assumes sizeof(unsigned short) == 2. Do not use
1336         * UNALIGNED_OK if your compiler uses a different size.
1337         */
1338        if (*(ushf*)(match+best_len-1) != scan_end ||
1339            *(ushf*)match != scan_start) continue;
1340
1341        /* It is not necessary to compare scan[2] and match[2] since they are
1342         * always equal when the other bytes match, given that the hash keys
1343         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1344         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1345         * lookahead only every 4th comparison; the 128th check will be made
1346         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1347         * necessary to put more guard bytes at the end of the window, or
1348         * to check more often for insufficient lookahead.
1349         */
1350        Assert(scan[2] == match[2], "scan[2]?");
1351        scan++, match++;
1352        do {
1353        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1354                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1357                 scan < strend);
1358        /* The funny "do {}" generates better code on most compilers */
1359
1360        /* Here, scan <= window+strstart+257 */
1361        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1362        if (*scan == *match) scan++;
1363
1364        len = (MAX_MATCH - 1) - (int)(strend-scan);
1365        scan = strend - (MAX_MATCH-1);
1366
1367#else /* UNALIGNED_OK */
1368
1369        if (match[best_len]   != scan_end  ||
1370            match[best_len-1] != scan_end1 ||
1371            *match            != *scan     ||
1372            *++match          != scan[1])      continue;
1373
1374        /* The check at best_len-1 can be removed because it will be made
1375         * again later. (This heuristic is not always a win.)
1376         * It is not necessary to compare scan[2] and match[2] since they
1377         * are always equal when the other bytes match, given that
1378         * the hash keys are equal and that HASH_BITS >= 8.
1379         */
1380        scan += 2, match++;
1381        Assert(*scan == *match, "match[2]?");
1382
1383        /* We check for insufficient lookahead only every 8th comparison;
1384         * the 256th check will be made at strstart+258.
1385         */
1386        do {
1387        } while (*++scan == *++match && *++scan == *++match &&
1388                 *++scan == *++match && *++scan == *++match &&
1389                 *++scan == *++match && *++scan == *++match &&
1390                 *++scan == *++match && *++scan == *++match &&
1391                 scan < strend);
1392
1393        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1394
1395        len = MAX_MATCH - (int)(strend - scan);
1396        scan = strend - MAX_MATCH;
1397
1398#endif /* UNALIGNED_OK */
1399
1400        if (len > best_len) {
1401            s->match_start = cur_match;
1402            best_len = len;
1403            if (len >= nice_match) break;
1404#ifdef UNALIGNED_OK
1405            scan_end = *(ushf*)(scan+best_len-1);
1406#else
1407            scan_end1  = scan[best_len-1];
1408            scan_end   = scan[best_len];
1409#endif
1410        }
1411    } while ((cur_match = prev[cur_match & wmask]) > limit
1412             && --chain_length != 0);
1413
1414    if ((uInt)best_len <= s->lookahead) return best_len;
1415    return s->lookahead;
1416}
1417#endif /* ASMV */
1418
1419#ifdef DEBUG_ZLIB
1420/* ===========================================================================
1421 * Check that the match at match_start is indeed a match.
1422 */
1423local void check_match(s, start, match, length)
1424    deflate_state *s;
1425    IPos start, match;
1426    int length;
1427{
1428    /* check that the match is indeed a match */
1429    if (zmemcmp((charf *)s->window + match,
1430                (charf *)s->window + start, length) != EQUAL) {
1431        fprintf(stderr, " start %u, match %u, length %d\n",
1432		start, match, length);
1433        do {
1434	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1435	} while (--length != 0);
1436        z_error("invalid match");
1437    }
1438    if (z_verbose > 1) {
1439        fprintf(stderr,"\\[%d,%d]", start-match, length);
1440        do { putc(s->window[start++], stderr); } while (--length != 0);
1441    }
1442}
1443#else
1444#  define check_match(s, start, match, length)
1445#endif
1446
1447/* ===========================================================================
1448 * Fill the window when the lookahead becomes insufficient.
1449 * Updates strstart and lookahead.
1450 *
1451 * IN assertion: lookahead < MIN_LOOKAHEAD
1452 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1453 *    At least one byte has been read, or avail_in == 0; reads are
1454 *    performed for at least two bytes (required for the zip translate_eol
1455 *    option -- not supported here).
1456 */
1457local void fill_window(s)
1458    deflate_state *s;
1459{
1460    unsigned n, m;
1461    Posf *p;
1462    unsigned more;    /* Amount of free space at the end of the window. */
1463    uInt wsize = s->w_size;
1464
1465    do {
1466        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1467
1468        /* Deal with !@#$% 64K limit: */
1469        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1470            more = wsize;
1471
1472        } else if (more == (unsigned)(-1)) {
1473            /* Very unlikely, but possible on 16 bit machine if strstart == 0
1474             * and lookahead == 1 (input done one byte at time)
1475             */
1476            more--;
1477
1478        /* If the window is almost full and there is insufficient lookahead,
1479         * move the upper half to the lower one to make room in the upper half.
1480         */
1481        } else if (s->strstart >= wsize+MAX_DIST(s)) {
1482
1483            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1484                   (unsigned)wsize);
1485            s->match_start -= wsize;
1486            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1487            s->block_start -= (long) wsize;
1488
1489            /* Slide the hash table (could be avoided with 32 bit values
1490               at the expense of memory usage). We slide even when level == 0
1491               to keep the hash table consistent if we switch back to level > 0
1492               later. (Using level 0 permanently is not an optimal usage of
1493               zlib, so we don't care about this pathological case.)
1494             */
1495            n = s->hash_size;
1496            p = &s->head[n];
1497            do {
1498                m = *--p;
1499                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1500            } while (--n);
1501
1502            n = wsize;
1503            p = &s->prev[n];
1504            do {
1505                m = *--p;
1506                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1507                /* If n is not on any hash chain, prev[n] is garbage but
1508                 * its value will never be used.
1509                 */
1510            } while (--n);
1511            more += wsize;
1512        }
1513        if (s->strm->avail_in == 0) return;
1514
1515        /* If there was no sliding:
1516         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1517         *    more == window_size - lookahead - strstart
1518         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1519         * => more >= window_size - 2*WSIZE + 2
1520         * In the BIG_MEM or MMAP case (not yet supported),
1521         *   window_size == input_size + MIN_LOOKAHEAD  &&
1522         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1523         * Otherwise, window_size == 2*WSIZE so more >= 2.
1524         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1525         */
1526        Assert(more >= 2, "more < 2");
1527
1528        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1529                     more);
1530        s->lookahead += n;
1531
1532        /* Initialize the hash value now that we have some input: */
1533        if (s->lookahead >= MIN_MATCH) {
1534            s->ins_h = s->window[s->strstart];
1535            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1536#if MIN_MATCH != 3
1537            Call UPDATE_HASH() MIN_MATCH-3 more times
1538#endif
1539        }
1540        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1541         * but this is not important since only literal bytes will be emitted.
1542         */
1543
1544    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1545}
1546
1547/* ===========================================================================
1548 * Flush the current block, with given end-of-file flag.
1549 * IN assertion: strstart is set to the end of the current match.
1550 */
1551#define FLUSH_BLOCK_ONLY(s, eof) { \
1552   _tr_flush_block(s, (s->block_start >= 0L ? \
1553                   (charf *)&s->window[(unsigned)s->block_start] : \
1554                   (charf *)Z_NULL), \
1555		(ulg)((long)s->strstart - s->block_start), \
1556		(eof)); \
1557   s->block_start = s->strstart; \
1558   flush_pending(s->strm); \
1559   Tracev((stderr,"[FLUSH]")); \
1560}
1561
1562/* Same but force premature exit if necessary. */
1563#define FLUSH_BLOCK(s, eof) { \
1564   FLUSH_BLOCK_ONLY(s, eof); \
1565   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1566}
1567
1568/* ===========================================================================
1569 * Copy without compression as much as possible from the input stream, return
1570 * the current block state.
1571 * This function does not insert new strings in the dictionary since
1572 * uncompressible data is probably not useful. This function is used
1573 * only for the level=0 compression option.
1574 * NOTE: this function should be optimized to avoid extra copying from
1575 * window to pending_buf.
1576 */
1577local block_state deflate_stored(s, flush)
1578    deflate_state *s;
1579    int flush;
1580{
1581    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1582     * to pending_buf_size, and each stored block has a 5 byte header:
1583     */
1584    ulg max_block_size = 0xffff;
1585    ulg max_start;
1586
1587    if (max_block_size > s->pending_buf_size - 5) {
1588        max_block_size = s->pending_buf_size - 5;
1589    }
1590
1591    /* Copy as much as possible from input to output: */
1592    for (;;) {
1593        /* Fill the window as much as possible: */
1594        if (s->lookahead <= 1) {
1595
1596            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1597		   s->block_start >= (long)s->w_size, "slide too late");
1598
1599            fill_window(s);
1600            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1601
1602            if (s->lookahead == 0) break; /* flush the current block */
1603        }
1604	Assert(s->block_start >= 0L, "block gone");
1605
1606	s->strstart += s->lookahead;
1607	s->lookahead = 0;
1608
1609	/* Emit a stored block if pending_buf will be full: */
1610 	max_start = s->block_start + max_block_size;
1611        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1612	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1613	    s->lookahead = (uInt)(s->strstart - max_start);
1614	    s->strstart = (uInt)max_start;
1615            FLUSH_BLOCK(s, 0);
1616	}
1617	/* Flush if we may have to slide, otherwise block_start may become
1618         * negative and the data will be gone:
1619         */
1620        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1621            FLUSH_BLOCK(s, 0);
1622	}
1623    }
1624    FLUSH_BLOCK(s, flush == Z_FINISH);
1625    return flush == Z_FINISH ? finish_done : block_done;
1626}
1627
1628/* ===========================================================================
1629 * Compress as much as possible from the input stream, return the current
1630 * block state.
1631 * This function does not perform lazy evaluation of matches and inserts
1632 * new strings in the dictionary only for unmatched strings or for short
1633 * matches. It is used only for the fast compression options.
1634 */
1635local block_state deflate_fast(s, flush)
1636    deflate_state *s;
1637    int flush;
1638{
1639    IPos hash_head = NIL; /* head of the hash chain */
1640    int bflush;           /* set if current block must be flushed */
1641
1642    for (;;) {
1643        /* Make sure that we always have enough lookahead, except
1644         * at the end of the input file. We need MAX_MATCH bytes
1645         * for the next match, plus MIN_MATCH bytes to insert the
1646         * string following the next match.
1647         */
1648        if (s->lookahead < MIN_LOOKAHEAD) {
1649            fill_window(s);
1650            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1651	        return need_more;
1652	    }
1653            if (s->lookahead == 0) break; /* flush the current block */
1654        }
1655
1656        /* Insert the string window[strstart .. strstart+2] in the
1657         * dictionary, and set hash_head to the head of the hash chain:
1658         */
1659        if (s->lookahead >= MIN_MATCH) {
1660            INSERT_STRING(s, s->strstart, hash_head);
1661        }
1662
1663        /* Find the longest match, discarding those <= prev_length.
1664         * At this point we have always match_length < MIN_MATCH
1665         */
1666        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1667            /* To simplify the code, we prevent matches with the string
1668             * of window index 0 (in particular we have to avoid a match
1669             * of the string with itself at the start of the input file).
1670             */
1671            if (s->strategy != Z_HUFFMAN_ONLY) {
1672                s->match_length = longest_match (s, hash_head);
1673            }
1674            /* longest_match() sets match_start */
1675        }
1676        if (s->match_length >= MIN_MATCH) {
1677            check_match(s, s->strstart, s->match_start, s->match_length);
1678
1679            bflush = _tr_tally(s, s->strstart - s->match_start,
1680                               s->match_length - MIN_MATCH);
1681
1682            s->lookahead -= s->match_length;
1683
1684            /* Insert new strings in the hash table only if the match length
1685             * is not too large. This saves time but degrades compression.
1686             */
1687            if (s->match_length <= s->max_insert_length &&
1688                s->lookahead >= MIN_MATCH) {
1689                s->match_length--; /* string at strstart already in hash table */
1690                do {
1691                    s->strstart++;
1692                    INSERT_STRING(s, s->strstart, hash_head);
1693                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1694                     * always MIN_MATCH bytes ahead.
1695                     */
1696                } while (--s->match_length != 0);
1697                s->strstart++;
1698            } else {
1699                s->strstart += s->match_length;
1700                s->match_length = 0;
1701                s->ins_h = s->window[s->strstart];
1702                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1703#if MIN_MATCH != 3
1704                Call UPDATE_HASH() MIN_MATCH-3 more times
1705#endif
1706                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1707                 * matter since it will be recomputed at next deflate call.
1708                 */
1709            }
1710        } else {
1711            /* No match, output a literal byte */
1712            Tracevv((stderr,"%c", s->window[s->strstart]));
1713            bflush = _tr_tally (s, 0, s->window[s->strstart]);
1714            s->lookahead--;
1715            s->strstart++;
1716        }
1717        if (bflush) FLUSH_BLOCK(s, 0);
1718    }
1719    FLUSH_BLOCK(s, flush == Z_FINISH);
1720    return flush == Z_FINISH ? finish_done : block_done;
1721}
1722
1723/* ===========================================================================
1724 * Same as above, but achieves better compression. We use a lazy
1725 * evaluation for matches: a match is finally adopted only if there is
1726 * no better match at the next window position.
1727 */
1728local block_state deflate_slow(s, flush)
1729    deflate_state *s;
1730    int flush;
1731{
1732    IPos hash_head = NIL;    /* head of hash chain */
1733    int bflush;              /* set if current block must be flushed */
1734
1735    /* Process the input block. */
1736    for (;;) {
1737        /* Make sure that we always have enough lookahead, except
1738         * at the end of the input file. We need MAX_MATCH bytes
1739         * for the next match, plus MIN_MATCH bytes to insert the
1740         * string following the next match.
1741         */
1742        if (s->lookahead < MIN_LOOKAHEAD) {
1743            fill_window(s);
1744            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1745	        return need_more;
1746	    }
1747            if (s->lookahead == 0) break; /* flush the current block */
1748        }
1749
1750        /* Insert the string window[strstart .. strstart+2] in the
1751         * dictionary, and set hash_head to the head of the hash chain:
1752         */
1753        if (s->lookahead >= MIN_MATCH) {
1754            INSERT_STRING(s, s->strstart, hash_head);
1755        }
1756
1757        /* Find the longest match, discarding those <= prev_length.
1758         */
1759        s->prev_length = s->match_length, s->prev_match = s->match_start;
1760        s->match_length = MIN_MATCH-1;
1761
1762        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1763            s->strstart - hash_head <= MAX_DIST(s)) {
1764            /* To simplify the code, we prevent matches with the string
1765             * of window index 0 (in particular we have to avoid a match
1766             * of the string with itself at the start of the input file).
1767             */
1768            if (s->strategy != Z_HUFFMAN_ONLY) {
1769                s->match_length = longest_match (s, hash_head);
1770            }
1771            /* longest_match() sets match_start */
1772
1773            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1774                 (s->match_length == MIN_MATCH &&
1775                  s->strstart - s->match_start > TOO_FAR))) {
1776
1777                /* If prev_match is also MIN_MATCH, match_start is garbage
1778                 * but we will ignore the current match anyway.
1779                 */
1780                s->match_length = MIN_MATCH-1;
1781            }
1782        }
1783        /* If there was a match at the previous step and the current
1784         * match is not better, output the previous match:
1785         */
1786        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1787            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1788            /* Do not insert strings in hash table beyond this. */
1789
1790            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1791
1792            bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1793                               s->prev_length - MIN_MATCH);
1794
1795            /* Insert in hash table all strings up to the end of the match.
1796             * strstart-1 and strstart are already inserted. If there is not
1797             * enough lookahead, the last two strings are not inserted in
1798             * the hash table.
1799             */
1800            s->lookahead -= s->prev_length-1;
1801            s->prev_length -= 2;
1802            do {
1803                if (++s->strstart <= max_insert) {
1804                    INSERT_STRING(s, s->strstart, hash_head);
1805                }
1806            } while (--s->prev_length != 0);
1807            s->match_available = 0;
1808            s->match_length = MIN_MATCH-1;
1809            s->strstart++;
1810
1811            if (bflush) FLUSH_BLOCK(s, 0);
1812
1813        } else if (s->match_available) {
1814            /* If there was no match at the previous position, output a
1815             * single literal. If there was a match but the current match
1816             * is longer, truncate the previous match to a single literal.
1817             */
1818            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1819            if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1820                FLUSH_BLOCK_ONLY(s, 0);
1821            }
1822            s->strstart++;
1823            s->lookahead--;
1824            if (s->strm->avail_out == 0) return need_more;
1825        } else {
1826            /* There is no previous match to compare with, wait for
1827             * the next step to decide.
1828             */
1829            s->match_available = 1;
1830            s->strstart++;
1831            s->lookahead--;
1832        }
1833    }
1834    Assert (flush != Z_NO_FLUSH, "no flush?");
1835    if (s->match_available) {
1836        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1837        _tr_tally (s, 0, s->window[s->strstart-1]);
1838        s->match_available = 0;
1839    }
1840    FLUSH_BLOCK(s, flush == Z_FINISH);
1841    return flush == Z_FINISH ? finish_done : block_done;
1842}
1843/* --- deflate.c */
1844
1845/* +++ trees.c */
1846/* trees.c -- output deflated data using Huffman coding
1847 * Copyright (C) 1995-1996 Jean-loup Gailly
1848 * For conditions of distribution and use, see copyright notice in zlib.h
1849 */
1850
1851/*
1852 *  ALGORITHM
1853 *
1854 *      The "deflation" process uses several Huffman trees. The more
1855 *      common source values are represented by shorter bit sequences.
1856 *
1857 *      Each code tree is stored in a compressed form which is itself
1858 * a Huffman encoding of the lengths of all the code strings (in
1859 * ascending order by source values).  The actual code strings are
1860 * reconstructed from the lengths in the inflate process, as described
1861 * in the deflate specification.
1862 *
1863 *  REFERENCES
1864 *
1865 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1866 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1867 *
1868 *      Storer, James A.
1869 *          Data Compression:  Methods and Theory, pp. 49-50.
1870 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1871 *
1872 *      Sedgewick, R.
1873 *          Algorithms, p290.
1874 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1875 */
1876
1877/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1878
1879/* #include "deflate.h" */
1880
1881#ifdef DEBUG_ZLIB
1882#  include <ctype.h>
1883#endif
1884
1885/* ===========================================================================
1886 * Constants
1887 */
1888
1889#define MAX_BL_BITS 7
1890/* Bit length codes must not exceed MAX_BL_BITS bits */
1891
1892#define END_BLOCK 256
1893/* end of block literal code */
1894
1895#define REP_3_6      16
1896/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1897
1898#define REPZ_3_10    17
1899/* repeat a zero length 3-10 times  (3 bits of repeat count) */
1900
1901#define REPZ_11_138  18
1902/* repeat a zero length 11-138 times  (7 bits of repeat count) */
1903
1904local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1905   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1906
1907local int extra_dbits[D_CODES] /* extra bits for each distance code */
1908   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1909
1910local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1911   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1912
1913local uch bl_order[BL_CODES]
1914   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1915/* The lengths of the bit length codes are sent in order of decreasing
1916 * probability, to avoid transmitting the lengths for unused bit length codes.
1917 */
1918
1919#define Buf_size (8 * 2*sizeof(char))
1920/* Number of bits used within bi_buf. (bi_buf might be implemented on
1921 * more than 16 bits on some systems.)
1922 */
1923
1924/* ===========================================================================
1925 * Local data. These are initialized only once.
1926 */
1927
1928local ct_data static_ltree[L_CODES+2];
1929/* The static literal tree. Since the bit lengths are imposed, there is no
1930 * need for the L_CODES extra codes used during heap construction. However
1931 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1932 * below).
1933 */
1934
1935local ct_data static_dtree[D_CODES];
1936/* The static distance tree. (Actually a trivial tree since all codes use
1937 * 5 bits.)
1938 */
1939
1940local uch dist_code[512];
1941/* distance codes. The first 256 values correspond to the distances
1942 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1943 * the 15 bit distances.
1944 */
1945
1946local uch length_code[MAX_MATCH-MIN_MATCH+1];
1947/* length code for each normalized match length (0 == MIN_MATCH) */
1948
1949local int base_length[LENGTH_CODES];
1950/* First normalized length for each code (0 = MIN_MATCH) */
1951
1952local int base_dist[D_CODES];
1953/* First normalized distance for each code (0 = distance of 1) */
1954
1955struct static_tree_desc_s {
1956    ct_data *static_tree;        /* static tree or NULL */
1957    intf    *extra_bits;         /* extra bits for each code or NULL */
1958    int     extra_base;          /* base index for extra_bits */
1959    int     elems;               /* max number of elements in the tree */
1960    int     max_length;          /* max bit length for the codes */
1961};
1962
1963local static_tree_desc  static_l_desc =
1964{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1965
1966local static_tree_desc  static_d_desc =
1967{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1968
1969local static_tree_desc  static_bl_desc =
1970{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1971
1972/* ===========================================================================
1973 * Local (static) routines in this file.
1974 */
1975
1976local void tr_static_init OF((void));
1977local void init_block     OF((deflate_state *s));
1978local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1979local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1980local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1981local void build_tree     OF((deflate_state *s, tree_desc *desc));
1982local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1983local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1984local int  build_bl_tree  OF((deflate_state *s));
1985local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1986                              int blcodes));
1987local void compress_block OF((deflate_state *s, ct_data *ltree,
1988                              ct_data *dtree));
1989local void set_data_type  OF((deflate_state *s));
1990local unsigned bi_reverse OF((unsigned value, int length));
1991local void bi_windup      OF((deflate_state *s));
1992local void bi_flush       OF((deflate_state *s));
1993local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1994                              int header));
1995
1996#ifndef DEBUG_ZLIB
1997#  define send_code(s, c, tree) send_bits(s, tree[(c)].Code, tree[(c)].Len)
1998   /* Send a code of the given tree. c and tree must not have side effects */
1999
2000#else /* DEBUG_ZLIB */
2001#  define send_code(s, c, tree) \
2002     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2003       send_bits(s, tree[c].Code, tree[c].Len); }
2004#endif
2005
2006#define d_code(dist) \
2007   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2008/* Mapping from a distance to a distance code. dist is the distance - 1 and
2009 * must not have side effects. dist_code[256] and dist_code[257] are never
2010 * used.
2011 */
2012
2013/* ===========================================================================
2014 * Output a short LSB first on the stream.
2015 * IN assertion: there is enough room in pendingBuf.
2016 */
2017#define put_short(s, w) { \
2018    put_byte(s, (uch)((w) & 0xff)); \
2019    put_byte(s, (uch)((ush)(w) >> 8)); \
2020}
2021
2022/* ===========================================================================
2023 * Send a value on a given number of bits.
2024 * IN assertion: length <= 16 and value fits in length bits.
2025 */
2026#ifdef DEBUG_ZLIB
2027local void send_bits      OF((deflate_state *s, int value, int length));
2028
2029local void send_bits(s, value, length)
2030    deflate_state *s;
2031    int value;  /* value to send */
2032    int length; /* number of bits */
2033{
2034    Tracevv((stderr," l %2d v %4x ", length, value));
2035    Assert(length > 0 && length <= 15, "invalid length");
2036    s->bits_sent += (ulg)length;
2037
2038    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2039     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2040     * unused bits in value.
2041     */
2042    if (s->bi_valid > (int)Buf_size - length) {
2043        s->bi_buf |= (value << s->bi_valid);
2044        put_short(s, s->bi_buf);
2045        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2046        s->bi_valid += length - Buf_size;
2047    } else {
2048        s->bi_buf |= value << s->bi_valid;
2049        s->bi_valid += length;
2050    }
2051}
2052#else /* !DEBUG_ZLIB */
2053
2054#define send_bits(s, value, length) \
2055{ int len = (length);\
2056  if ((s)->bi_valid > (int)Buf_size - len) {\
2057    int val = (value);\
2058    (s)->bi_buf |= (val << (s)->bi_valid);\
2059    put_short((s), (s)->bi_buf);\
2060    (s)->bi_buf = (ush)val >> (Buf_size - (s)->bi_valid);\
2061    (s)->bi_valid += len - Buf_size;\
2062  } else {\
2063    (s)->bi_buf |= (value) << (s)->bi_valid;\
2064    (s)->bi_valid += len;\
2065  }\
2066}
2067#endif /* DEBUG_ZLIB */
2068
2069/* the arguments must not have side effects */
2070
2071/* ===========================================================================
2072 * Initialize the various 'constant' tables. In a multi-threaded environment,
2073 * this function may be called by two threads concurrently, but this is
2074 * harmless since both invocations do exactly the same thing.
2075 */
2076local void tr_static_init()
2077{
2078    static int static_init_done = 0;
2079    int n;        /* iterates over tree elements */
2080    int bits;     /* bit counter */
2081    int length;   /* length value */
2082    int code;     /* code value */
2083    int dist;     /* distance index */
2084    ush bl_count[MAX_BITS+1];
2085    /* number of codes at each bit length for an optimal tree */
2086
2087    if (static_init_done) return;
2088
2089    /* Initialize the mapping length (0..255) -> length code (0..28) */
2090    length = 0;
2091    for (code = 0; code < LENGTH_CODES-1; code++) {
2092        base_length[code] = length;
2093        for (n = 0; n < (1<<extra_lbits[code]); n++) {
2094            length_code[length++] = (uch)code;
2095        }
2096    }
2097    Assert (length == 256, "tr_static_init: length != 256");
2098    /* Note that the length 255 (match length 258) can be represented
2099     * in two different ways: code 284 + 5 bits or code 285, so we
2100     * overwrite length_code[255] to use the best encoding:
2101     */
2102    length_code[length-1] = (uch)code;
2103
2104    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2105    dist = 0;
2106    for (code = 0 ; code < 16; code++) {
2107        base_dist[code] = dist;
2108        for (n = 0; n < (1<<extra_dbits[code]); n++) {
2109            dist_code[dist++] = (uch)code;
2110        }
2111    }
2112    Assert (dist == 256, "tr_static_init: dist != 256");
2113    dist >>= 7; /* from now on, all distances are divided by 128 */
2114    for ( ; code < D_CODES; code++) {
2115        base_dist[code] = dist << 7;
2116        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2117            dist_code[256 + dist++] = (uch)code;
2118        }
2119    }
2120    Assert (dist == 256, "tr_static_init: 256+dist != 512");
2121
2122    /* Construct the codes of the static literal tree */
2123    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2124    n = 0;
2125    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2126    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2127    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2128    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2129    /* Codes 286 and 287 do not exist, but we must include them in the
2130     * tree construction to get a canonical Huffman tree (longest code
2131     * all ones)
2132     */
2133    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2134
2135    /* The static distance tree is trivial: */
2136    for (n = 0; n < D_CODES; n++) {
2137        static_dtree[n].Len = 5;
2138        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2139    }
2140    static_init_done = 1;
2141}
2142
2143/* ===========================================================================
2144 * Initialize the tree data structures for a new zlib stream.
2145 */
2146void _tr_init(s)
2147    deflate_state *s;
2148{
2149    tr_static_init();
2150
2151    s->compressed_len = 0L;
2152
2153    s->l_desc.dyn_tree = s->dyn_ltree;
2154    s->l_desc.stat_desc = &static_l_desc;
2155
2156    s->d_desc.dyn_tree = s->dyn_dtree;
2157    s->d_desc.stat_desc = &static_d_desc;
2158
2159    s->bl_desc.dyn_tree = s->bl_tree;
2160    s->bl_desc.stat_desc = &static_bl_desc;
2161
2162    s->bi_buf = 0;
2163    s->bi_valid = 0;
2164    s->last_eob_len = 8; /* enough lookahead for inflate */
2165#ifdef DEBUG_ZLIB
2166    s->bits_sent = 0L;
2167#endif
2168
2169    /* Initialize the first block of the first file: */
2170    init_block(s);
2171}
2172
2173/* ===========================================================================
2174 * Initialize a new block.
2175 */
2176local void init_block(s)
2177    deflate_state *s;
2178{
2179    int n; /* iterates over tree elements */
2180
2181    /* Initialize the trees. */
2182    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2183    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2184    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2185
2186    s->dyn_ltree[END_BLOCK].Freq = 1;
2187    s->opt_len = s->static_len = 0L;
2188    s->last_lit = s->matches = 0;
2189}
2190
2191#define SMALLEST 1
2192/* Index within the heap array of least frequent node in the Huffman tree */
2193
2194
2195/* ===========================================================================
2196 * Remove the smallest element from the heap and recreate the heap with
2197 * one less element. Updates heap and heap_len.
2198 */
2199#define pqremove(s, tree, top) \
2200{\
2201    top = s->heap[SMALLEST]; \
2202    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2203    pqdownheap(s, tree, SMALLEST); \
2204}
2205
2206/* ===========================================================================
2207 * Compares to subtrees, using the tree depth as tie breaker when
2208 * the subtrees have equal frequency. This minimizes the worst case length.
2209 */
2210#define smaller(tree, n, m, depth) \
2211   (tree[n].Freq < tree[m].Freq || \
2212   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2213
2214/* ===========================================================================
2215 * Restore the heap property by moving down the tree starting at node k,
2216 * exchanging a node with the smallest of its two sons if necessary, stopping
2217 * when the heap property is re-established (each father smaller than its
2218 * two sons).
2219 */
2220local void pqdownheap(s, tree, k)
2221    deflate_state *s;
2222    ct_data *tree;  /* the tree to restore */
2223    int k;               /* node to move down */
2224{
2225    int v = s->heap[k];
2226    int j = k << 1;  /* left son of k */
2227    while (j <= s->heap_len) {
2228        /* Set j to the smallest of the two sons: */
2229        if (j < s->heap_len &&
2230            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2231            j++;
2232        }
2233        /* Exit if v is smaller than both sons */
2234        if (smaller(tree, v, s->heap[j], s->depth)) break;
2235
2236        /* Exchange v with the smallest son */
2237        s->heap[k] = s->heap[j];  k = j;
2238
2239        /* And continue down the tree, setting j to the left son of k */
2240        j <<= 1;
2241    }
2242    s->heap[k] = v;
2243}
2244
2245/* ===========================================================================
2246 * Compute the optimal bit lengths for a tree and update the total bit length
2247 * for the current block.
2248 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2249 *    above are the tree nodes sorted by increasing frequency.
2250 * OUT assertions: the field len is set to the optimal bit length, the
2251 *     array bl_count contains the frequencies for each bit length.
2252 *     The length opt_len is updated; static_len is also updated if stree is
2253 *     not null.
2254 */
2255local void gen_bitlen(s, desc)
2256    deflate_state *s;
2257    tree_desc *desc;    /* the tree descriptor */
2258{
2259    ct_data *tree  = desc->dyn_tree;
2260    int max_code   = desc->max_code;
2261    ct_data *stree = desc->stat_desc->static_tree;
2262    intf *extra    = desc->stat_desc->extra_bits;
2263    int base       = desc->stat_desc->extra_base;
2264    int max_length = desc->stat_desc->max_length;
2265    int h;              /* heap index */
2266    int n, m;           /* iterate over the tree elements */
2267    int bits;           /* bit length */
2268    int xbits;          /* extra bits */
2269    ush f;              /* frequency */
2270    int overflow = 0;   /* number of elements with bit length too large */
2271
2272    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2273
2274    /* In a first pass, compute the optimal bit lengths (which may
2275     * overflow in the case of the bit length tree).
2276     */
2277    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2278
2279    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2280        n = s->heap[h];
2281        bits = tree[tree[n].Dad].Len + 1;
2282        if (bits > max_length) bits = max_length, overflow++;
2283        tree[n].Len = (ush)bits;
2284        /* We overwrite tree[n].Dad which is no longer needed */
2285
2286        if (n > max_code) continue; /* not a leaf node */
2287
2288        s->bl_count[bits]++;
2289        xbits = 0;
2290        if (n >= base) xbits = extra[n-base];
2291        f = tree[n].Freq;
2292        s->opt_len += (ulg)f * (bits + xbits);
2293        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2294    }
2295    if (overflow == 0) return;
2296
2297    Trace((stderr,"\nbit length overflow\n"));
2298    /* This happens for example on obj2 and pic of the Calgary corpus */
2299
2300    /* Find the first bit length which could increase: */
2301    do {
2302        bits = max_length-1;
2303        while (s->bl_count[bits] == 0) bits--;
2304        s->bl_count[bits]--;      /* move one leaf down the tree */
2305        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2306        s->bl_count[max_length]--;
2307        /* The brother of the overflow item also moves one step up,
2308         * but this does not affect bl_count[max_length]
2309         */
2310        overflow -= 2;
2311    } while (overflow > 0);
2312
2313    /* Now recompute all bit lengths, scanning in increasing frequency.
2314     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2315     * lengths instead of fixing only the wrong ones. This idea is taken
2316     * from 'ar' written by Haruhiko Okumura.)
2317     */
2318    for (bits = max_length; bits != 0; bits--) {
2319        n = s->bl_count[bits];
2320        while (n != 0) {
2321            m = s->heap[--h];
2322            if (m > max_code) continue;
2323            if (tree[m].Len != (unsigned) bits) {
2324                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2325                s->opt_len += ((long)bits - (long)tree[m].Len)
2326                              *(long)tree[m].Freq;
2327                tree[m].Len = (ush)bits;
2328            }
2329            n--;
2330        }
2331    }
2332}
2333
2334/* ===========================================================================
2335 * Generate the codes for a given tree and bit counts (which need not be
2336 * optimal).
2337 * IN assertion: the array bl_count contains the bit length statistics for
2338 * the given tree and the field len is set for all tree elements.
2339 * OUT assertion: the field code is set for all tree elements of non
2340 *     zero code length.
2341 */
2342local void gen_codes (tree, max_code, bl_count)
2343    ct_data *tree;             /* the tree to decorate */
2344    int max_code;              /* largest code with non zero frequency */
2345    ushf *bl_count;            /* number of codes at each bit length */
2346{
2347    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2348    ush code = 0;              /* running code value */
2349    int bits;                  /* bit index */
2350    int n;                     /* code index */
2351
2352    /* The distribution counts are first used to generate the code values
2353     * without bit reversal.
2354     */
2355    for (bits = 1; bits <= MAX_BITS; bits++) {
2356        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2357    }
2358    /* Check that the bit counts in bl_count are consistent. The last code
2359     * must be all ones.
2360     */
2361    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2362            "inconsistent bit counts");
2363    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2364
2365    for (n = 0;  n <= max_code; n++) {
2366        int len = tree[n].Len;
2367        if (len == 0) continue;
2368        /* Now reverse the bits */
2369        tree[n].Code = bi_reverse(next_code[len]++, len);
2370
2371        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2372             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2373    }
2374}
2375
2376/* ===========================================================================
2377 * Construct one Huffman tree and assigns the code bit strings and lengths.
2378 * Update the total bit length for the current block.
2379 * IN assertion: the field freq is set for all tree elements.
2380 * OUT assertions: the fields len and code are set to the optimal bit length
2381 *     and corresponding code. The length opt_len is updated; static_len is
2382 *     also updated if stree is not null. The field max_code is set.
2383 */
2384local void build_tree(s, desc)
2385    deflate_state *s;
2386    tree_desc *desc; /* the tree descriptor */
2387{
2388    ct_data *tree   = desc->dyn_tree;
2389    ct_data *stree  = desc->stat_desc->static_tree;
2390    int elems       = desc->stat_desc->elems;
2391    int n, m;          /* iterate over heap elements */
2392    int max_code = -1; /* largest code with non zero frequency */
2393    int node;          /* new node being created */
2394
2395    /* Construct the initial heap, with least frequent element in
2396     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2397     * heap[0] is not used.
2398     */
2399    s->heap_len = 0, s->heap_max = HEAP_SIZE;
2400
2401    for (n = 0; n < elems; n++) {
2402        if (tree[n].Freq != 0) {
2403            s->heap[++(s->heap_len)] = max_code = n;
2404            s->depth[n] = 0;
2405        } else {
2406            tree[n].Len = 0;
2407        }
2408    }
2409
2410    /* The pkzip format requires that at least one distance code exists,
2411     * and that at least one bit should be sent even if there is only one
2412     * possible code. So to avoid special checks later on we force at least
2413     * two codes of non zero frequency.
2414     */
2415    while (s->heap_len < 2) {
2416        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2417        tree[node].Freq = 1;
2418        s->depth[node] = 0;
2419        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2420        /* node is 0 or 1 so it does not have extra bits */
2421    }
2422    desc->max_code = max_code;
2423
2424    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2425     * establish sub-heaps of increasing lengths:
2426     */
2427    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2428
2429    /* Construct the Huffman tree by repeatedly combining the least two
2430     * frequent nodes.
2431     */
2432    node = elems;              /* next internal node of the tree */
2433    do {
2434        pqremove(s, tree, n);  /* n = node of least frequency */
2435        m = s->heap[SMALLEST]; /* m = node of next least frequency */
2436
2437        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2438        s->heap[--(s->heap_max)] = m;
2439
2440        /* Create a new node father of n and m */
2441        tree[node].Freq = tree[n].Freq + tree[m].Freq;
2442        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2443        tree[n].Dad = tree[m].Dad = (ush)node;
2444#ifdef DUMP_BL_TREE
2445        if (tree == s->bl_tree) {
2446            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2447                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2448        }
2449#endif
2450        /* and insert the new node in the heap */
2451        s->heap[SMALLEST] = node++;
2452        pqdownheap(s, tree, SMALLEST);
2453
2454    } while (s->heap_len >= 2);
2455
2456    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2457
2458    /* At this point, the fields freq and dad are set. We can now
2459     * generate the bit lengths.
2460     */
2461    gen_bitlen(s, (tree_desc *)desc);
2462
2463    /* The field len is now set, we can generate the bit codes */
2464    gen_codes ((ct_data *)tree, max_code, s->bl_count);
2465}
2466
2467/* ===========================================================================
2468 * Scan a literal or distance tree to determine the frequencies of the codes
2469 * in the bit length tree.
2470 */
2471local void scan_tree (s, tree, max_code)
2472    deflate_state *s;
2473    ct_data *tree;   /* the tree to be scanned */
2474    int max_code;    /* and its largest code of non zero frequency */
2475{
2476    int n;                     /* iterates over all tree elements */
2477    int prevlen = -1;          /* last emitted length */
2478    int curlen;                /* length of current code */
2479    int nextlen = tree[0].Len; /* length of next code */
2480    int count = 0;             /* repeat count of the current code */
2481    int max_count = 7;         /* max repeat count */
2482    int min_count = 4;         /* min repeat count */
2483
2484    if (nextlen == 0) max_count = 138, min_count = 3;
2485    tree[max_code+1].Len = (ush)0xffff; /* guard */
2486
2487    for (n = 0; n <= max_code; n++) {
2488        curlen = nextlen; nextlen = tree[n+1].Len;
2489        if (++count < max_count && curlen == nextlen) {
2490            continue;
2491        } else if (count < min_count) {
2492            s->bl_tree[curlen].Freq += count;
2493        } else if (curlen != 0) {
2494            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2495            s->bl_tree[REP_3_6].Freq++;
2496        } else if (count <= 10) {
2497            s->bl_tree[REPZ_3_10].Freq++;
2498        } else {
2499            s->bl_tree[REPZ_11_138].Freq++;
2500        }
2501        count = 0; prevlen = curlen;
2502        if (nextlen == 0) {
2503            max_count = 138, min_count = 3;
2504        } else if (curlen == nextlen) {
2505            max_count = 6, min_count = 3;
2506        } else {
2507            max_count = 7, min_count = 4;
2508        }
2509    }
2510}
2511
2512/* ===========================================================================
2513 * Send a literal or distance tree in compressed form, using the codes in
2514 * bl_tree.
2515 */
2516local void send_tree (s, tree, max_code)
2517    deflate_state *s;
2518    ct_data *tree; /* the tree to be scanned */
2519    int max_code;       /* and its largest code of non zero frequency */
2520{
2521    int n;                     /* iterates over all tree elements */
2522    int prevlen = -1;          /* last emitted length */
2523    int curlen;                /* length of current code */
2524    int nextlen = tree[0].Len; /* length of next code */
2525    int count = 0;             /* repeat count of the current code */
2526    int max_count = 7;         /* max repeat count */
2527    int min_count = 4;         /* min repeat count */
2528
2529    /* tree[max_code+1].Len = -1; */  /* guard already set */
2530    if (nextlen == 0) max_count = 138, min_count = 3;
2531
2532    for (n = 0; n <= max_code; n++) {
2533        curlen = nextlen; nextlen = tree[n+1].Len;
2534        if (++count < max_count && curlen == nextlen) {
2535            continue;
2536        } else if (count < min_count) {
2537            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2538
2539        } else if (curlen != 0) {
2540            if (curlen != prevlen) {
2541                send_code(s, curlen, s->bl_tree); count--;
2542            }
2543            Assert(count >= 3 && count <= 6, " 3_6?");
2544            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2545
2546        } else if (count <= 10) {
2547            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2548
2549        } else {
2550            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2551        }
2552        count = 0; prevlen = curlen;
2553        if (nextlen == 0) {
2554            max_count = 138, min_count = 3;
2555        } else if (curlen == nextlen) {
2556            max_count = 6, min_count = 3;
2557        } else {
2558            max_count = 7, min_count = 4;
2559        }
2560    }
2561}
2562
2563/* ===========================================================================
2564 * Construct the Huffman tree for the bit lengths and return the index in
2565 * bl_order of the last bit length code to send.
2566 */
2567local int build_bl_tree(s)
2568    deflate_state *s;
2569{
2570    int max_blindex;  /* index of last bit length code of non zero freq */
2571
2572    /* Determine the bit length frequencies for literal and distance trees */
2573    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2574    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2575
2576    /* Build the bit length tree: */
2577    build_tree(s, (tree_desc *)(&(s->bl_desc)));
2578    /* opt_len now includes the length of the tree representations, except
2579     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2580     */
2581
2582    /* Determine the number of bit length codes to send. The pkzip format
2583     * requires that at least 4 bit length codes be sent. (appnote.txt says
2584     * 3 but the actual value used is 4.)
2585     */
2586    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2587        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2588    }
2589    /* Update opt_len to include the bit length tree and counts */
2590    s->opt_len += 3*(max_blindex+1) + 5+5+4;
2591    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2592            s->opt_len, s->static_len));
2593
2594    return max_blindex;
2595}
2596
2597/* ===========================================================================
2598 * Send the header for a block using dynamic Huffman trees: the counts, the
2599 * lengths of the bit length codes, the literal tree and the distance tree.
2600 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2601 */
2602local void send_all_trees(s, lcodes, dcodes, blcodes)
2603    deflate_state *s;
2604    int lcodes, dcodes, blcodes; /* number of codes for each tree */
2605{
2606    int rank;                    /* index in bl_order */
2607
2608    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2609    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2610            "too many codes");
2611    Tracev((stderr, "\nbl counts: "));
2612    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2613    send_bits(s, dcodes-1,   5);
2614    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2615    for (rank = 0; rank < blcodes; rank++) {
2616        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2617        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2618    }
2619    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2620
2621    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2622    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2623
2624    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2625    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2626}
2627
2628/* ===========================================================================
2629 * Send a stored block
2630 */
2631void _tr_stored_block(s, buf, stored_len, eof)
2632    deflate_state *s;
2633    charf *buf;       /* input block */
2634    ulg stored_len;   /* length of input block */
2635    int eof;          /* true if this is the last block for a file */
2636{
2637    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2638    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2639    s->compressed_len += (stored_len + 4) << 3;
2640
2641    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2642}
2643
2644/* Send just the `stored block' type code without any length bytes or data.
2645 */
2646void _tr_stored_type_only(s)
2647    deflate_state *s;
2648{
2649    send_bits(s, (STORED_BLOCK << 1), 3);
2650    bi_windup(s);
2651    s->compressed_len = (s->compressed_len + 3) & ~7L;
2652}
2653
2654
2655/* ===========================================================================
2656 * Send one empty static block to give enough lookahead for inflate.
2657 * This takes 10 bits, of which 7 may remain in the bit buffer.
2658 * The current inflate code requires 9 bits of lookahead. If the
2659 * last two codes for the previous block (real code plus EOB) were coded
2660 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2661 * the last real code. In this case we send two empty static blocks instead
2662 * of one. (There are no problems if the previous block is stored or fixed.)
2663 * To simplify the code, we assume the worst case of last real code encoded
2664 * on one bit only.
2665 */
2666void _tr_align(s)
2667    deflate_state *s;
2668{
2669    send_bits(s, STATIC_TREES<<1, 3);
2670    send_code(s, END_BLOCK, static_ltree);
2671    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2672    bi_flush(s);
2673    /* Of the 10 bits for the empty block, we have already sent
2674     * (10 - bi_valid) bits. The lookahead for the last real code (before
2675     * the EOB of the previous block) was thus at least one plus the length
2676     * of the EOB plus what we have just sent of the empty static block.
2677     */
2678    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2679        send_bits(s, STATIC_TREES<<1, 3);
2680        send_code(s, END_BLOCK, static_ltree);
2681        s->compressed_len += 10L;
2682        bi_flush(s);
2683    }
2684    s->last_eob_len = 7;
2685}
2686
2687/* ===========================================================================
2688 * Determine the best encoding for the current block: dynamic trees, static
2689 * trees or store, and output the encoded block to the zip file. This function
2690 * returns the total compressed length for the file so far.
2691 */
2692ulg _tr_flush_block(s, buf, stored_len, eof)
2693    deflate_state *s;
2694    charf *buf;       /* input block, or NULL if too old */
2695    ulg stored_len;   /* length of input block */
2696    int eof;          /* true if this is the last block for a file */
2697{
2698    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2699    int max_blindex = 0;  /* index of last bit length code of non zero freq */
2700
2701    /* Build the Huffman trees unless a stored block is forced */
2702    if (s->level > 0) {
2703
2704	 /* Check if the file is ascii or binary */
2705	if (s->data_type == Z_UNKNOWN) set_data_type(s);
2706
2707	/* Construct the literal and distance trees */
2708	build_tree(s, (tree_desc *)(&(s->l_desc)));
2709	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2710		s->static_len));
2711
2712	build_tree(s, (tree_desc *)(&(s->d_desc)));
2713	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2714		s->static_len));
2715	/* At this point, opt_len and static_len are the total bit lengths of
2716	 * the compressed block data, excluding the tree representations.
2717	 */
2718
2719	/* Build the bit length tree for the above two trees, and get the index
2720	 * in bl_order of the last bit length code to send.
2721	 */
2722	max_blindex = build_bl_tree(s);
2723
2724	/* Determine the best encoding. Compute first the block length in bytes*/
2725	opt_lenb = (s->opt_len+3+7)>>3;
2726	static_lenb = (s->static_len+3+7)>>3;
2727
2728	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2729		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2730		s->last_lit));
2731
2732	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2733
2734    } else {
2735        Assert(buf != (char*)0, "lost buf");
2736	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2737    }
2738
2739    /* If compression failed and this is the first and last block,
2740     * and if the .zip file can be seeked (to rewrite the local header),
2741     * the whole file is transformed into a stored file:
2742     */
2743#ifdef STORED_FILE_OK
2744#  ifdef FORCE_STORED_FILE
2745    if (eof && s->compressed_len == 0L) { /* force stored file */
2746#  else
2747    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2748#  endif
2749        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2750        if (buf == (charf*)0) error ("block vanished");
2751
2752        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2753        s->compressed_len = stored_len << 3;
2754        s->method = STORED;
2755    } else
2756#endif /* STORED_FILE_OK */
2757
2758#ifdef FORCE_STORED
2759    if (buf != (char*)0) { /* force stored block */
2760#else
2761    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2762                       /* 4: two words for the lengths */
2763#endif
2764        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2765         * Otherwise we can't have processed more than WSIZE input bytes since
2766         * the last block flush, because compression would have been
2767         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2768         * transform a block into a stored block.
2769         */
2770        _tr_stored_block(s, buf, stored_len, eof);
2771
2772#ifdef FORCE_STATIC
2773    } else if (static_lenb >= 0) { /* force static trees */
2774#else
2775    } else if (static_lenb == opt_lenb) {
2776#endif
2777        send_bits(s, (STATIC_TREES<<1)+eof, 3);
2778        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2779        s->compressed_len += 3 + s->static_len;
2780    } else {
2781        send_bits(s, (DYN_TREES<<1)+eof, 3);
2782        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2783                       max_blindex+1);
2784        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2785        s->compressed_len += 3 + s->opt_len;
2786    }
2787    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2788    init_block(s);
2789
2790    if (eof) {
2791        bi_windup(s);
2792        s->compressed_len += 7;  /* align on byte boundary */
2793    }
2794    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2795           s->compressed_len-7*eof));
2796
2797    return s->compressed_len >> 3;
2798}
2799
2800/* ===========================================================================
2801 * Save the match info and tally the frequency counts. Return true if
2802 * the current block must be flushed.
2803 */
2804int _tr_tally (s, dist, lc)
2805    deflate_state *s;
2806    unsigned dist;  /* distance of matched string */
2807    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2808{
2809    s->d_buf[s->last_lit] = (ush)dist;
2810    s->l_buf[s->last_lit++] = (uch)lc;
2811    if (dist == 0) {
2812        /* lc is the unmatched char */
2813        s->dyn_ltree[lc].Freq++;
2814    } else {
2815        s->matches++;
2816        /* Here, lc is the match length - MIN_MATCH */
2817        dist--;             /* dist = match distance - 1 */
2818        Assert((ush)dist < (ush)MAX_DIST(s) &&
2819               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2820               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2821
2822        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2823        s->dyn_dtree[d_code(dist)].Freq++;
2824    }
2825
2826    /* Try to guess if it is profitable to stop the current block here */
2827    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2828        /* Compute an upper bound for the compressed length */
2829        ulg out_length = (ulg)s->last_lit*8L;
2830        ulg in_length = (ulg)((long)s->strstart - s->block_start);
2831        int dcode;
2832        for (dcode = 0; dcode < D_CODES; dcode++) {
2833            out_length += (ulg)s->dyn_dtree[dcode].Freq *
2834                (5L+extra_dbits[dcode]);
2835        }
2836        out_length >>= 3;
2837        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2838               s->last_lit, in_length, out_length,
2839               100L - out_length*100L/in_length));
2840        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2841    }
2842    return (s->last_lit == s->lit_bufsize-1);
2843    /* We avoid equality with lit_bufsize because of wraparound at 64K
2844     * on 16 bit machines and because stored blocks are restricted to
2845     * 64K-1 bytes.
2846     */
2847}
2848
2849/* ===========================================================================
2850 * Send the block data compressed using the given Huffman trees
2851 */
2852local void compress_block(s, ltree, dtree)
2853    deflate_state *s;
2854    ct_data *ltree; /* literal tree */
2855    ct_data *dtree; /* distance tree */
2856{
2857    unsigned dist;      /* distance of matched string */
2858    int lc;             /* match length or unmatched char (if dist == 0) */
2859    unsigned lx = 0;    /* running index in l_buf */
2860    unsigned code;      /* the code to send */
2861    int extra;          /* number of extra bits to send */
2862
2863    if (s->last_lit != 0) do {
2864        dist = s->d_buf[lx];
2865        lc = s->l_buf[lx++];
2866        if (dist == 0) {
2867            send_code(s, lc, ltree); /* send a literal byte */
2868            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2869        } else {
2870            /* Here, lc is the match length - MIN_MATCH */
2871            code = length_code[lc];
2872            send_code(s, code+LITERALS+1, ltree); /* send the length code */
2873            extra = extra_lbits[code];
2874            if (extra != 0) {
2875                lc -= base_length[code];
2876                send_bits(s, lc, extra);       /* send the extra length bits */
2877            }
2878            dist--; /* dist is now the match distance - 1 */
2879            code = d_code(dist);
2880            Assert (code < D_CODES, "bad d_code");
2881
2882            send_code(s, code, dtree);       /* send the distance code */
2883            extra = extra_dbits[code];
2884            if (extra != 0) {
2885                dist -= base_dist[code];
2886                send_bits(s, dist, extra);   /* send the extra distance bits */
2887            }
2888        } /* literal or match pair ? */
2889
2890        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2891        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2892
2893    } while (lx < s->last_lit);
2894
2895    send_code(s, END_BLOCK, ltree);
2896    s->last_eob_len = ltree[END_BLOCK].Len;
2897}
2898
2899/* ===========================================================================
2900 * Set the data type to ASCII or BINARY, using a crude approximation:
2901 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2902 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2903 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2904 */
2905local void set_data_type(s)
2906    deflate_state *s;
2907{
2908    int n = 0;
2909    unsigned ascii_freq = 0;
2910    unsigned bin_freq = 0;
2911    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2912    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2913    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2914    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2915}
2916
2917/* ===========================================================================
2918 * Reverse the first len bits of a code, using straightforward code (a faster
2919 * method would use a table)
2920 * IN assertion: 1 <= len <= 15
2921 */
2922local unsigned bi_reverse(code, len)
2923    unsigned code; /* the value to invert */
2924    int len;       /* its bit length */
2925{
2926    unsigned res = 0;
2927    do {
2928        res |= code & 1;
2929        code >>= 1, res <<= 1;
2930    } while (--len > 0);
2931    return res >> 1;
2932}
2933
2934/* ===========================================================================
2935 * Flush the bit buffer, keeping at most 7 bits in it.
2936 */
2937local void bi_flush(s)
2938    deflate_state *s;
2939{
2940    if (s->bi_valid == 16) {
2941        put_short(s, s->bi_buf);
2942        s->bi_buf = 0;
2943        s->bi_valid = 0;
2944    } else if (s->bi_valid >= 8) {
2945        put_byte(s, (Byte)s->bi_buf);
2946        s->bi_buf >>= 8;
2947        s->bi_valid -= 8;
2948    }
2949}
2950
2951/* ===========================================================================
2952 * Flush the bit buffer and align the output on a byte boundary
2953 */
2954local void bi_windup(s)
2955    deflate_state *s;
2956{
2957    if (s->bi_valid > 8) {
2958        put_short(s, s->bi_buf);
2959    } else if (s->bi_valid > 0) {
2960        put_byte(s, (Byte)s->bi_buf);
2961    }
2962    s->bi_buf = 0;
2963    s->bi_valid = 0;
2964#ifdef DEBUG_ZLIB
2965    s->bits_sent = (s->bits_sent+7) & ~7;
2966#endif
2967}
2968
2969/* ===========================================================================
2970 * Copy a stored block, storing first the length and its
2971 * one's complement if requested.
2972 */
2973local void copy_block(s, buf, len, header)
2974    deflate_state *s;
2975    charf    *buf;    /* the input data */
2976    unsigned len;     /* its length */
2977    int      header;  /* true if block header must be written */
2978{
2979    bi_windup(s);        /* align on byte boundary */
2980    s->last_eob_len = 8; /* enough lookahead for inflate */
2981
2982    if (header) {
2983        put_short(s, (ush)len);
2984        put_short(s, (ush)~len);
2985#ifdef DEBUG_ZLIB
2986        s->bits_sent += 2*16;
2987#endif
2988    }
2989#ifdef DEBUG_ZLIB
2990    s->bits_sent += (ulg)len<<3;
2991#endif
2992    /* bundle up the put_byte(s, *buf++) calls */
2993    zmemcpy(&s->pending_buf[s->pending], buf, len);
2994    s->pending += len;
2995}
2996/* --- trees.c */
2997
2998/* +++ inflate.c */
2999/* inflate.c -- zlib interface to inflate modules
3000 * Copyright (C) 1995-1996 Mark Adler
3001 * For conditions of distribution and use, see copyright notice in zlib.h
3002 */
3003
3004/* #include "zutil.h" */
3005
3006/* +++ infblock.h */
3007/* infblock.h -- header to use infblock.c
3008 * Copyright (C) 1995-1996 Mark Adler
3009 * For conditions of distribution and use, see copyright notice in zlib.h
3010 */
3011
3012/* WARNING: this file should *not* be used by applications. It is
3013   part of the implementation of the compression library and is
3014   subject to change. Applications should only use zlib.h.
3015 */
3016
3017struct inflate_blocks_state;
3018typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3019
3020extern inflate_blocks_statef * inflate_blocks_new OF((
3021    z_streamp z,
3022    check_func c,               /* check function */
3023    uInt w));                   /* window size */
3024
3025extern int inflate_blocks OF((
3026    inflate_blocks_statef *,
3027    z_streamp ,
3028    int));                      /* initial return code */
3029
3030extern void inflate_blocks_reset OF((
3031    inflate_blocks_statef *,
3032    z_streamp ,
3033    uLongf *));                  /* check value on output */
3034
3035extern int inflate_blocks_free OF((
3036    inflate_blocks_statef *,
3037    z_streamp ,
3038    uLongf *));                  /* check value on output */
3039
3040extern void inflate_set_dictionary OF((
3041    inflate_blocks_statef *s,
3042    const Bytef *d,  /* dictionary */
3043    uInt  n));       /* dictionary length */
3044
3045extern int inflate_addhistory OF((
3046    inflate_blocks_statef *,
3047    z_streamp));
3048
3049extern int inflate_packet_flush OF((
3050    inflate_blocks_statef *));
3051/* --- infblock.h */
3052
3053#ifndef NO_DUMMY_DECL
3054struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3055#endif
3056
3057/* inflate private state */
3058struct internal_state {
3059
3060  /* mode */
3061  enum {
3062      METHOD,   /* waiting for method byte */
3063      FLAG,     /* waiting for flag byte */
3064      DICT4,    /* four dictionary check bytes to go */
3065      DICT3,    /* three dictionary check bytes to go */
3066      DICT2,    /* two dictionary check bytes to go */
3067      DICT1,    /* one dictionary check byte to go */
3068      DICT0,    /* waiting for inflateSetDictionary */
3069      BLOCKS,   /* decompressing blocks */
3070      CHECK4,   /* four check bytes to go */
3071      CHECK3,   /* three check bytes to go */
3072      CHECK2,   /* two check bytes to go */
3073      CHECK1,   /* one check byte to go */
3074      DONE,     /* finished check, done */
3075      BAD}      /* got an error--stay here */
3076    mode;               /* current inflate mode */
3077
3078  /* mode dependent information */
3079  union {
3080    uInt method;        /* if FLAGS, method byte */
3081    struct {
3082      uLong was;                /* computed check value */
3083      uLong need;               /* stream check value */
3084    } check;            /* if CHECK, check values to compare */
3085    uInt marker;        /* if BAD, inflateSync's marker bytes count */
3086  } sub;        /* submode */
3087
3088  /* mode independent information */
3089  int  nowrap;          /* flag for no wrapper */
3090  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3091  inflate_blocks_statef
3092    *blocks;            /* current inflate_blocks state */
3093
3094};
3095
3096
3097int inflateReset(z)
3098z_streamp z;
3099{
3100  uLong c;
3101
3102  if (z == Z_NULL || z->state == Z_NULL)
3103    return Z_STREAM_ERROR;
3104  z->total_in = z->total_out = 0;
3105  z->msg = Z_NULL;
3106  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3107  inflate_blocks_reset(z->state->blocks, z, &c);
3108  Trace((stderr, "inflate: reset\n"));
3109  return Z_OK;
3110}
3111
3112
3113int inflateEnd(z)
3114z_streamp z;
3115{
3116  uLong c;
3117
3118  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3119    return Z_STREAM_ERROR;
3120  if (z->state->blocks != Z_NULL)
3121    inflate_blocks_free(z->state->blocks, z, &c);
3122  ZFREE(z, z->state);
3123  z->state = Z_NULL;
3124  Trace((stderr, "inflate: end\n"));
3125  return Z_OK;
3126}
3127
3128
3129int inflateInit2_(z, w, version, stream_size)
3130z_streamp z;
3131int w;
3132const char *version;
3133int stream_size;
3134{
3135  if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3136      stream_size != sizeof(z_stream))
3137      return Z_VERSION_ERROR;
3138
3139  /* initialize state */
3140  if (z == Z_NULL)
3141    return Z_STREAM_ERROR;
3142  z->msg = Z_NULL;
3143#ifndef NO_ZCFUNCS
3144  if (z->zalloc == Z_NULL)
3145  {
3146    z->zalloc = zcalloc;
3147    z->opaque = (voidpf)0;
3148  }
3149  if (z->zfree == Z_NULL) z->zfree = zcfree;
3150#endif
3151  if ((z->state = (struct internal_state FAR *)
3152       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3153    return Z_MEM_ERROR;
3154  z->state->blocks = Z_NULL;
3155
3156  /* handle undocumented nowrap option (no zlib header or check) */
3157  z->state->nowrap = 0;
3158  if (w < 0)
3159  {
3160    w = - w;
3161    z->state->nowrap = 1;
3162  }
3163
3164  /* set window size */
3165  if (w < 8 || w > 15)
3166  {
3167    inflateEnd(z);
3168    return Z_STREAM_ERROR;
3169  }
3170  z->state->wbits = (uInt)w;
3171
3172  /* create inflate_blocks state */
3173  if ((z->state->blocks =
3174      inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3175      == Z_NULL)
3176  {
3177    inflateEnd(z);
3178    return Z_MEM_ERROR;
3179  }
3180  Trace((stderr, "inflate: allocated\n"));
3181
3182  /* reset state */
3183  inflateReset(z);
3184  return Z_OK;
3185}
3186
3187
3188int inflateInit_(z, version, stream_size)
3189z_streamp z;
3190const char *version;
3191int stream_size;
3192{
3193  return inflateInit2_(z, DEF_WBITS, version, stream_size);
3194}
3195
3196
3197#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3198#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3199
3200int inflate(z, f)
3201z_streamp z;
3202int f;
3203{
3204  int r;
3205  uInt b;
3206
3207  if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3208    return Z_STREAM_ERROR;
3209  r = Z_BUF_ERROR;
3210  while (1) switch (z->state->mode)
3211  {
3212    case METHOD:
3213      NEEDBYTE
3214      if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3215      {
3216        z->state->mode = BAD;
3217        z->msg = (char*)"unknown compression method";
3218        z->state->sub.marker = 5;       /* can't try inflateSync */
3219        break;
3220      }
3221      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3222      {
3223        z->state->mode = BAD;
3224        z->msg = (char*)"invalid window size";
3225        z->state->sub.marker = 5;       /* can't try inflateSync */
3226        break;
3227      }
3228      z->state->mode = FLAG;
3229    case FLAG:
3230      NEEDBYTE
3231      b = NEXTBYTE;
3232      if (((z->state->sub.method << 8) + b) % 31)
3233      {
3234        z->state->mode = BAD;
3235        z->msg = (char*)"incorrect header check";
3236        z->state->sub.marker = 5;       /* can't try inflateSync */
3237        break;
3238      }
3239      Trace((stderr, "inflate: zlib header ok\n"));
3240      if (!(b & PRESET_DICT))
3241      {
3242        z->state->mode = BLOCKS;
3243	break;
3244      }
3245      z->state->mode = DICT4;
3246    case DICT4:
3247      NEEDBYTE
3248      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3249      z->state->mode = DICT3;
3250    case DICT3:
3251      NEEDBYTE
3252      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3253      z->state->mode = DICT2;
3254    case DICT2:
3255      NEEDBYTE
3256      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3257      z->state->mode = DICT1;
3258    case DICT1:
3259      NEEDBYTE
3260      z->state->sub.check.need += (uLong)NEXTBYTE;
3261      z->adler = z->state->sub.check.need;
3262      z->state->mode = DICT0;
3263      return Z_NEED_DICT;
3264    case DICT0:
3265      z->state->mode = BAD;
3266      z->msg = (char*)"need dictionary";
3267      z->state->sub.marker = 0;       /* can try inflateSync */
3268      return Z_STREAM_ERROR;
3269    case BLOCKS:
3270      r = inflate_blocks(z->state->blocks, z, r);
3271      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3272	  r = inflate_packet_flush(z->state->blocks);
3273      if (r == Z_DATA_ERROR)
3274      {
3275        z->state->mode = BAD;
3276        z->state->sub.marker = 0;       /* can try inflateSync */
3277        break;
3278      }
3279      if (r != Z_STREAM_END)
3280        return r;
3281      r = Z_OK;
3282      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3283      if (z->state->nowrap)
3284      {
3285        z->state->mode = DONE;
3286        break;
3287      }
3288      z->state->mode = CHECK4;
3289    case CHECK4:
3290      NEEDBYTE
3291      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3292      z->state->mode = CHECK3;
3293    case CHECK3:
3294      NEEDBYTE
3295      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3296      z->state->mode = CHECK2;
3297    case CHECK2:
3298      NEEDBYTE
3299      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3300      z->state->mode = CHECK1;
3301    case CHECK1:
3302      NEEDBYTE
3303      z->state->sub.check.need += (uLong)NEXTBYTE;
3304
3305      if (z->state->sub.check.was != z->state->sub.check.need)
3306      {
3307        z->state->mode = BAD;
3308        z->msg = (char*)"incorrect data check";
3309        z->state->sub.marker = 5;       /* can't try inflateSync */
3310        break;
3311      }
3312      Trace((stderr, "inflate: zlib check ok\n"));
3313      z->state->mode = DONE;
3314    case DONE:
3315      return Z_STREAM_END;
3316    case BAD:
3317      return Z_DATA_ERROR;
3318    default:
3319      return Z_STREAM_ERROR;
3320  }
3321
3322 empty:
3323  if (f != Z_PACKET_FLUSH)
3324    return r;
3325  z->state->mode = BAD;
3326  z->msg = (char *)"need more for packet flush";
3327  z->state->sub.marker = 0;       /* can try inflateSync */
3328  return Z_DATA_ERROR;
3329}
3330
3331
3332int inflateSetDictionary(z, dictionary, dictLength)
3333z_streamp z;
3334const Bytef *dictionary;
3335uInt  dictLength;
3336{
3337  uInt length = dictLength;
3338
3339  if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3340    return Z_STREAM_ERROR;
3341
3342  if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3343  z->adler = 1L;
3344
3345  if (length >= ((uInt)1<<z->state->wbits))
3346  {
3347    length = (1<<z->state->wbits)-1;
3348    dictionary += dictLength - length;
3349  }
3350  inflate_set_dictionary(z->state->blocks, dictionary, length);
3351  z->state->mode = BLOCKS;
3352  return Z_OK;
3353}
3354
3355/*
3356 * This subroutine adds the data at next_in/avail_in to the output history
3357 * without performing any output.  The output buffer must be "caught up";
3358 * i.e. no pending output (hence s->read equals s->write), and the state must
3359 * be BLOCKS (i.e. we should be willing to see the start of a series of
3360 * BLOCKS).  On exit, the output will also be caught up, and the checksum
3361 * will have been updated if need be.
3362 */
3363
3364int inflateIncomp(z)
3365z_stream *z;
3366{
3367    if (z->state->mode != BLOCKS)
3368	return Z_DATA_ERROR;
3369    return inflate_addhistory(z->state->blocks, z);
3370}
3371
3372
3373int inflateSync(z)
3374z_streamp z;
3375{
3376  uInt n;       /* number of bytes to look at */
3377  Bytef *p;     /* pointer to bytes */
3378  uInt m;       /* number of marker bytes found in a row */
3379  uLong r, w;   /* temporaries to save total_in and total_out */
3380
3381  /* set up */
3382  if (z == Z_NULL || z->state == Z_NULL)
3383    return Z_STREAM_ERROR;
3384  if (z->state->mode != BAD)
3385  {
3386    z->state->mode = BAD;
3387    z->state->sub.marker = 0;
3388  }
3389  if ((n = z->avail_in) == 0)
3390    return Z_BUF_ERROR;
3391  p = z->next_in;
3392  m = z->state->sub.marker;
3393
3394  /* search */
3395  while (n && m < 4)
3396  {
3397    if (*p == (Byte)(m < 2 ? 0 : 0xff))
3398      m++;
3399    else if (*p)
3400      m = 0;
3401    else
3402      m = 4 - m;
3403    p++, n--;
3404  }
3405
3406  /* restore */
3407  z->total_in += p - z->next_in;
3408  z->next_in = p;
3409  z->avail_in = n;
3410  z->state->sub.marker = m;
3411
3412  /* return no joy or set up to restart on a new block */
3413  if (m != 4)
3414    return Z_DATA_ERROR;
3415  r = z->total_in;  w = z->total_out;
3416  inflateReset(z);
3417  z->total_in = r;  z->total_out = w;
3418  z->state->mode = BLOCKS;
3419  return Z_OK;
3420}
3421
3422#undef NEEDBYTE
3423#undef NEXTBYTE
3424/* --- inflate.c */
3425
3426/* +++ infblock.c */
3427/* infblock.c -- interpret and process block types to last block
3428 * Copyright (C) 1995-1996 Mark Adler
3429 * For conditions of distribution and use, see copyright notice in zlib.h
3430 */
3431
3432/* #include "zutil.h" */
3433/* #include "infblock.h" */
3434
3435/* +++ inftrees.h */
3436/* inftrees.h -- header to use inftrees.c
3437 * Copyright (C) 1995-1996 Mark Adler
3438 * For conditions of distribution and use, see copyright notice in zlib.h
3439 */
3440
3441/* WARNING: this file should *not* be used by applications. It is
3442   part of the implementation of the compression library and is
3443   subject to change. Applications should only use zlib.h.
3444 */
3445
3446/* Huffman code lookup table entry--this entry is four bytes for machines
3447   that have 16-bit pointers (e.g. PC's in the small or medium model). */
3448
3449typedef struct inflate_huft_s FAR inflate_huft;
3450
3451struct inflate_huft_s {
3452  union {
3453    struct {
3454      Byte Exop;        /* number of extra bits or operation */
3455      Byte Bits;        /* number of bits in this code or subcode */
3456    } what;
3457    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3458  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3459  union {
3460    uInt Base;          /* literal, length base, or distance base */
3461    inflate_huft *Next; /* pointer to next level of table */
3462  } more;
3463};
3464
3465#ifdef DEBUG_ZLIB
3466  extern uInt inflate_hufts;
3467#endif
3468
3469extern int inflate_trees_bits OF((
3470    uIntf *,                    /* 19 code lengths */
3471    uIntf *,                    /* bits tree desired/actual depth */
3472    inflate_huft * FAR *,       /* bits tree result */
3473    z_streamp ));               /* for zalloc, zfree functions */
3474
3475extern int inflate_trees_dynamic OF((
3476    uInt,                       /* number of literal/length codes */
3477    uInt,                       /* number of distance codes */
3478    uIntf *,                    /* that many (total) code lengths */
3479    uIntf *,                    /* literal desired/actual bit depth */
3480    uIntf *,                    /* distance desired/actual bit depth */
3481    inflate_huft * FAR *,       /* literal/length tree result */
3482    inflate_huft * FAR *,       /* distance tree result */
3483    z_streamp ));               /* for zalloc, zfree functions */
3484
3485extern int inflate_trees_fixed OF((
3486    uIntf *,                    /* literal desired/actual bit depth */
3487    uIntf *,                    /* distance desired/actual bit depth */
3488    inflate_huft * FAR *,       /* literal/length tree result */
3489    inflate_huft * FAR *));     /* distance tree result */
3490
3491extern int inflate_trees_free OF((
3492    inflate_huft *,             /* tables to free */
3493    z_streamp ));               /* for zfree function */
3494
3495/* --- inftrees.h */
3496
3497/* +++ infcodes.h */
3498/* infcodes.h -- header to use infcodes.c
3499 * Copyright (C) 1995-1996 Mark Adler
3500 * For conditions of distribution and use, see copyright notice in zlib.h
3501 */
3502
3503/* WARNING: this file should *not* be used by applications. It is
3504   part of the implementation of the compression library and is
3505   subject to change. Applications should only use zlib.h.
3506 */
3507
3508struct inflate_codes_state;
3509typedef struct inflate_codes_state FAR inflate_codes_statef;
3510
3511extern inflate_codes_statef *inflate_codes_new OF((
3512    uInt, uInt,
3513    inflate_huft *, inflate_huft *,
3514    z_streamp ));
3515
3516extern int inflate_codes OF((
3517    inflate_blocks_statef *,
3518    z_streamp ,
3519    int));
3520
3521extern void inflate_codes_free OF((
3522    inflate_codes_statef *,
3523    z_streamp ));
3524
3525/* --- infcodes.h */
3526
3527/* +++ infutil.h */
3528/* infutil.h -- types and macros common to blocks and codes
3529 * Copyright (C) 1995-1996 Mark Adler
3530 * For conditions of distribution and use, see copyright notice in zlib.h
3531 */
3532
3533/* WARNING: this file should *not* be used by applications. It is
3534   part of the implementation of the compression library and is
3535   subject to change. Applications should only use zlib.h.
3536 */
3537
3538#ifndef _INFUTIL_H
3539#define _INFUTIL_H
3540
3541typedef enum {
3542      TYPE,     /* get type bits (3, including end bit) */
3543      LENS,     /* get lengths for stored */
3544      STORED,   /* processing stored block */
3545      TABLE,    /* get table lengths */
3546      BTREE,    /* get bit lengths tree for a dynamic block */
3547      DTREE,    /* get length, distance trees for a dynamic block */
3548      CODES,    /* processing fixed or dynamic block */
3549      DRY,      /* output remaining window bytes */
3550      DONEB,    /* finished last block, done */
3551      BADB}     /* got a data error--stuck here */
3552inflate_block_mode;
3553
3554/* inflate blocks semi-private state */
3555struct inflate_blocks_state {
3556
3557  /* mode */
3558  inflate_block_mode  mode;     /* current inflate_block mode */
3559
3560  /* mode dependent information */
3561  union {
3562    uInt left;          /* if STORED, bytes left to copy */
3563    struct {
3564      uInt table;               /* table lengths (14 bits) */
3565      uInt index;               /* index into blens (or border) */
3566      uIntf *blens;             /* bit lengths of codes */
3567      uInt bb;                  /* bit length tree depth */
3568      inflate_huft *tb;         /* bit length decoding tree */
3569    } trees;            /* if DTREE, decoding info for trees */
3570    struct {
3571      inflate_huft *tl;
3572      inflate_huft *td;         /* trees to free */
3573      inflate_codes_statef
3574         *codes;
3575    } decode;           /* if CODES, current state */
3576  } sub;                /* submode */
3577  uInt last;            /* true if this block is the last block */
3578
3579  /* mode independent information */
3580  uInt bitk;            /* bits in bit buffer */
3581  uLong bitb;           /* bit buffer */
3582  Bytef *window;        /* sliding window */
3583  Bytef *end;           /* one byte after sliding window */
3584  Bytef *read;          /* window read pointer */
3585  Bytef *write;         /* window write pointer */
3586  check_func checkfn;   /* check function */
3587  uLong check;          /* check on output */
3588
3589};
3590
3591
3592/* defines for inflate input/output */
3593/*   update pointers and return */
3594#define UPDBITS {s->bitb=b;s->bitk=k;}
3595#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3596#define UPDOUT {s->write=q;}
3597#define UPDATE {UPDBITS UPDIN UPDOUT}
3598#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3599/*   get bytes and bits */
3600#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3601#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3602#define NEXTBYTE (n--,*p++)
3603#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3604#define DUMPBITS(j) {b>>=(j);k-=(j);}
3605/*   output bytes */
3606#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3607#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3608#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3609#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3610#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3611#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3612/*   load local pointers */
3613#define LOAD {LOADIN LOADOUT}
3614
3615/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3616extern uInt inflate_mask[17];
3617
3618/* copy as much as possible from the sliding window to the output area */
3619extern int inflate_flush OF((
3620    inflate_blocks_statef *,
3621    z_streamp ,
3622    int));
3623
3624#ifndef NO_DUMMY_DECL
3625struct internal_state      {int dummy;}; /* for buggy compilers */
3626#endif
3627
3628#endif
3629/* --- infutil.h */
3630
3631#ifndef NO_DUMMY_DECL
3632struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3633#endif
3634
3635/* Table for deflate from PKZIP's appnote.txt. */
3636local const uInt border[] = { /* Order of the bit length code lengths */
3637        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3638
3639/*
3640   Notes beyond the 1.93a appnote.txt:
3641
3642   1. Distance pointers never point before the beginning of the output
3643      stream.
3644   2. Distance pointers can point back across blocks, up to 32k away.
3645   3. There is an implied maximum of 7 bits for the bit length table and
3646      15 bits for the actual data.
3647   4. If only one code exists, then it is encoded using one bit.  (Zero
3648      would be more efficient, but perhaps a little confusing.)  If two
3649      codes exist, they are coded using one bit each (0 and 1).
3650   5. There is no way of sending zero distance codes--a dummy must be
3651      sent if there are none.  (History: a pre 2.0 version of PKZIP would
3652      store blocks with no distance codes, but this was discovered to be
3653      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3654      zero distance codes, which is sent as one code of zero bits in
3655      length.
3656   6. There are up to 286 literal/length codes.  Code 256 represents the
3657      end-of-block.  Note however that the static length tree defines
3658      288 codes just to fill out the Huffman codes.  Codes 286 and 287
3659      cannot be used though, since there is no length base or extra bits
3660      defined for them.  Similarily, there are up to 30 distance codes.
3661      However, static trees define 32 codes (all 5 bits) to fill out the
3662      Huffman codes, but the last two had better not show up in the data.
3663   7. Unzip can check dynamic Huffman blocks for complete code sets.
3664      The exception is that a single code would not be complete (see #4).
3665   8. The five bits following the block type is really the number of
3666      literal codes sent minus 257.
3667   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3668      (1+6+6).  Therefore, to output three times the length, you output
3669      three codes (1+1+1), whereas to output four times the same length,
3670      you only need two codes (1+3).  Hmm.
3671  10. In the tree reconstruction algorithm, Code = Code + Increment
3672      only if BitLength(i) is not zero.  (Pretty obvious.)
3673  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3674  12. Note: length code 284 can represent 227-258, but length code 285
3675      really is 258.  The last length deserves its own, short code
3676      since it gets used a lot in very redundant files.  The length
3677      258 is special since 258 - 3 (the min match length) is 255.
3678  13. The literal/length and distance code bit lengths are read as a
3679      single stream of lengths.  It is possible (and advantageous) for
3680      a repeat code (16, 17, or 18) to go across the boundary between
3681      the two sets of lengths.
3682 */
3683
3684
3685void inflate_blocks_reset(s, z, c)
3686inflate_blocks_statef *s;
3687z_streamp z;
3688uLongf *c;
3689{
3690  if (s->checkfn != Z_NULL)
3691    *c = s->check;
3692  if (s->mode == BTREE || s->mode == DTREE)
3693    ZFREE(z, s->sub.trees.blens);
3694  if (s->mode == CODES)
3695  {
3696    inflate_codes_free(s->sub.decode.codes, z);
3697    inflate_trees_free(s->sub.decode.td, z);
3698    inflate_trees_free(s->sub.decode.tl, z);
3699  }
3700  s->mode = TYPE;
3701  s->bitk = 0;
3702  s->bitb = 0;
3703  s->read = s->write = s->window;
3704  if (s->checkfn != Z_NULL)
3705    z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3706  Trace((stderr, "inflate:   blocks reset\n"));
3707}
3708
3709
3710inflate_blocks_statef *inflate_blocks_new(z, c, w)
3711z_streamp z;
3712check_func c;
3713uInt w;
3714{
3715  inflate_blocks_statef *s;
3716
3717  if ((s = (inflate_blocks_statef *)ZALLOC
3718       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3719    return s;
3720  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3721  {
3722    ZFREE(z, s);
3723    return Z_NULL;
3724  }
3725  s->end = s->window + w;
3726  s->checkfn = c;
3727  s->mode = TYPE;
3728  Trace((stderr, "inflate:   blocks allocated\n"));
3729  inflate_blocks_reset(s, z, &s->check);
3730  return s;
3731}
3732
3733
3734#ifdef DEBUG_ZLIB
3735  extern uInt inflate_hufts;
3736#endif
3737int inflate_blocks(s, z, r)
3738inflate_blocks_statef *s;
3739z_streamp z;
3740int r;
3741{
3742  uInt t;               /* temporary storage */
3743  uLong b;              /* bit buffer */
3744  uInt k;               /* bits in bit buffer */
3745  Bytef *p;             /* input data pointer */
3746  uInt n;               /* bytes available there */
3747  Bytef *q;             /* output window write pointer */
3748  uInt m;               /* bytes to end of window or read pointer */
3749
3750  /* copy input/output information to locals (UPDATE macro restores) */
3751  LOAD
3752
3753  /* process input based on current state */
3754  while (1) switch (s->mode)
3755  {
3756    case TYPE:
3757      NEEDBITS(3)
3758      t = (uInt)b & 7;
3759      s->last = t & 1;
3760      switch (t >> 1)
3761      {
3762        case 0:                         /* stored */
3763          Trace((stderr, "inflate:     stored block%s\n",
3764                 s->last ? " (last)" : ""));
3765          DUMPBITS(3)
3766          t = k & 7;                    /* go to byte boundary */
3767          DUMPBITS(t)
3768          s->mode = LENS;               /* get length of stored block */
3769          break;
3770        case 1:                         /* fixed */
3771          Trace((stderr, "inflate:     fixed codes block%s\n",
3772                 s->last ? " (last)" : ""));
3773          {
3774            uInt bl, bd;
3775            inflate_huft *tl, *td;
3776
3777            inflate_trees_fixed(&bl, &bd, &tl, &td);
3778            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3779            if (s->sub.decode.codes == Z_NULL)
3780            {
3781              r = Z_MEM_ERROR;
3782              LEAVE
3783            }
3784            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3785            s->sub.decode.td = Z_NULL;
3786          }
3787          DUMPBITS(3)
3788          s->mode = CODES;
3789          break;
3790        case 2:                         /* dynamic */
3791          Trace((stderr, "inflate:     dynamic codes block%s\n",
3792                 s->last ? " (last)" : ""));
3793          DUMPBITS(3)
3794          s->mode = TABLE;
3795          break;
3796        case 3:                         /* illegal */
3797          DUMPBITS(3)
3798          s->mode = BADB;
3799          z->msg = (char*)"invalid block type";
3800          r = Z_DATA_ERROR;
3801          LEAVE
3802      }
3803      break;
3804    case LENS:
3805      NEEDBITS(32)
3806      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3807      {
3808        s->mode = BADB;
3809        z->msg = (char*)"invalid stored block lengths";
3810        r = Z_DATA_ERROR;
3811        LEAVE
3812      }
3813      s->sub.left = (uInt)b & 0xffff;
3814      b = k = 0;                      /* dump bits */
3815      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3816      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3817      break;
3818    case STORED:
3819      if (n == 0)
3820        LEAVE
3821      NEEDOUT
3822      t = s->sub.left;
3823      if (t > n) t = n;
3824      if (t > m) t = m;
3825      zmemcpy(q, p, t);
3826      p += t;  n -= t;
3827      q += t;  m -= t;
3828      if ((s->sub.left -= t) != 0)
3829        break;
3830      Tracev((stderr, "inflate:       stored end, %lu total out\n",
3831              z->total_out + (q >= s->read ? q - s->read :
3832              (s->end - s->read) + (q - s->window))));
3833      s->mode = s->last ? DRY : TYPE;
3834      break;
3835    case TABLE:
3836      NEEDBITS(14)
3837      s->sub.trees.table = t = (uInt)b & 0x3fff;
3838#ifndef PKZIP_BUG_WORKAROUND
3839      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3840      {
3841        s->mode = BADB;
3842        z->msg = (char*)"too many length or distance symbols";
3843        r = Z_DATA_ERROR;
3844        LEAVE
3845      }
3846#endif
3847      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3848      if (t < 19)
3849        t = 19;
3850      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3851      {
3852        r = Z_MEM_ERROR;
3853        LEAVE
3854      }
3855      DUMPBITS(14)
3856      s->sub.trees.index = 0;
3857      Tracev((stderr, "inflate:       table sizes ok\n"));
3858      s->mode = BTREE;
3859    case BTREE:
3860      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3861      {
3862        NEEDBITS(3)
3863        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3864        DUMPBITS(3)
3865      }
3866      while (s->sub.trees.index < 19)
3867        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3868      s->sub.trees.bb = 7;
3869      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3870                             &s->sub.trees.tb, z);
3871      if (t != Z_OK)
3872      {
3873        r = t;
3874        if (r == Z_DATA_ERROR) {
3875          ZFREE(z, s->sub.trees.blens);
3876          s->mode = BADB;
3877        }
3878        LEAVE
3879      }
3880      s->sub.trees.index = 0;
3881      Tracev((stderr, "inflate:       bits tree ok\n"));
3882      s->mode = DTREE;
3883    case DTREE:
3884      while (t = s->sub.trees.table,
3885             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3886      {
3887        inflate_huft *h;
3888        uInt i, j, c;
3889
3890        t = s->sub.trees.bb;
3891        NEEDBITS(t)
3892        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3893        t = h->word.what.Bits;
3894        c = h->more.Base;
3895        if (c < 16)
3896        {
3897          DUMPBITS(t)
3898          s->sub.trees.blens[s->sub.trees.index++] = c;
3899        }
3900        else /* c == 16..18 */
3901        {
3902          i = c == 18 ? 7 : c - 14;
3903          j = c == 18 ? 11 : 3;
3904          NEEDBITS(t + i)
3905          DUMPBITS(t)
3906          j += (uInt)b & inflate_mask[i];
3907          DUMPBITS(i)
3908          i = s->sub.trees.index;
3909          t = s->sub.trees.table;
3910          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3911              (c == 16 && i < 1))
3912          {
3913            inflate_trees_free(s->sub.trees.tb, z);
3914            ZFREE(z, s->sub.trees.blens);
3915            s->mode = BADB;
3916            z->msg = (char*)"invalid bit length repeat";
3917            r = Z_DATA_ERROR;
3918            LEAVE
3919          }
3920          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3921          do {
3922            s->sub.trees.blens[i++] = c;
3923          } while (--j);
3924          s->sub.trees.index = i;
3925        }
3926      }
3927      inflate_trees_free(s->sub.trees.tb, z);
3928      s->sub.trees.tb = Z_NULL;
3929      {
3930        uInt bl, bd;
3931        inflate_huft *tl, *td;
3932        inflate_codes_statef *c;
3933
3934        bl = 9;         /* must be <= 9 for lookahead assumptions */
3935        bd = 6;         /* must be <= 9 for lookahead assumptions */
3936        t = s->sub.trees.table;
3937#ifdef DEBUG_ZLIB
3938      inflate_hufts = 0;
3939#endif
3940        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3941                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3942        if (t != Z_OK)
3943        {
3944          if (t == (uInt)Z_DATA_ERROR) {
3945            ZFREE(z, s->sub.trees.blens);
3946            s->mode = BADB;
3947          }
3948          r = t;
3949          LEAVE
3950        }
3951        Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3952              inflate_hufts, sizeof(inflate_huft)));
3953        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3954        {
3955          inflate_trees_free(td, z);
3956          inflate_trees_free(tl, z);
3957          r = Z_MEM_ERROR;
3958          LEAVE
3959        }
3960	/*
3961	 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3962	 * sub.trees is union'd with sub.decode.
3963	 */
3964        ZFREE(z, s->sub.trees.blens);
3965        s->sub.decode.codes = c;
3966        s->sub.decode.tl = tl;
3967        s->sub.decode.td = td;
3968      }
3969      s->mode = CODES;
3970    case CODES:
3971      UPDATE
3972      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3973        return inflate_flush(s, z, r);
3974      r = Z_OK;
3975      inflate_codes_free(s->sub.decode.codes, z);
3976      inflate_trees_free(s->sub.decode.td, z);
3977      inflate_trees_free(s->sub.decode.tl, z);
3978      LOAD
3979      Tracev((stderr, "inflate:       codes end, %lu total out\n",
3980              z->total_out + (q >= s->read ? q - s->read :
3981              (s->end - s->read) + (q - s->window))));
3982      if (!s->last)
3983      {
3984        s->mode = TYPE;
3985        break;
3986      }
3987      if (k > 7)              /* return unused byte, if any */
3988      {
3989        Assert(k < 16, "inflate_codes grabbed too many bytes")
3990        k -= 8;
3991        n++;
3992        p--;                    /* can always return one */
3993      }
3994      s->mode = DRY;
3995    case DRY:
3996      FLUSH
3997      if (s->read != s->write)
3998        LEAVE
3999      s->mode = DONEB;
4000    case DONEB:
4001      r = Z_STREAM_END;
4002      LEAVE
4003    case BADB:
4004      r = Z_DATA_ERROR;
4005      LEAVE
4006    default:
4007      r = Z_STREAM_ERROR;
4008      LEAVE
4009  }
4010}
4011
4012
4013int inflate_blocks_free(s, z, c)
4014inflate_blocks_statef *s;
4015z_streamp z;
4016uLongf *c;
4017{
4018  inflate_blocks_reset(s, z, c);
4019  ZFREE(z, s->window);
4020  ZFREE(z, s);
4021  Trace((stderr, "inflate:   blocks freed\n"));
4022  return Z_OK;
4023}
4024
4025
4026void inflate_set_dictionary(s, d, n)
4027inflate_blocks_statef *s;
4028const Bytef *d;
4029uInt  n;
4030{
4031  zmemcpy((charf *)s->window, d, n);
4032  s->read = s->write = s->window + n;
4033}
4034
4035/*
4036 * This subroutine adds the data at next_in/avail_in to the output history
4037 * without performing any output.  The output buffer must be "caught up";
4038 * i.e. no pending output (hence s->read equals s->write), and the state must
4039 * be BLOCKS (i.e. we should be willing to see the start of a series of
4040 * BLOCKS).  On exit, the output will also be caught up, and the checksum
4041 * will have been updated if need be.
4042 */
4043int inflate_addhistory(s, z)
4044inflate_blocks_statef *s;
4045z_stream *z;
4046{
4047    uLong b;              /* bit buffer */  /* NOT USED HERE */
4048    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4049    uInt t;               /* temporary storage */
4050    Bytef *p;             /* input data pointer */
4051    uInt n;               /* bytes available there */
4052    Bytef *q;             /* output window write pointer */
4053    uInt m;               /* bytes to end of window or read pointer */
4054
4055    if (s->read != s->write)
4056	return Z_STREAM_ERROR;
4057    if (s->mode != TYPE)
4058	return Z_DATA_ERROR;
4059
4060    /* we're ready to rock */
4061    LOAD
4062    /* while there is input ready, copy to output buffer, moving
4063     * pointers as needed.
4064     */
4065    while (n) {
4066	t = n;  /* how many to do */
4067	/* is there room until end of buffer? */
4068	if (t > m) t = m;
4069	/* update check information */
4070	if (s->checkfn != Z_NULL)
4071	    s->check = (*s->checkfn)(s->check, q, t);
4072	zmemcpy(q, p, t);
4073	q += t;
4074	p += t;
4075	n -= t;
4076	z->total_out += t;
4077	s->read = q;    /* drag read pointer forward */
4078/*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4079	if (q == s->end) {
4080	    s->read = q = s->window;
4081	    m = WAVAIL;
4082	}
4083    }
4084    UPDATE
4085    return Z_OK;
4086}
4087
4088
4089/*
4090 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4091 * a `stored' block type value but not the (zero) length bytes.
4092 */
4093int inflate_packet_flush(s)
4094    inflate_blocks_statef *s;
4095{
4096    if (s->mode != LENS)
4097	return Z_DATA_ERROR;
4098    s->mode = TYPE;
4099    return Z_OK;
4100}
4101/* --- infblock.c */
4102
4103/* +++ inftrees.c */
4104/* inftrees.c -- generate Huffman trees for efficient decoding
4105 * Copyright (C) 1995-1996 Mark Adler
4106 * For conditions of distribution and use, see copyright notice in zlib.h
4107 */
4108
4109/* #include "zutil.h" */
4110/* #include "inftrees.h" */
4111
4112char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4113/*
4114  If you use the zlib library in a product, an acknowledgment is welcome
4115  in the documentation of your product. If for some reason you cannot
4116  include such an acknowledgment, I would appreciate that you keep this
4117  copyright string in the executable of your product.
4118 */
4119
4120#ifndef NO_DUMMY_DECL
4121struct internal_state  {int dummy;}; /* for buggy compilers */
4122#endif
4123
4124/* simplify the use of the inflate_huft type with some defines */
4125#define base more.Base
4126#define next more.Next
4127#define exop word.what.Exop
4128#define bits word.what.Bits
4129
4130
4131local int huft_build OF((
4132    uIntf *,            /* code lengths in bits */
4133    uInt,               /* number of codes */
4134    uInt,               /* number of "simple" codes */
4135    const uIntf *,      /* list of base values for non-simple codes */
4136    const uIntf *,      /* list of extra bits for non-simple codes */
4137    inflate_huft * FAR*,/* result: starting table */
4138    uIntf *,            /* maximum lookup bits (returns actual) */
4139    z_streamp ));       /* for zalloc function */
4140
4141local voidpf falloc OF((
4142    voidpf,             /* opaque pointer (not used) */
4143    uInt,               /* number of items */
4144    uInt));             /* size of item */
4145
4146/* Tables for deflate from PKZIP's appnote.txt. */
4147local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4148        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4149        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4150        /* see note #13 above about 258 */
4151local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4152        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4153        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4154local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4155        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4156        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4157        8193, 12289, 16385, 24577};
4158local const uInt cpdext[30] = { /* Extra bits for distance codes */
4159        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4160        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4161        12, 12, 13, 13};
4162
4163/*
4164   Huffman code decoding is performed using a multi-level table lookup.
4165   The fastest way to decode is to simply build a lookup table whose
4166   size is determined by the longest code.  However, the time it takes
4167   to build this table can also be a factor if the data being decoded
4168   is not very long.  The most common codes are necessarily the
4169   shortest codes, so those codes dominate the decoding time, and hence
4170   the speed.  The idea is you can have a shorter table that decodes the
4171   shorter, more probable codes, and then point to subsidiary tables for
4172   the longer codes.  The time it costs to decode the longer codes is
4173   then traded against the time it takes to make longer tables.
4174
4175   This results of this trade are in the variables lbits and dbits
4176   below.  lbits is the number of bits the first level table for literal/
4177   length codes can decode in one step, and dbits is the same thing for
4178   the distance codes.  Subsequent tables are also less than or equal to
4179   those sizes.  These values may be adjusted either when all of the
4180   codes are shorter than that, in which case the longest code length in
4181   bits is used, or when the shortest code is *longer* than the requested
4182   table size, in which case the length of the shortest code in bits is
4183   used.
4184
4185   There are two different values for the two tables, since they code a
4186   different number of possibilities each.  The literal/length table
4187   codes 286 possible values, or in a flat code, a little over eight
4188   bits.  The distance table codes 30 possible values, or a little less
4189   than five bits, flat.  The optimum values for speed end up being
4190   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4191   The optimum values may differ though from machine to machine, and
4192   possibly even between compilers.  Your mileage may vary.
4193 */
4194
4195
4196/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4197#define BMAX 15         /* maximum bit length of any code */
4198#define N_MAX 288       /* maximum number of codes in any set */
4199
4200#ifdef DEBUG_ZLIB
4201  uInt inflate_hufts;
4202#endif
4203
4204local int huft_build(b, n, s, d, e, t, m, zs)
4205uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4206uInt n;                 /* number of codes (assumed <= N_MAX) */
4207uInt s;                 /* number of simple-valued codes (0..s-1) */
4208const uIntf *d;         /* list of base values for non-simple codes */
4209const uIntf *e;         /* list of extra bits for non-simple codes */
4210inflate_huft * FAR *t;  /* result: starting table */
4211uIntf *m;               /* maximum lookup bits, returns actual */
4212z_streamp zs;           /* for zalloc function */
4213/* Given a list of code lengths and a maximum table size, make a set of
4214   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4215   if the given code set is incomplete (the tables are still built in this
4216   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4217   lengths), or Z_MEM_ERROR if not enough memory. */
4218{
4219
4220  uInt a;                       /* counter for codes of length k */
4221  uInt c[BMAX+1];               /* bit length count table */
4222  uInt f;                       /* i repeats in table every f entries */
4223  int g;                        /* maximum code length */
4224  int h;                        /* table level */
4225  uInt i;                       /* counter, current code */
4226  uInt j;                       /* counter */
4227  int k;                        /* number of bits in current code */
4228  int l;                        /* bits per table (returned in m) */
4229  uIntf *p;                     /* pointer into c[], b[], or v[] */
4230  inflate_huft *q;              /* points to current table */
4231  struct inflate_huft_s r;      /* table entry for structure assignment */
4232  inflate_huft *u[BMAX];        /* table stack */
4233  uInt v[N_MAX];                /* values in order of bit length */
4234  int w;                        /* bits before this table == (l * h) */
4235  uInt x[BMAX+1];               /* bit offsets, then code stack */
4236  uIntf *xp;                    /* pointer into x */
4237  int y;                        /* number of dummy codes added */
4238  uInt z;                       /* number of entries in current table */
4239
4240
4241  /* Generate counts for each bit length */
4242  p = c;
4243#define C0 *p++ = 0;
4244#define C2 C0 C0 C0 C0
4245#define C4 C2 C2 C2 C2
4246  C4                            /* clear c[]--assume BMAX+1 is 16 */
4247  p = b;  i = n;
4248  do {
4249    c[*p++]++;                  /* assume all entries <= BMAX */
4250  } while (--i);
4251  if (c[0] == n)                /* null input--all zero length codes */
4252  {
4253    *t = (inflate_huft *)Z_NULL;
4254    *m = 0;
4255    return Z_OK;
4256  }
4257
4258
4259  /* Find minimum and maximum length, bound *m by those */
4260  l = *m;
4261  for (j = 1; j <= BMAX; j++)
4262    if (c[j])
4263      break;
4264  k = j;                        /* minimum code length */
4265  if ((uInt)l < j)
4266    l = j;
4267  for (i = BMAX; i; i--)
4268    if (c[i])
4269      break;
4270  g = i;                        /* maximum code length */
4271  if ((uInt)l > i)
4272    l = i;
4273  *m = l;
4274
4275
4276  /* Adjust last length count to fill out codes, if needed */
4277  for (y = 1 << j; j < i; j++, y <<= 1)
4278    if ((y -= c[j]) < 0)
4279      return Z_DATA_ERROR;
4280  if ((y -= c[i]) < 0)
4281    return Z_DATA_ERROR;
4282  c[i] += y;
4283
4284
4285  /* Generate starting offsets into the value table for each length */
4286  x[1] = j = 0;
4287  p = c + 1;  xp = x + 2;
4288  while (--i) {                 /* note that i == g from above */
4289    *xp++ = (j += *p++);
4290  }
4291
4292
4293  /* Make a table of values in order of bit lengths */
4294  p = b;  i = 0;
4295  do {
4296    if ((j = *p++) != 0)
4297      v[x[j]++] = i;
4298  } while (++i < n);
4299  n = x[g];                   /* set n to length of v */
4300
4301
4302  /* Generate the Huffman codes and for each, make the table entries */
4303  x[0] = i = 0;                 /* first Huffman code is zero */
4304  p = v;                        /* grab values in bit order */
4305  h = -1;                       /* no tables yet--level -1 */
4306  w = -l;                       /* bits decoded == (l * h) */
4307  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4308  q = (inflate_huft *)Z_NULL;   /* ditto */
4309  z = 0;                        /* ditto */
4310
4311  /* go through the bit lengths (k already is bits in shortest code) */
4312  for (; k <= g; k++)
4313  {
4314    a = c[k];
4315    while (a--)
4316    {
4317      /* here i is the Huffman code of length k bits for value *p */
4318      /* make tables up to required level */
4319      while (k > w + l)
4320      {
4321        h++;
4322        w += l;                 /* previous table always l bits */
4323
4324        /* compute minimum size table less than or equal to l bits */
4325        z = g - w;
4326        z = z > (uInt)l ? l : z;        /* table size upper limit */
4327        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4328        {                       /* too few codes for k-w bit table */
4329          f -= a + 1;           /* deduct codes from patterns left */
4330          xp = c + k;
4331          if (j < z)
4332            while (++j < z)     /* try smaller tables up to z bits */
4333            {
4334              if ((f <<= 1) <= *++xp)
4335                break;          /* enough codes to use up j bits */
4336              f -= *xp;         /* else deduct codes from patterns */
4337            }
4338        }
4339        z = 1 << j;             /* table entries for j-bit table */
4340
4341        /* allocate and link in new table */
4342        if ((q = (inflate_huft *)ZALLOC
4343             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4344        {
4345          if (h)
4346            inflate_trees_free(u[0], zs);
4347          return Z_MEM_ERROR;   /* not enough memory */
4348        }
4349#ifdef DEBUG_ZLIB
4350        inflate_hufts += z + 1;
4351#endif
4352        *t = q + 1;             /* link to list for huft_free() */
4353        *(t = &(q->next)) = Z_NULL;
4354        u[h] = ++q;             /* table starts after link */
4355
4356        /* connect to last table, if there is one */
4357        if (h)
4358        {
4359          x[h] = i;             /* save pattern for backing up */
4360          r.bits = (Byte)l;     /* bits to dump before this table */
4361          r.exop = (Byte)j;     /* bits in this table */
4362          r.next = q;           /* pointer to this table */
4363          j = i >> (w - l);     /* (get around Turbo C bug) */
4364          u[h-1][j] = r;        /* connect to last table */
4365        }
4366      }
4367
4368      /* set up table entry in r */
4369      r.bits = (Byte)(k - w);
4370      if (p >= v + n)
4371        r.exop = 128 + 64;      /* out of values--invalid code */
4372      else if (*p < s)
4373      {
4374        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4375        r.base = *p++;          /* simple code is just the value */
4376      }
4377      else
4378      {
4379        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4380        r.base = d[*p++ - s];
4381      }
4382
4383      /* fill code-like entries with r */
4384      f = 1 << (k - w);
4385      for (j = i >> w; j < z; j += f)
4386        q[j] = r;
4387
4388      /* backwards increment the k-bit code i */
4389      for (j = 1 << (k - 1); i & j; j >>= 1)
4390        i ^= j;
4391      i ^= j;
4392
4393      /* backup over finished tables */
4394      while ((i & ((1 << w) - 1)) != x[h])
4395      {
4396        h--;                    /* don't need to update q */
4397        w -= l;
4398      }
4399    }
4400  }
4401
4402
4403  /* Return Z_BUF_ERROR if we were given an incomplete table */
4404  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4405}
4406
4407
4408int inflate_trees_bits(c, bb, tb, z)
4409uIntf *c;               /* 19 code lengths */
4410uIntf *bb;              /* bits tree desired/actual depth */
4411inflate_huft * FAR *tb; /* bits tree result */
4412z_streamp z;            /* for zfree function */
4413{
4414  int r;
4415
4416  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4417  if (r == Z_DATA_ERROR)
4418    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4419  else if (r == Z_BUF_ERROR || *bb == 0)
4420  {
4421    inflate_trees_free(*tb, z);
4422    z->msg = (char*)"incomplete dynamic bit lengths tree";
4423    r = Z_DATA_ERROR;
4424  }
4425  return r;
4426}
4427
4428
4429int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4430uInt nl;                /* number of literal/length codes */
4431uInt nd;                /* number of distance codes */
4432uIntf *c;               /* that many (total) code lengths */
4433uIntf *bl;              /* literal desired/actual bit depth */
4434uIntf *bd;              /* distance desired/actual bit depth */
4435inflate_huft * FAR *tl; /* literal/length tree result */
4436inflate_huft * FAR *td; /* distance tree result */
4437z_streamp z;            /* for zfree function */
4438{
4439  int r;
4440
4441  /* build literal/length tree */
4442  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4443  if (r != Z_OK || *bl == 0)
4444  {
4445    if (r == Z_DATA_ERROR)
4446      z->msg = (char*)"oversubscribed literal/length tree";
4447    else if (r != Z_MEM_ERROR)
4448    {
4449      inflate_trees_free(*tl, z);
4450      z->msg = (char*)"incomplete literal/length tree";
4451      r = Z_DATA_ERROR;
4452    }
4453    return r;
4454  }
4455
4456  /* build distance tree */
4457  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4458  if (r != Z_OK || (*bd == 0 && nl > 257))
4459  {
4460    if (r == Z_DATA_ERROR)
4461      z->msg = (char*)"oversubscribed distance tree";
4462    else if (r == Z_BUF_ERROR) {
4463#ifdef PKZIP_BUG_WORKAROUND
4464      r = Z_OK;
4465    }
4466#else
4467      inflate_trees_free(*td, z);
4468      z->msg = (char*)"incomplete distance tree";
4469      r = Z_DATA_ERROR;
4470    }
4471    else if (r != Z_MEM_ERROR)
4472    {
4473      z->msg = (char*)"empty distance tree with lengths";
4474      r = Z_DATA_ERROR;
4475    }
4476    inflate_trees_free(*tl, z);
4477    return r;
4478#endif
4479  }
4480
4481  /* done */
4482  return Z_OK;
4483}
4484
4485
4486/* build fixed tables only once--keep them here */
4487local int fixed_built = 0;
4488#define FIXEDH 530      /* number of hufts used by fixed tables */
4489local inflate_huft fixed_mem[FIXEDH];
4490local uInt fixed_bl;
4491local uInt fixed_bd;
4492local inflate_huft *fixed_tl;
4493local inflate_huft *fixed_td;
4494
4495
4496local voidpf falloc(q, n, s)
4497voidpf q;       /* opaque pointer */
4498uInt n;         /* number of items */
4499uInt s;         /* size of item */
4500{
4501  Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4502         "inflate_trees falloc overflow");
4503  *(intf *)q -= n+s-s; /* s-s to avoid warning */
4504  return (voidpf)(fixed_mem + *(intf *)q);
4505}
4506
4507
4508int inflate_trees_fixed(bl, bd, tl, td)
4509uIntf *bl;               /* literal desired/actual bit depth */
4510uIntf *bd;               /* distance desired/actual bit depth */
4511inflate_huft * FAR *tl;  /* literal/length tree result */
4512inflate_huft * FAR *td;  /* distance tree result */
4513{
4514  /* build fixed tables if not already (multiple overlapped executions ok) */
4515  if (!fixed_built)
4516  {
4517    int k;              /* temporary variable */
4518    unsigned c[288];    /* length list for huft_build */
4519    z_stream z;         /* for falloc function */
4520    int f = FIXEDH;     /* number of hufts left in fixed_mem */
4521
4522    /* set up fake z_stream for memory routines */
4523    z.zalloc = falloc;
4524    z.zfree = Z_NULL;
4525    z.opaque = (voidpf)&f;
4526
4527    /* literal table */
4528    for (k = 0; k < 144; k++)
4529      c[k] = 8;
4530    for (; k < 256; k++)
4531      c[k] = 9;
4532    for (; k < 280; k++)
4533      c[k] = 7;
4534    for (; k < 288; k++)
4535      c[k] = 8;
4536    fixed_bl = 7;
4537    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4538
4539    /* distance table */
4540    for (k = 0; k < 30; k++)
4541      c[k] = 5;
4542    fixed_bd = 5;
4543    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4544
4545    /* done */
4546    Assert(f == 0, "invalid build of fixed tables");
4547    fixed_built = 1;
4548  }
4549  *bl = fixed_bl;
4550  *bd = fixed_bd;
4551  *tl = fixed_tl;
4552  *td = fixed_td;
4553  return Z_OK;
4554}
4555
4556
4557int inflate_trees_free(t, z)
4558inflate_huft *t;        /* table to free */
4559z_streamp z;            /* for zfree function */
4560/* Free the malloc'ed tables built by huft_build(), which makes a linked
4561   list of the tables it made, with the links in a dummy first entry of
4562   each table. */
4563{
4564  inflate_huft *p, *q, *r;
4565
4566  /* Reverse linked list */
4567  p = Z_NULL;
4568  q = t;
4569  while (q != Z_NULL)
4570  {
4571    r = (q - 1)->next;
4572    (q - 1)->next = p;
4573    p = q;
4574    q = r;
4575  }
4576  /* Go through linked list, freeing from the malloced (t[-1]) address. */
4577  while (p != Z_NULL)
4578  {
4579    q = (--p)->next;
4580    ZFREE(z,p);
4581    p = q;
4582  }
4583  return Z_OK;
4584}
4585/* --- inftrees.c */
4586
4587/* +++ infcodes.c */
4588/* infcodes.c -- process literals and length/distance pairs
4589 * Copyright (C) 1995-1996 Mark Adler
4590 * For conditions of distribution and use, see copyright notice in zlib.h
4591 */
4592
4593/* #include "zutil.h" */
4594/* #include "inftrees.h" */
4595/* #include "infblock.h" */
4596/* #include "infcodes.h" */
4597/* #include "infutil.h" */
4598
4599/* +++ inffast.h */
4600/* inffast.h -- header to use inffast.c
4601 * Copyright (C) 1995-1996 Mark Adler
4602 * For conditions of distribution and use, see copyright notice in zlib.h
4603 */
4604
4605/* WARNING: this file should *not* be used by applications. It is
4606   part of the implementation of the compression library and is
4607   subject to change. Applications should only use zlib.h.
4608 */
4609
4610extern int inflate_fast OF((
4611    uInt,
4612    uInt,
4613    inflate_huft *,
4614    inflate_huft *,
4615    inflate_blocks_statef *,
4616    z_streamp ));
4617/* --- inffast.h */
4618
4619/* simplify the use of the inflate_huft type with some defines */
4620#define base more.Base
4621#define next more.Next
4622#define exop word.what.Exop
4623#define bits word.what.Bits
4624
4625/* inflate codes private state */
4626struct inflate_codes_state {
4627
4628  /* mode */
4629  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4630      START,    /* x: set up for LEN */
4631      LEN,      /* i: get length/literal/eob next */
4632      LENEXT,   /* i: getting length extra (have base) */
4633      DIST,     /* i: get distance next */
4634      DISTEXT,  /* i: getting distance extra */
4635      COPY,     /* o: copying bytes in window, waiting for space */
4636      LIT,      /* o: got literal, waiting for output space */
4637      WASH,     /* o: got eob, possibly still output waiting */
4638      END,      /* x: got eob and all data flushed */
4639      BADCODE}  /* x: got error */
4640    mode;               /* current inflate_codes mode */
4641
4642  /* mode dependent information */
4643  uInt len;
4644  union {
4645    struct {
4646      inflate_huft *tree;       /* pointer into tree */
4647      uInt need;                /* bits needed */
4648    } code;             /* if LEN or DIST, where in tree */
4649    uInt lit;           /* if LIT, literal */
4650    struct {
4651      uInt get;                 /* bits to get for extra */
4652      uInt dist;                /* distance back to copy from */
4653    } copy;             /* if EXT or COPY, where and how much */
4654  } sub;                /* submode */
4655
4656  /* mode independent information */
4657  Byte lbits;           /* ltree bits decoded per branch */
4658  Byte dbits;           /* dtree bits decoder per branch */
4659  inflate_huft *ltree;          /* literal/length/eob tree */
4660  inflate_huft *dtree;          /* distance tree */
4661
4662};
4663
4664
4665inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4666uInt bl, bd;
4667inflate_huft *tl;
4668inflate_huft *td; /* need separate declaration for Borland C++ */
4669z_streamp z;
4670{
4671  inflate_codes_statef *c;
4672
4673  if ((c = (inflate_codes_statef *)
4674       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4675  {
4676    c->mode = START;
4677    c->lbits = (Byte)bl;
4678    c->dbits = (Byte)bd;
4679    c->ltree = tl;
4680    c->dtree = td;
4681    Tracev((stderr, "inflate:       codes new\n"));
4682  }
4683  return c;
4684}
4685
4686
4687int inflate_codes(s, z, r)
4688inflate_blocks_statef *s;
4689z_streamp z;
4690int r;
4691{
4692  uInt j;               /* temporary storage */
4693  inflate_huft *t;      /* temporary pointer */
4694  uInt e;               /* extra bits or operation */
4695  uLong b;              /* bit buffer */
4696  uInt k;               /* bits in bit buffer */
4697  Bytef *p;             /* input data pointer */
4698  uInt n;               /* bytes available there */
4699  Bytef *q;             /* output window write pointer */
4700  uInt m;               /* bytes to end of window or read pointer */
4701  Bytef *f;             /* pointer to copy strings from */
4702  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4703
4704  /* copy input/output information to locals (UPDATE macro restores) */
4705  LOAD
4706
4707  /* process input and output based on current state */
4708  while (1) switch (c->mode)
4709  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4710    case START:         /* x: set up for LEN */
4711#ifndef SLOW
4712      if (m >= 258 && n >= 10)
4713      {
4714        UPDATE
4715        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4716        LOAD
4717        if (r != Z_OK)
4718        {
4719          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4720          break;
4721        }
4722      }
4723#endif /* !SLOW */
4724      c->sub.code.need = c->lbits;
4725      c->sub.code.tree = c->ltree;
4726      c->mode = LEN;
4727    case LEN:           /* i: get length/literal/eob next */
4728      j = c->sub.code.need;
4729      NEEDBITS(j)
4730      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4731      DUMPBITS(t->bits)
4732      e = (uInt)(t->exop);
4733      if (e == 0)               /* literal */
4734      {
4735        c->sub.lit = t->base;
4736        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4737                 "inflate:         literal '%c'\n" :
4738                 "inflate:         literal 0x%02x\n", t->base));
4739        c->mode = LIT;
4740        break;
4741      }
4742      if (e & 16)               /* length */
4743      {
4744        c->sub.copy.get = e & 15;
4745        c->len = t->base;
4746        c->mode = LENEXT;
4747        break;
4748      }
4749      if ((e & 64) == 0)        /* next table */
4750      {
4751        c->sub.code.need = e;
4752        c->sub.code.tree = t->next;
4753        break;
4754      }
4755      if (e & 32)               /* end of block */
4756      {
4757        Tracevv((stderr, "inflate:         end of block\n"));
4758        c->mode = WASH;
4759        break;
4760      }
4761      c->mode = BADCODE;        /* invalid code */
4762      z->msg = (char*)"invalid literal/length code";
4763      r = Z_DATA_ERROR;
4764      LEAVE
4765    case LENEXT:        /* i: getting length extra (have base) */
4766      j = c->sub.copy.get;
4767      NEEDBITS(j)
4768      c->len += (uInt)b & inflate_mask[j];
4769      DUMPBITS(j)
4770      c->sub.code.need = c->dbits;
4771      c->sub.code.tree = c->dtree;
4772      Tracevv((stderr, "inflate:         length %u\n", c->len));
4773      c->mode = DIST;
4774    case DIST:          /* i: get distance next */
4775      j = c->sub.code.need;
4776      NEEDBITS(j)
4777      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4778      DUMPBITS(t->bits)
4779      e = (uInt)(t->exop);
4780      if (e & 16)               /* distance */
4781      {
4782        c->sub.copy.get = e & 15;
4783        c->sub.copy.dist = t->base;
4784        c->mode = DISTEXT;
4785        break;
4786      }
4787      if ((e & 64) == 0)        /* next table */
4788      {
4789        c->sub.code.need = e;
4790        c->sub.code.tree = t->next;
4791        break;
4792      }
4793      c->mode = BADCODE;        /* invalid code */
4794      z->msg = (char*)"invalid distance code";
4795      r = Z_DATA_ERROR;
4796      LEAVE
4797    case DISTEXT:       /* i: getting distance extra */
4798      j = c->sub.copy.get;
4799      NEEDBITS(j)
4800      c->sub.copy.dist += (uInt)b & inflate_mask[j];
4801      DUMPBITS(j)
4802      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4803      c->mode = COPY;
4804    case COPY:          /* o: copying bytes in window, waiting for space */
4805#ifndef __TURBOC__ /* Turbo C bug for following expression */
4806      f = (uInt)(q - s->window) < c->sub.copy.dist ?
4807          s->end - (c->sub.copy.dist - (q - s->window)) :
4808          q - c->sub.copy.dist;
4809#else
4810      f = q - c->sub.copy.dist;
4811      if ((uInt)(q - s->window) < c->sub.copy.dist)
4812        f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4813#endif
4814      while (c->len)
4815      {
4816        NEEDOUT
4817        OUTBYTE(*f++)
4818        if (f == s->end)
4819          f = s->window;
4820        c->len--;
4821      }
4822      c->mode = START;
4823      break;
4824    case LIT:           /* o: got literal, waiting for output space */
4825      NEEDOUT
4826      OUTBYTE(c->sub.lit)
4827      c->mode = START;
4828      break;
4829    case WASH:          /* o: got eob, possibly more output */
4830      FLUSH
4831      if (s->read != s->write)
4832        LEAVE
4833      c->mode = END;
4834    case END:
4835      r = Z_STREAM_END;
4836      LEAVE
4837    case BADCODE:       /* x: got error */
4838      r = Z_DATA_ERROR;
4839      LEAVE
4840    default:
4841      r = Z_STREAM_ERROR;
4842      LEAVE
4843  }
4844}
4845
4846
4847void inflate_codes_free(c, z)
4848inflate_codes_statef *c;
4849z_streamp z;
4850{
4851  ZFREE(z, c);
4852  Tracev((stderr, "inflate:       codes free\n"));
4853}
4854/* --- infcodes.c */
4855
4856/* +++ infutil.c */
4857/* inflate_util.c -- data and routines common to blocks and codes
4858 * Copyright (C) 1995-1996 Mark Adler
4859 * For conditions of distribution and use, see copyright notice in zlib.h
4860 */
4861
4862/* #include "zutil.h" */
4863/* #include "infblock.h" */
4864/* #include "inftrees.h" */
4865/* #include "infcodes.h" */
4866/* #include "infutil.h" */
4867
4868#ifndef NO_DUMMY_DECL
4869struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4870#endif
4871
4872/* And'ing with mask[n] masks the lower n bits */
4873uInt inflate_mask[17] = {
4874    0x0000,
4875    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4876    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4877};
4878
4879
4880/* copy as much as possible from the sliding window to the output area */
4881int inflate_flush(s, z, r)
4882inflate_blocks_statef *s;
4883z_streamp z;
4884int r;
4885{
4886  uInt n;
4887  Bytef *p;
4888  Bytef *q;
4889
4890  /* local copies of source and destination pointers */
4891  p = z->next_out;
4892  q = s->read;
4893
4894  /* compute number of bytes to copy as far as end of window */
4895  n = (uInt)((q <= s->write ? s->write : s->end) - q);
4896  if (n > z->avail_out) n = z->avail_out;
4897  if (n && r == Z_BUF_ERROR) r = Z_OK;
4898
4899  /* update counters */
4900  z->avail_out -= n;
4901  z->total_out += n;
4902
4903  /* update check information */
4904  if (s->checkfn != Z_NULL)
4905    z->adler = s->check = (*s->checkfn)(s->check, q, n);
4906
4907  /* copy as far as end of window */
4908  if (p != Z_NULL) {
4909    zmemcpy(p, q, n);
4910    p += n;
4911  }
4912  q += n;
4913
4914  /* see if more to copy at beginning of window */
4915  if (q == s->end)
4916  {
4917    /* wrap pointers */
4918    q = s->window;
4919    if (s->write == s->end)
4920      s->write = s->window;
4921
4922    /* compute bytes to copy */
4923    n = (uInt)(s->write - q);
4924    if (n > z->avail_out) n = z->avail_out;
4925    if (n && r == Z_BUF_ERROR) r = Z_OK;
4926
4927    /* update counters */
4928    z->avail_out -= n;
4929    z->total_out += n;
4930
4931    /* update check information */
4932    if (s->checkfn != Z_NULL)
4933      z->adler = s->check = (*s->checkfn)(s->check, q, n);
4934
4935    /* copy */
4936    if (p != Z_NULL) {
4937      zmemcpy(p, q, n);
4938      p += n;
4939    }
4940    q += n;
4941  }
4942
4943  /* update pointers */
4944  z->next_out = p;
4945  s->read = q;
4946
4947  /* done */
4948  return r;
4949}
4950/* --- infutil.c */
4951
4952/* +++ inffast.c */
4953/* inffast.c -- process literals and length/distance pairs fast
4954 * Copyright (C) 1995-1996 Mark Adler
4955 * For conditions of distribution and use, see copyright notice in zlib.h
4956 */
4957
4958/* #include "zutil.h" */
4959/* #include "inftrees.h" */
4960/* #include "infblock.h" */
4961/* #include "infcodes.h" */
4962/* #include "infutil.h" */
4963/* #include "inffast.h" */
4964
4965#ifndef NO_DUMMY_DECL
4966struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4967#endif
4968
4969/* simplify the use of the inflate_huft type with some defines */
4970#define base more.Base
4971#define next more.Next
4972#define exop word.what.Exop
4973#define bits word.what.Bits
4974
4975/* macros for bit input with no checking and for returning unused bytes */
4976#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4977#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4978
4979/* Called with number of bytes left to write in window at least 258
4980   (the maximum string length) and number of input bytes available
4981   at least ten.  The ten bytes are six bytes for the longest length/
4982   distance pair plus four bytes for overloading the bit buffer. */
4983
4984int inflate_fast(bl, bd, tl, td, s, z)
4985uInt bl, bd;
4986inflate_huft *tl;
4987inflate_huft *td; /* need separate declaration for Borland C++ */
4988inflate_blocks_statef *s;
4989z_streamp z;
4990{
4991  inflate_huft *t;      /* temporary pointer */
4992  uInt e;               /* extra bits or operation */
4993  uLong b;              /* bit buffer */
4994  uInt k;               /* bits in bit buffer */
4995  Bytef *p;             /* input data pointer */
4996  uInt n;               /* bytes available there */
4997  Bytef *q;             /* output window write pointer */
4998  uInt m;               /* bytes to end of window or read pointer */
4999  uInt ml;              /* mask for literal/length tree */
5000  uInt md;              /* mask for distance tree */
5001  uInt c;               /* bytes to copy */
5002  uInt d;               /* distance back to copy from */
5003  Bytef *r;             /* copy source pointer */
5004
5005  /* load input, output, bit values */
5006  LOAD
5007
5008  /* initialize masks */
5009  ml = inflate_mask[bl];
5010  md = inflate_mask[bd];
5011
5012  /* do until not enough input or output space for fast loop */
5013  do {                          /* assume called with m >= 258 && n >= 10 */
5014    /* get literal/length code */
5015    GRABBITS(20)                /* max bits for literal/length code */
5016    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5017    {
5018      DUMPBITS(t->bits)
5019      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5020                "inflate:         * literal '%c'\n" :
5021                "inflate:         * literal 0x%02x\n", t->base));
5022      *q++ = (Byte)t->base;
5023      m--;
5024      continue;
5025    }
5026    do {
5027      DUMPBITS(t->bits)
5028      if (e & 16)
5029      {
5030        /* get extra bits for length */
5031        e &= 15;
5032        c = t->base + ((uInt)b & inflate_mask[e]);
5033        DUMPBITS(e)
5034        Tracevv((stderr, "inflate:         * length %u\n", c));
5035
5036        /* decode distance base of block to copy */
5037        GRABBITS(15);           /* max bits for distance code */
5038        e = (t = td + ((uInt)b & md))->exop;
5039        do {
5040          DUMPBITS(t->bits)
5041          if (e & 16)
5042          {
5043            /* get extra bits to add to distance base */
5044            e &= 15;
5045            GRABBITS(e)         /* get extra bits (up to 13) */
5046            d = t->base + ((uInt)b & inflate_mask[e]);
5047            DUMPBITS(e)
5048            Tracevv((stderr, "inflate:         * distance %u\n", d));
5049
5050            /* do the copy */
5051            m -= c;
5052            if ((uInt)(q - s->window) >= d)     /* offset before dest */
5053            {                                   /*  just copy */
5054              r = q - d;
5055              *q++ = *r++;  c--;        /* minimum count is three, */
5056              *q++ = *r++;  c--;        /*  so unroll loop a little */
5057            }
5058            else                        /* else offset after destination */
5059            {
5060              e = d - (uInt)(q - s->window); /* bytes from offset to end */
5061              r = s->end - e;           /* pointer to offset */
5062              if (c > e)                /* if source crosses, */
5063              {
5064                c -= e;                 /* copy to end of window */
5065                do {
5066                  *q++ = *r++;
5067                } while (--e);
5068                r = s->window;          /* copy rest from start of window */
5069              }
5070            }
5071            do {                        /* copy all or what's left */
5072              *q++ = *r++;
5073            } while (--c);
5074            break;
5075          }
5076          else if ((e & 64) == 0)
5077            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5078          else
5079          {
5080            z->msg = (char*)"invalid distance code";
5081            UNGRAB
5082            UPDATE
5083            return Z_DATA_ERROR;
5084          }
5085        } while (1);
5086        break;
5087      }
5088      if ((e & 64) == 0)
5089      {
5090        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5091        {
5092          DUMPBITS(t->bits)
5093          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5094                    "inflate:         * literal '%c'\n" :
5095                    "inflate:         * literal 0x%02x\n", t->base));
5096          *q++ = (Byte)t->base;
5097          m--;
5098          break;
5099        }
5100      }
5101      else if (e & 32)
5102      {
5103        Tracevv((stderr, "inflate:         * end of block\n"));
5104        UNGRAB
5105        UPDATE
5106        return Z_STREAM_END;
5107      }
5108      else
5109      {
5110        z->msg = (char*)"invalid literal/length code";
5111        UNGRAB
5112        UPDATE
5113        return Z_DATA_ERROR;
5114      }
5115    } while (1);
5116  } while (m >= 258 && n >= 10);
5117
5118  /* not enough input or output--restore pointers and return */
5119  UNGRAB
5120  UPDATE
5121  return Z_OK;
5122}
5123/* --- inffast.c */
5124
5125/* +++ zutil.c */
5126/* zutil.c -- target dependent utility functions for the compression library
5127 * Copyright (C) 1995-1996 Jean-loup Gailly.
5128 * For conditions of distribution and use, see copyright notice in zlib.h
5129 */
5130
5131/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5132
5133#ifdef DEBUG_ZLIB
5134#include <stdio.h>
5135#endif
5136
5137/* #include "zutil.h" */
5138
5139#ifndef NO_DUMMY_DECL
5140struct internal_state      {int dummy;}; /* for buggy compilers */
5141#endif
5142
5143#ifndef STDC
5144extern void exit OF((int));
5145#endif
5146
5147static const char *z_errmsg[10] = {
5148"need dictionary",     /* Z_NEED_DICT       2  */
5149"stream end",          /* Z_STREAM_END      1  */
5150"",                    /* Z_OK              0  */
5151"file error",          /* Z_ERRNO         (-1) */
5152"stream error",        /* Z_STREAM_ERROR  (-2) */
5153"data error",          /* Z_DATA_ERROR    (-3) */
5154"insufficient memory", /* Z_MEM_ERROR     (-4) */
5155"buffer error",        /* Z_BUF_ERROR     (-5) */
5156"incompatible version",/* Z_VERSION_ERROR (-6) */
5157""};
5158
5159
5160const char *zlibVersion()
5161{
5162    return ZLIB_VERSION;
5163}
5164
5165#ifdef DEBUG_ZLIB
5166void z_error (m)
5167    char *m;
5168{
5169    fprintf(stderr, "%s\n", m);
5170    exit(1);
5171}
5172#endif
5173
5174#ifndef HAVE_MEMCPY
5175
5176void zmemcpy(dest, source, len)
5177    Bytef* dest;
5178    Bytef* source;
5179    uInt  len;
5180{
5181    if (len == 0) return;
5182    do {
5183        *dest++ = *source++; /* ??? to be unrolled */
5184    } while (--len != 0);
5185}
5186
5187int zmemcmp(s1, s2, len)
5188    Bytef* s1;
5189    Bytef* s2;
5190    uInt  len;
5191{
5192    uInt j;
5193
5194    for (j = 0; j < len; j++) {
5195        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5196    }
5197    return 0;
5198}
5199
5200void zmemzero(dest, len)
5201    Bytef* dest;
5202    uInt  len;
5203{
5204    if (len == 0) return;
5205    do {
5206        *dest++ = 0;  /* ??? to be unrolled */
5207    } while (--len != 0);
5208}
5209#endif
5210
5211#ifdef __TURBOC__
5212#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5213/* Small and medium model in Turbo C are for now limited to near allocation
5214 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5215 */
5216#  define MY_ZCALLOC
5217
5218/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5219 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5220 * must fix the pointer. Warning: the pointer must be put back to its
5221 * original form in order to free it, use zcfree().
5222 */
5223
5224#define MAX_PTR 10
5225/* 10*64K = 640K */
5226
5227local int next_ptr = 0;
5228
5229typedef struct ptr_table_s {
5230    voidpf org_ptr;
5231    voidpf new_ptr;
5232} ptr_table;
5233
5234local ptr_table table[MAX_PTR];
5235/* This table is used to remember the original form of pointers
5236 * to large buffers (64K). Such pointers are normalized with a zero offset.
5237 * Since MSDOS is not a preemptive multitasking OS, this table is not
5238 * protected from concurrent access. This hack doesn't work anyway on
5239 * a protected system like OS/2. Use Microsoft C instead.
5240 */
5241
5242voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5243{
5244    voidpf buf = opaque; /* just to make some compilers happy */
5245    ulg bsize = (ulg)items*size;
5246
5247    /* If we allocate less than 65520 bytes, we assume that farmalloc
5248     * will return a usable pointer which doesn't have to be normalized.
5249     */
5250    if (bsize < 65520L) {
5251        buf = farmalloc(bsize);
5252        if (*(ush*)&buf != 0) return buf;
5253    } else {
5254        buf = farmalloc(bsize + 16L);
5255    }
5256    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5257    table[next_ptr].org_ptr = buf;
5258
5259    /* Normalize the pointer to seg:0 */
5260    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5261    *(ush*)&buf = 0;
5262    table[next_ptr++].new_ptr = buf;
5263    return buf;
5264}
5265
5266void  zcfree (voidpf opaque, voidpf ptr)
5267{
5268    int n;
5269    if (*(ush*)&ptr != 0) { /* object < 64K */
5270        farfree(ptr);
5271        return;
5272    }
5273    /* Find the original pointer */
5274    for (n = 0; n < next_ptr; n++) {
5275        if (ptr != table[n].new_ptr) continue;
5276
5277        farfree(table[n].org_ptr);
5278        while (++n < next_ptr) {
5279            table[n-1] = table[n];
5280        }
5281        next_ptr--;
5282        return;
5283    }
5284    ptr = opaque; /* just to make some compilers happy */
5285    Assert(0, "zcfree: ptr not found");
5286}
5287#endif
5288#endif /* __TURBOC__ */
5289
5290
5291#if defined(M_I86) && !defined(__32BIT__)
5292/* Microsoft C in 16-bit mode */
5293
5294#  define MY_ZCALLOC
5295
5296#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5297#  define _halloc  halloc
5298#  define _hfree   hfree
5299#endif
5300
5301voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5302{
5303    if (opaque) opaque = 0; /* to make compiler happy */
5304    return _halloc((long)items, size);
5305}
5306
5307void  zcfree (voidpf opaque, voidpf ptr)
5308{
5309    if (opaque) opaque = 0; /* to make compiler happy */
5310    _hfree(ptr);
5311}
5312
5313#endif /* MSC */
5314
5315
5316#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5317
5318#ifndef STDC
5319extern voidp  calloc OF((uInt items, uInt size));
5320extern void   free   OF((voidpf ptr));
5321#endif
5322
5323voidpf zcalloc (opaque, items, size)
5324    voidpf opaque;
5325    unsigned items;
5326    unsigned size;
5327{
5328    if (opaque) items += size - size; /* make compiler happy */
5329    return (voidpf)calloc(items, size);
5330}
5331
5332void  zcfree (opaque, ptr)
5333    voidpf opaque;
5334    voidpf ptr;
5335{
5336    free(ptr);
5337    if (opaque) return; /* make compiler happy */
5338}
5339
5340#endif /* MY_ZCALLOC */
5341/* --- zutil.c */
5342
5343/* +++ adler32.c */
5344/* adler32.c -- compute the Adler-32 checksum of a data stream
5345 * Copyright (C) 1995-1996 Mark Adler
5346 * For conditions of distribution and use, see copyright notice in zlib.h
5347 */
5348
5349/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5350
5351/* #include "zlib.h" */
5352
5353#define BASE 65521L /* largest prime smaller than 65536 */
5354#define NMAX 5552
5355/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5356
5357#define DO1(buf,i)  {s1 += buf[(i)]; s2 += s1;}
5358#define DO2(buf,i)  DO1(buf,i); DO1(buf,(i)+1);
5359#define DO4(buf,i)  DO2(buf,i); DO2(buf,(i)+2);
5360#define DO8(buf,i)  DO4(buf,i); DO4(buf,(i)+4);
5361#define DO16(buf)   DO8(buf,0); DO8(buf,8);
5362
5363/* ========================================================================= */
5364uLong adler32(adler, buf, len)
5365    uLong adler;
5366    const Bytef *buf;
5367    uInt len;
5368{
5369    unsigned long s1 = adler & 0xffff;
5370    unsigned long s2 = (adler >> 16) & 0xffff;
5371    int k;
5372
5373    if (buf == Z_NULL) return 1L;
5374
5375    while (len > 0) {
5376        k = len < NMAX ? len : NMAX;
5377        len -= k;
5378        while (k >= 16) {
5379            DO16(buf);
5380	    buf += 16;
5381            k -= 16;
5382        }
5383        if (k != 0) do {
5384            s1 += *buf++;
5385	    s2 += s1;
5386        } while (--k);
5387        s1 %= BASE;
5388        s2 %= BASE;
5389    }
5390    return (s2 << 16) | s1;
5391}
5392/* --- adler32.c */
5393
5394#ifdef _KERNEL
5395static int
5396zlib_modevent(module_t mod, int type, void *unused)
5397{
5398	switch (type) {
5399	case MOD_LOAD:
5400		return 0;
5401	case MOD_UNLOAD:
5402		return 0;
5403	}
5404	return EINVAL;
5405}
5406
5407static moduledata_t zlib_mod = {
5408	"zlib",
5409	zlib_modevent,
5410	0
5411};
5412DECLARE_MODULE(zlib, zlib_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5413MODULE_VERSION(zlib, 1);
5414#endif /* _KERNEL */
5415