qdivrem.c revision 8876
1181905Sed/*-
2181905Sed * Copyright (c) 1992, 1993
3181905Sed *	The Regents of the University of California.  All rights reserved.
4181905Sed *
5181905Sed * This software was developed by the Computer Systems Engineering group
6181905Sed * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7181905Sed * contributed to Berkeley.
8181905Sed *
9181905Sed * Redistribution and use in source and binary forms, with or without
10181905Sed * modification, are permitted provided that the following conditions
11181905Sed * are met:
12181905Sed * 1. Redistributions of source code must retain the above copyright
13181905Sed *    notice, this list of conditions and the following disclaimer.
14181905Sed * 2. Redistributions in binary form must reproduce the above copyright
15181905Sed *    notice, this list of conditions and the following disclaimer in the
16181905Sed *    documentation and/or other materials provided with the distribution.
17181905Sed * 3. All advertising materials mentioning features or use of this software
18181905Sed *    must display the following acknowledgement:
19181905Sed *	This product includes software developed by the University of
20181905Sed *	California, Berkeley and its contributors.
21181905Sed * 4. Neither the name of the University nor the names of its contributors
22181905Sed *    may be used to endorse or promote products derived from this software
23181905Sed *    without specific prior written permission.
24181905Sed *
25181905Sed * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26181905Sed * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27181905Sed * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28181905Sed * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29181905Sed * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30181905Sed * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31181905Sed * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32181905Sed * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33181905Sed * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34181905Sed * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35181905Sed * SUCH DAMAGE.
36181905Sed *
37181905Sed * $Id: qdivrem.c,v 1.2 1994/08/02 07:44:19 davidg Exp $
38181905Sed */
39181905Sed
40181905Sed/*
41181905Sed * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
42181905Sed * section 4.3.1, pp. 257--259.
43181905Sed */
44181905Sed
45181905Sed#include "quad.h"
46181905Sed
47181905Sed#define	B	(1 << HALF_BITS)	/* digit base */
48181905Sed
49181905Sed/* Combine two `digits' to make a single two-digit number. */
50181905Sed#define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
51189061Sed
52189061Sed/* select a type for digits in base B: use unsigned short if they fit */
53181905Sed#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
54189061Sedtypedef unsigned short digit;
55189061Sed#else
56181905Sedtypedef u_long digit;
57181905Sed#endif
58181905Sed
59181905Sed/*
60181905Sed * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
61181905Sed * `fall out' the left (there never will be any such anyway).
62181905Sed * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
63181905Sed */
64181905Sedstatic void
65181905Sedshl(register digit *p, register int len, register int sh)
66181905Sed{
67181905Sed	register int i;
68181905Sed
69181905Sed	for (i = 0; i < len; i++)
70181905Sed		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
71181905Sed	p[i] = LHALF(p[i] << sh);
72181905Sed}
73181905Sed
74181905Sed/*
75181905Sed * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
76181905Sed *
77181905Sed * We do this in base 2-sup-HALF_BITS, so that all intermediate products
78181905Sed * fit within u_long.  As a consequence, the maximum length dividend and
79181905Sed * divisor are 4 `digits' in this base (they are shorter if they have
80181905Sed * leading zeros).
81181905Sed */
82183276Sedu_quad_t
83183276Sed__qdivrem(uq, vq, arq)
84181905Sed	u_quad_t uq, vq, *arq;
85181905Sed{
86181905Sed	union uu tmp;
87181905Sed	digit *u, *v, *q;
88181905Sed	register digit v1, v2;
89181905Sed	u_long qhat, rhat, t;
90181905Sed	int m, n, d, j, i;
91181905Sed	digit uspace[5], vspace[5], qspace[5];
92181905Sed
93181905Sed	/*
94181905Sed	 * Take care of special cases: divide by zero, and u < v.
95181905Sed	 */
96181905Sed	if (vq == 0) {
97181905Sed		/* divide by zero. */
98181905Sed		static volatile const unsigned int zero = 0;
99181905Sed
100181905Sed		tmp.ul[H] = tmp.ul[L] = 1 / zero;
101181905Sed		if (arq)
102181905Sed			*arq = uq;
103181905Sed		return (tmp.q);
104181905Sed	}
105183276Sed	if (uq < vq) {
106183276Sed		if (arq)
107183276Sed			*arq = uq;
108181905Sed		return (0);
109181905Sed	}
110181905Sed	u = &uspace[0];
111181905Sed	v = &vspace[0];
112181905Sed	q = &qspace[0];
113181905Sed
114181905Sed	/*
115181905Sed	 * Break dividend and divisor into digits in base B, then
116181905Sed	 * count leading zeros to determine m and n.  When done, we
117181905Sed	 * will have:
118181905Sed	 *	u = (u[1]u[2]...u[m+n]) sub B
119181905Sed	 *	v = (v[1]v[2]...v[n]) sub B
120181905Sed	 *	v[1] != 0
121181905Sed	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
122181905Sed	 *	m >= 0 (otherwise u < v, which we already checked)
123181905Sed	 *	m + n = 4
124181905Sed	 * and thus
125181905Sed	 *	m = 4 - n <= 2
126181905Sed	 */
127181905Sed	tmp.uq = uq;
128181905Sed	u[0] = 0;
129242078Sed	u[1] = HHALF(tmp.ul[H]);
130242078Sed	u[2] = LHALF(tmp.ul[H]);
131242078Sed	u[3] = HHALF(tmp.ul[L]);
132242078Sed	u[4] = LHALF(tmp.ul[L]);
133181905Sed	tmp.uq = vq;
134181905Sed	v[1] = HHALF(tmp.ul[H]);
135181905Sed	v[2] = LHALF(tmp.ul[H]);
136181905Sed	v[3] = HHALF(tmp.ul[L]);
137181905Sed	v[4] = LHALF(tmp.ul[L]);
138181905Sed	for (n = 4; v[1] == 0; v++) {
139181905Sed		if (--n == 1) {
140181905Sed			u_long rbj;	/* r*B+u[j] (not root boy jim) */
141181905Sed			digit q1, q2, q3, q4;
142181905Sed
143181905Sed			/*
144181905Sed			 * Change of plan, per exercise 16.
145181905Sed			 *	r = 0;
146181905Sed			 *	for j = 1..4:
147181905Sed			 *		q[j] = floor((r*B + u[j]) / v),
148181905Sed			 *		r = (r*B + u[j]) % v;
149181905Sed			 * We unroll this completely here.
150181905Sed			 */
151181905Sed			t = v[2];	/* nonzero, by definition */
152181905Sed			q1 = u[1] / t;
153181905Sed			rbj = COMBINE(u[1] % t, u[2]);
154181905Sed			q2 = rbj / t;
155181905Sed			rbj = COMBINE(rbj % t, u[3]);
156241161Sed			q3 = rbj / t;
157241161Sed			rbj = COMBINE(rbj % t, u[4]);
158241161Sed			q4 = rbj / t;
159181905Sed			if (arq)
160181905Sed				*arq = rbj % t;
161181905Sed			tmp.ul[H] = COMBINE(q1, q2);
162181905Sed			tmp.ul[L] = COMBINE(q3, q4);
163181905Sed			return (tmp.q);
164181905Sed		}
165181905Sed	}
166181905Sed
167181905Sed	/*
168181905Sed	 * By adjusting q once we determine m, we can guarantee that
169181905Sed	 * there is a complete four-digit quotient at &qspace[1] when
170181905Sed	 * we finally stop.
171181905Sed	 */
172181905Sed	for (m = 4 - n; u[1] == 0; u++)
173181905Sed		m--;
174181905Sed	for (i = 4 - m; --i >= 0;)
175181905Sed		q[i] = 0;
176181905Sed	q += 4 - m;
177181905Sed
178181905Sed	/*
179181905Sed	 * Here we run Program D, translated from MIX to C and acquiring
180181905Sed	 * a few minor changes.
181181905Sed	 *
182181905Sed	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
183181905Sed	 */
184181905Sed	d = 0;
185181905Sed	for (t = v[1]; t < B / 2; t <<= 1)
186181905Sed		d++;
187231949Skib	if (d > 0) {
188181905Sed		shl(&u[0], m + n, d);		/* u <<= d */
189181905Sed		shl(&v[1], n - 1, d);		/* v <<= d */
190181905Sed	}
191181905Sed	/*
192181905Sed	 * D2: j = 0.
193181905Sed	 */
194181905Sed	j = 0;
195181905Sed	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
196181905Sed	v2 = v[2];	/* for D3 */
197181905Sed	do {
198181905Sed		register digit uj0, uj1, uj2;
199242078Sed
200242078Sed		/*
201242078Sed		 * D3: Calculate qhat (\^q, in TeX notation).
202242078Sed		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
203181905Sed		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
204181905Sed		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
205181905Sed		 * decrement qhat and increase rhat correspondingly.
206181905Sed		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
207181905Sed		 */
208181905Sed		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
209181905Sed		uj1 = u[j + 1];	/* for D3 only */
210181905Sed		uj2 = u[j + 2];	/* for D3 only */
211241161Sed		if (uj0 == v1) {
212241161Sed			qhat = B;
213241161Sed			rhat = uj1;
214181905Sed			goto qhat_too_big;
215181905Sed		} else {
216181905Sed			u_long n = COMBINE(uj0, uj1);
217181905Sed			qhat = n / v1;
218181905Sed			rhat = n % v1;
219181905Sed		}
220181905Sed		while (v2 * qhat > COMBINE(rhat, uj2)) {
221181905Sed	qhat_too_big:
222181905Sed			qhat--;
223181905Sed			if ((rhat += v1) >= B)
224181905Sed				break;
225181905Sed		}
226181905Sed		/*
227181905Sed		 * D4: Multiply and subtract.
228181905Sed		 * The variable `t' holds any borrows across the loop.
229181905Sed		 * We split this up so that we do not require v[0] = 0,
230181905Sed		 * and to eliminate a final special case.
231181905Sed		 */
232181905Sed		for (t = 0, i = n; i > 0; i--) {
233181905Sed			t = u[i + j] - v[i] * qhat - t;
234181905Sed			u[i + j] = LHALF(t);
235181905Sed			t = (B - HHALF(t)) & (B - 1);
236181905Sed		}
237181905Sed		t = u[j] - t;
238181905Sed		u[j] = LHALF(t);
239181905Sed		/*
240242078Sed		 * D5: test remainder.
241242078Sed		 * There is a borrow if and only if HHALF(t) is nonzero;
242242078Sed		 * in that (rare) case, qhat was too large (by exactly 1).
243242078Sed		 * Fix it by adding v[1..n] to u[j..j+n].
244181905Sed		 */
245181905Sed		if (HHALF(t)) {
246181905Sed			qhat--;
247181905Sed			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
248181905Sed				t += u[i + j] + v[i];
249181905Sed				u[i + j] = LHALF(t);
250181905Sed				t = HHALF(t);
251181905Sed			}
252181905Sed			u[j] = LHALF(u[j] + t);
253181905Sed		}
254181905Sed		q[j] = qhat;
255181905Sed	} while (++j <= m);		/* D7: loop on j. */
256181905Sed
257181905Sed	/*
258181905Sed	 * If caller wants the remainder, we have to calculate it as
259181905Sed	 * u[m..m+n] >> d (this is at most n digits and thus fits in
260181905Sed	 * u[m+1..m+n], but we may need more source digits).
261181905Sed	 */
262181905Sed	if (arq) {
263241161Sed		if (d) {
264241161Sed			for (i = m + n; i > m; --i)
265241161Sed				u[i] = (u[i] >> d) |
266181905Sed				    LHALF(u[i - 1] << (HALF_BITS - d));
267181905Sed			u[i] = 0;
268181905Sed		}
269181905Sed		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
270181905Sed		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
271181905Sed		*arq = tmp.q;
272181905Sed	}
273181905Sed
274181905Sed	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
275181905Sed	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
276181905Sed	return (tmp.q);
277181905Sed}
278181905Sed